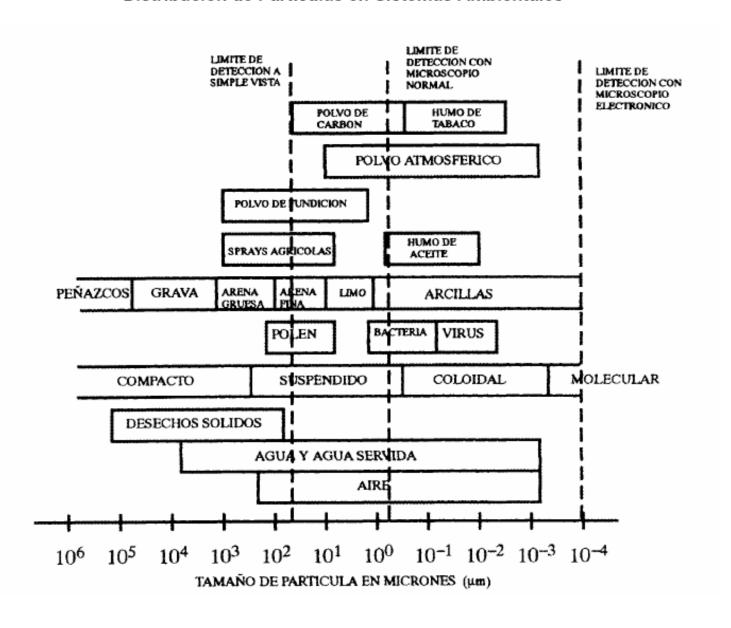
Dispersiones en el Medio Ambiente: Soluciones

Cl41B Ingeniería Ambiental Profesor Marcelo Olivares A.


Dispersiones: Introducción

Dispersiones: sistemas en que partículas se encuentran dispersas en un medio continuo (fluido)

- •Suspensiones: medio fluido heterogéneo que contiene partículas que sedimentan (> 0.5 micrón)
- •Dispersiones coloidales: contienen coloides (no sedimentan)
- •Soluciones: no se puede distinguir "partículas" → Mezcla homogénea. Interacciones a nivel molecular.

Dispersiones: Tamaño de Partículas

Distribución de Partículas en Sistemas Ambientales

Gases, líquidos y sólidos pueden disolverse en agua para formar soluciones. La sustancia que se disuelve es denominado el soluto, mientras que la substancia o medio en el cual es disuelto se denomina solvente.

Una solución puede tener cualquier concentración de soluto bajo un cierto límite denominado la solubilidad de esa sustancia en ese medio.

Una gran cantidad de problemas ambientales se refiere a la presencia de elementos extraños dentro de una solución líquida o gaseosa, que afectan la "calidad" de dicha solución:

Para evaluar cuantitativamente el impacto de elementos extraños o contaminantes se utiliza el concepto de concentración, el que se refiere básicamente a cuanto de ese elemento extraño está presente en la solución.

$$Concentración = \frac{cantidad\ de\ soluto}{cantidad\ de\ solución} = \frac{cantidad\ de\ soluto}{cantidad\ de\ soluto\ más\ solvente}$$

Dependiendo de la forma en la cual se miden la cantidad de soluto y la cantidad de solución existen básicamente tres formas de expresar concentraciones:

Masa/masa= masa de soluto

masa de solución

Unidades típicas son mg/kg, también expresada como ppm (partes por millón), el porcentaje en peso y la fracción molar.

Masa/volumen= masa de soluto

volumen de solución

Unidades típicas de medición son mg/L, gr/m³.

Volumen/volumen, corresponde a una unidad utilizada en el caso de gases y se refiere al volumen de soluto por volumen de solución. Unidad típica es ppm (volumétrico).

Otra forma común de expresar concentración es a través del concepto de Molaridad o Concentración Molar.

Moles de soluto ó Moles de soluto

Masa de solución Volumen de solución

En gases usualmente se utiliza la concentración expresada como masa/masa, porque el volumen que ocupa es dependiente de la temperatura y de la presión.

De esta manera, el volumen de un mol de gas se puede escribir como:

$$V_{T,P} = 22.4 \cdot \frac{T}{273} \cdot \frac{1}{p} \quad (litro)$$
°K=°C+273°

Donde T: temperatura en grados Kelvin

p: presión en atmósferas

Esta última expresión permite escribir para el caso de una sustancia gaseosa la siguiente expresión para relacionar la concentración en VV con aquella expresada en MV.

$$(C_{VV})_{GAS} = (C_{MV})_{GAS} \cdot \frac{V_{T,P}}{MM_{GAS}}$$

EJEMPLO 1: Convirtiendo ppm a mg/m³ (aire).

La exposición al CO se puede evaluar a través de los niveles de carboxyhemoglobina (COHb) que se expresa como porcentaje de la hemoglobina (Hb) total que está unida al CO. Los resultados de diversos estudios recientes han mostrado que el CO aparece asociado a efectos respiratorios y efectos cardiovasculares.

La Organización Mundial de la salud (OMS) recomienda un estándar de calidad del aire para monóxido de carbono (basado en mediciones cada 8 hr) de 9 ppm. Expresar este estándar en mg/m³ a 1 atm y 25°C.

Cuando una reacción química es analizada provee información cualitativa y cuantitativa.

En forma cualitativa podemos observar <u>que</u> elementos químicos están interactuando para producir <u>que</u> productos finales.

En forma cuantitativa podemos determinar <u>cuanto</u> reactante y <u>cuanto</u> producto se requiere para llevar a cabo una reacción.

El balance de las ecuaciones químicas para que cada tipo de átomo aparezca en un mismo número entre reactantes y productos se denomina estequiometría.

El primer paso en este análisis es definir, a partir del conocimiento de los **reactantes** y del proceso que se trata, los **posibles productos finales**. Una vez definidos los reactantes y productos se procede a **balancear** las ecuaciones.

Por ejemplo, supongamos que deseamos investigar la combustión de metano (CH_4) el principal componente del gas natural.

$$CH_4 + O_2 \rightarrow CO_2 + H_2O$$

La forma más simple de balancear este tipo de ecuaciones es siguiendo el siguiente procedimiento:

- -Balancear todos los elementos excepto el agua y oxígeno.
- -Balancear los átomos de hidrógeno modificando las moléculas de agua.
- -Balancear los átomos de oxígeno modificando las moléculas de oxígeno gas (O_2) .

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

El balance estequiométrico relaciona cantidad de moles o moléculas de reactantes y productos.

A menudo interesa poder relacionar cantidades de masa de reactantes y productos.

Siguiendo el ejemplo de la combustión de metano (CH_4) , podría ser interesante saber cuánta masa de CO2 se generaría a partir de la combustión de una determinada masa gas metano.

Lo anterior puede lograrse relacionando número de moléculas (o de moles) con cantidad de masa.

Lo anterior puede lograrse conociendo la masa correspondiente a un mol de un determinado elemento o compuesto. Esto es lo que se denomina masa molar.

Reacciones Químicas: Peso atómico y Masa Molar

Tabla 1 Símbolos y Pesos Atómicos (g/mol)

Simbolos y Pesos Atómicos (g/mol)					
Elemento	Símbolo	Peso Atómico	Elemento	Símbolo	Peso Atómico
Actinio	Ac	227.03	Mercurio	Hg	200.59
Aluminio	Al	26.98		Mo	95.94
Americio	Am	243.00		Nd	144.24
Antimonio	Sb	121.75		Ne	20.18
Argón	Ar	39.95		Np	237.05
Arsénico	As	74.92		Ni Ni	58.70
Astatino	At	210.00		Nb	92.91
Bario	Ba	137.33		N	14.01
Berkelio	Bk	247.00	Nobelio	No	259.00
Berilio	Be	9.01		Os	190.20
Bismuto	Bi	208.98		0	16.00
Boro	В	10.81	0	Pb	106.40
Bromo	Br		Fósforo	P	30.97
Cadmio	Cd	112.41		Pt	195.09
Calcio	Ca	40.08		Pu	244.00
Californio	Cf		Polonio	Po	209.00
Carbono	C	12.01		K	39.09
Cerio	Ce	140.12		Pr	140.91
Cesio	Cs	-	Prometio	Pm	145.00
Cloro	CI	35.45		Pa	231.04
Cromo	Cr	51.99		Ra	226.03
Cobalto	Co	58.93		Rn	222.00
Cobre	Cu	63.55		Re	186.20
Curio	Cm	247.00		Rh	102.91
Disprosio	Dy	162.50		Rb	85.45
Einsteinio	Es	254.00		Ru	101.07
Erbio	Er	167.26		Sm	150.40
Europio	Eu	151.96		Sc	44.96
Fermio	Fm	257.00		Se	78.96
Fluor	F		Silicon	Si	28.09
Francio	Fr	223.00		Ag	107.89
Gadolinio	Gd	157.25		Na Na	22.99
Galio	Ga		Estroncio	Sr	87.62
Germanio	Ge	72.59		S	32.06
Oro	Au	196.97		Ta	180.95
Hafnio	Hf		Tecneito	Tc	97.00
Helio	He	4.00		Te	127.60
Holmio	Но	164.93	Terbio	Tb	158.93
Hidrógeno	H	1.01	Talio	Ti	204.37
Indio	Ln	114.82		Th	232.04
Yodo	I.	126.90		Tm	168.93
Iridio	Lr	192.22		Sn	118.69
Hierro	Fe	55.85		Ti	47.90
Kripton	Kr		Tungsteno	W	183.85
Lantano	La	138.91		Ü	238.03
Lawrencio	Lr	260.00		V	50.94
Plomo	Pb		Xenón	Xe	131.30
Litio	Li	6.94		Yb	173.04
Lutelio	Lu	174.97		Ϋ́	88.91
Magnesio	Mg	24.31		Zn	65.38
Manganeso	Mn	54.94		Zr	91.22
Mendelevio	Md	258.00	0501.110		01.22
3114010110	1110	_00.00	I	l	

$$PA = \frac{Masa\ \acute{a}tomo\ elemento}{1/12\ Masa\ \acute{a}tomo\ Carbono}$$

$$MM = PA \cdot Mu$$

Mu= Constante de masa molar= 1g/mol

(Aquí MM significa masa molar. No confundir con concentración masa-masa.)

De este modo, para un compuesto como el monóxido de carbono (CO) el masa molar molecular es igual a:

$$MM_{CO} = MM_C + MM_O = 12 g / mol + 16 g / mol = 28 g / mol$$

Si dividimos la masa de una substancia por su peso molecular, el resultado es la masa expresada en moles. El número de moles se calcula dividiendo la masa del compuesto por su masa molar:

$$Moles = \frac{Masa}{Masa\ Molar}$$

De acuerdo a nuestros conocimientos básicos de química recordemos que un mol de cualquier sustancia (en particular de un gas) contiene 6.022x10²³ moléculas. Este número se conoce como el número de **Avogadro**.

EJEMPLO 2: Combustión de Butano.

Determinar la masa de dióxido de carbono generada en la oxidación de 100 g de butano (C_4H_{10}). Los productos finales de la oxidación son agua y dióxido de carbono.

EJEMPLO 3: Descomposición de Etanol Derramado en Río

Etanol (C_2H_5OH) es derramado en forma accidental en un río, donde es degradado por la acción de microbios. Si los productos de descomposición son el dióxido de carbono (CO_2) y agua:

- -Escriba la reacción química que describe este proceso.
- -¿Cuántos kilogramos de oxígeno son consumidos en este proceso si 500 Kg de etanol fueron derramados? ¿Cuántos kilogramos de CO₂ son producidos?