
Visualizing Software using Mondrian and Moose

Alexandre Bergel
University of Chile, Santiago, Chile

INRIA, France

http://www.bergel.eu

1 Installing Mondrian

Mondrian run on Visualworks1, Squeak2 and Pharo3. In
this manual, Pharo will be used as the running platform for
Mondrian.

If you do not have Pharo installed, then you ought
to go to the Pharo website and follow the installation
instructions. Then, open a workspace (World menu,
Tools/Workspace). Type the following incantation:

ScriptLoader new installer ss project: ’Mondrian’;
install: ’MondrianLoader’.

ScriptLoader perform: #loadMondrian

select with the mouse, and press do-it. This should load the
latest version of Mondrian. You’re ready to jump to the next
section.

Note on the Pharo version. Although a great of effort has been
spent on making the Pharo/Squeak version compatible with the
Visualworks version, some differences may exist. If you find one
that is not referenced in this manual, please drop few lines to the
developers.

A bit of history. Mondrian has been originally developed on
Visualworks by Michael Meyer and Tudor Girba. A port has been
initiated by Lukas Renggli. Alexandre Bergel took over and made
significantly improved the Pharo version.

How to reach us. Currently, developers of Mondrian are:

• Alexandre Bergel: alexandre.bergel@inria.fr

• Tudor Girba: girba@iam.unibe.ch

The best way is to reach us is probably the moose mail-
ing list. If you have an interest in Mondrian, Moose
and other Smalltalk-based re- and reverse engineering tech-
niques, https://www.iam.unibe.ch/mailman/listinfo/moose-dev is
the place you want to go right away.

1www.cincomsmalltalk.com
2www.squeak.org
3www.pharo-project.org

2 First step

2.1 A first example

Open a Workspace, and do-it the following code excerpt:

| view |
view := MOViewRenderer new.
view nodes: (1 to: 20).
view open

You should see a new window with about 20 small boxes lined
up in the top left corner. You’ve just rendered the numerical set
between 1 and 20.

In the remaining of this section, we will intensively use
Smalltalk reflection to make compelling examples. Let’s add a
variable contains all subclasses of the class Collection.

|view classes |
classes := Collection withAllSubclasses.
view := MOViewRenderer new.
view nodes: classes.
view open

If you execute the code given above you will not notice any
graphical difference except the number of small boxes in the top
left corner. This is expected since there are more than 20 sub-
classes of Collection in Pharo. All this boxes have the exact same
shape.

2.2 Working with the Easel

So far, a visualization was rendered by explicitly instantiating
MOViewRenderer and then sending the message open. This way
of building visualization scripts does not shine by its interactivity
with the designer. It is very close to the edit/compilation endless
loop promoted by old-fashion programming languages such as C,
C++ and Java (to some extend).

A nice dose of interactivity is accessible through an easel. An
easel may be open by “doiting” the expression MOEasel open.
A window similar to Figure 1 will popup.

Within an easel, you do not need to instantiate a view renderer
and opening it up. Simply write your script without taking care of
this initialization.

Note that you can press Cmd-S (as you would accept a
Smalltalk method) to render the view.

1

http://www.bergel.eu
mailto://alexandre.bergel@inria.fr
mailto://girba@iam.unibe.ch
https://www.iam.unibe.ch/mailman/listinfo/moose-dev
http://www.cincomsmalltalk.com
http://www.squeak.org
http://www.pharo-project.org

Figure 1. Scripting visualization with the
Mondrian Easel.

3 The System Complexity View

Let’s continue the example started in Section 2.1. All the boxes
are similar so far. Let’s make each small boxes reflect the shape of
the class. For this, we need to add a shape. This shape will be a
rectangle in which the height and the width is particularized. We
enhance the previous example. Enter the following in the scripting
pane of the Easel:

|classes |
classes := Collection withAllSubclasses.
view shape rectangle

height: [:cls | cls methods size];
width: [:cls | cls instVarNames size * 5]).

view nodes: classes.

For each class, a box is displayed. The width and the height of
a box is computed by evaluating the provided blocks. We recall
that a block in Smalltalk acts as a first-class function. The block
is evaluated by providing an element, which is bound to cls. The
block body may then be evaluated4.

Each box is distinct from others by having a width and a height
corresponding to the class it represents. The height of a box rep-
resents the number of methods. The multiplication stems from the
fact that a class has comparatively a low number of instance vari-
ables.

Nodes do not have knowledge about how and when they will be
rendered on the screen. A shape is therefore necessary. A number
of shapes may be found in the Mondrian distribution.

Nodes are draggable. Moving the mouse cursor over a box will
display the name of the class being represented.

Edges may be trivially added.

|classes |
classes := Collection withAllSubclasses.
view shape rectangle

height: [:cls | cls methods size];

4Blocks are evaluating by sending the message value: to it. Note that
the Mondrian framework takes care of evaluating provided blocks. There
is nothing for you to do then.

width: [:cls | cls instVarNames size * 5]).
view nodes: classes.
view edgesFrom: #superclass.
view treeLayout.

Edges are built from superclass links existing between sub-
classes of Collection. To really understand how edges are built,
let’s have a look at the definition of edgesFrom::

MOViewRenderer>> edgesFrom: aBlockOrSelector
| domain |
domain := self root nodes collect: [:each |each model].
self edges: domain from: aBlockOrSelector to: #yourself

Edges exists only for nodes that belong to what has been set
as view nodes. For example, having view edgesFrom: [:each
| Object] will not draw any edge since the class Object hasn’t
been provided in the view nodes: instruction.

We also added a layout. A layout is in charge of properly posi-
tioning the node according to some algorithm. The method tree-
Layout is defined as:

MOViewRenderer>>treeLayout
ˆ self layout: MOTreeLayout new.

A number of layout are provided in the Mondrian-Layouts
class category.

So far, only 4 dimensions of a box have been explored: x, y,
width, height. Colors may be easily added. Consider the following
example that shows in blue all classes having the word Array in
their name, and in green the ones having Dictionary.

|classes |
classes := Collection withAllSubclasses.
view shape rectangle

height: [:cls | cls methods size];
width: [:cls | cls instVarNames size * 5]).
fillColor: [:cls | (cls name matchesRegex: ’.*Dictionary.*’)

ifTrue: [Color green]
ifFalse: [(cls name matchesRegex: ’.*Array.*’)

ifTrue: [Color blue]
ifFalse: [Color white]]].

view nodes: classes.
view edgesFrom: #superclass.
view treeLayout.

Color intensity may also be proportional to a numerical value.
Consider:

| classes numberOfLinesOfCode |
classes := Collection withAllSubclasses.
numberOfLinesOfCode := Dictionary new.
classes do: [:cls |

numberOfLinesOfCode at: cls put:
(cls methods
inject: 0
into: [:sum :aMethod |

sum + aMethod getSourceFromFile lineCount])].
view shape rectangle

width: [:cls | cls instVarNames size * 5];
height: [:cls | cls methods size];
linearFillColor: [:cls | numberOfLinesOfCode at: cls]

within: classes.
view nodes: classes.
view edgesFrom: #superclass.
view treeLayout

2

Figure 2. The System Complexity View on the
collection framework in Pharo.

The message sent to the shape is linearFillColor: aBlock
within: domains. The provided block should return a numeri-
cal value. In this case, we compute the number of lines of code
of a class by summing all method lengths. The message methods
returns a collection of CompiledMethod instances. Sending get-
SourceFromFile to a compiled method returns its source code as
a String. Sending lineCount to a string returns the number of lines
represented by its receiver. The method inject:into: iterates over a
collection using an accumulator5.

The view you obtained for the collection framework in Pharo
(Figure 2) is called System Complexity View [LD03, Lan03].

4 Visualizing a Moose model

So far, we have visualized part of the Pharo library only. This
section gives a very brief and informal introduction on the FAMIX
meta model. Having a rudimentary background on how Moose
models are composed of is necessary to visualize them.

Moose is a platform for software analyzes. FAMIX is an ex-
tensible meta-model used by Moose to represent program source
code. We will concentrate on the subset of FAMIX that is closely
linked to object-orientation.

To see what a model looks like, open a Moose open (just
evaluate MoosePanel open in a workspace). Open a Moose
finder on the LAN sample model. The LAN model is made of
679 FAMIX entities, comprising packages, accesses, invocations,
classes, methods, just to name a few.

Select the line All famixclass (38 FAMIXClasses) and select the
Complexity tab. You should now be familiar with what you see.

5As an example, the following code compute the factorial of 20: (1 to:
20) inject: 1 into: [:accu :el | accu * el]

Right click on the All famixclass (38 FAMIXClasses) line, and
open the group of classes in a Mondrian easel. You can now hap-
pily exercise your freshly learned skills on creating visualization.
In the script panel, a variable classGroup is available. This vari-
able has been set by the Moose finder and contains a collection of
FAMIXClass instances.

Try to reproduce the System Complexity View on this model.
For a given FAMIXClass, you can access:
• superclass by sending the message superclass
• number of lines of code by sending the message num-

berOfLinesOfCode
• number of methods with numberOfMethods
• number of attributes (i.e., instance variables) with num-

berOfAttributes

5 A note on edges

A renderer offers a number of convenient methods. Browse the
class MOViewRender to have the complete list. Edges are de-
clared from a number of elements, and two blocks that are used to
compute from the elements the starting and ending point. Consider
the following script:

view nodes: (1 to: 30).
view edges: (1 to: 30) from: #yourself to: [:aNumber |aNumber // 5].
view dominanceTreeLayout

The first line declares 30 nodes. The second line declares an
edge for each of the nodes. The edge begins from the node it-
self (i.e., having #yourself is equivalent to [:anElement | anEle-
ment]) and ends in another number computed with aNumber //
5. The method // aNumber is defined on the class Number. It
returns the remaining of a division between the receiver and the
division.

• edges: aCollection from: aFromBlock to: aToBlock –
Draw at most one edge for each node. Two edges cannot
start from a unique node.

• edges: aCollection from: aFromBlock toAll: aToBlock –
Note that aToBlock must returns a collection. This method
is useful to draw more than one edges starting from a node.

• edgesFrom: aSelector – Equivalent to edges: nodes
from: aBlockOrSelector to: #yourself

The complete list may be find in the definition of
MOViewRenderer.

A typical usage of edges:from:to: may be found in the fol-
lowing code excerpt:

view nodes: (1 to: 5).
view shape arrowedLine.
view edges: {1 -> 2. 1 -> 5 . 4 -> 3} from: #key to: #value.
view circleLayout

The expression {1 -> 2. 1 -> 5 . 4 -> 3} defines an array of
associations. An association is obtained by sending the message
-> to an object with a second object as argument. The receiver
and the argument of this message may be retrieved by using the
message key and value. Look for the implementor of -> to see
how this works. Implementors may be obtained by pressing Cmd-
m or Alt-m when selecting the a message name in a workspace.

3

6 Nesting

View nesting is supported by using the message
nodes:forEach:. Within an easel open a moose model,
try:

view nodes: classGroup forEach: [:each |
view nodes: each methods.
view gridLayout].

view gridLayout

You can also insert label using a new shape:

view shape rectangle withoutBorder.
view nodes: classGroup forEach: [:each |

view node: each forIt:
[view nodes: each methods .

view gridLayout] .
view shape label text: #name.
view node: each.
view verticalLineLayout center].

view gridLayout

7 A small exercise now

1. Open an easel on all famix classes of a Moose model

2. Use colors to distinguish stub and no-stub classes

3. Use colors to distinguish overridden methods from not over-
ridden methods

4. Refine your visualization according to your imagination

8 Interactions

Event handlers may be attached to nodes. Event are actions
triggered by the mouse (e.g., moving the cursor over a node, press-
ing a button, pressing a key...). In Pharo, events use announcement.
Handler may be trivially attached to nodes as:

|view classes |
classes := Collection withAllSubclasses.
view := MOViewRenderer new.
view interaction

on: MOMouseDown do: [:ann | ann element browse];
popupText.

view shape:
(MORectangleShape new

height: [:cls | cls methodDict size max: 5];
width: [:cls | cls instVarNames size * 5 max: 5]).

view nodes: classes.
view edgesFrom: #superclass.
view treeLayout. view open

Pressing a box will now open a system browser. Most of the
commonly events are handled. Unfortunately, some events re-
lated to the OS may be useful to grab in some situation. Win-
dow switching is one of them. For example, the zooming (acces-
sible through the key + and -) is set in the method MOViewRen-
derer>>setDefaultHandler:

MOViewRenderer>>open
self root interaction on: MOKeyDown do: [:ann |

ann character asInteger = 24 ifTrue: [self root increaseZoom].
ann character asInteger = 27 ifTrue: [self root decreaseZoom].
systemWindow changed].

In some case, one may want to change the shape of a node
when a particular action occurs. This could be changing the color
of a node when pressing on it for example. The method copy-
ShapeAndDo: is useful for that purpose. Consider the following
example:

view on: MOMouseEnter do: [:ann |
ann element copyShapeAndDo: [:shape | shape fillColor: Color blue].
view updateWindow].

view on: MOMouseLeave do: [:ann |
ann element copyShapeAndDo: [:shape | shape fillColor: Color white].
view updateWindow].

The updateWindow needs to be sent to the view in order to
refresh the windows content.

9 Links

• Great Smalltalk manual: squeakbyexample.org

• Moose and associated tools: moose.unibe.ch

References

[Lan03] Michele Lanza. Object-Oriented Reverse Engineering
— Coarse-grained, Fine-grained, and Evolutionary Soft-
ware Visualization. PhD thesis, University of Bern, May
2003.

[LD03] Michele Lanza and Stéphane Ducasse. Polymetric
views—a lightweight visual approach to reverse engi-
neering. Transactions on Software Engineering (TSE),
29(9):782–795, September 2003.

4

http://squeakbyexample.org
http://moose.unibe.ch

	Installing Mondrian
	First step
	A first example
	Working with the Easel

	The System Complexity View
	Visualizing a Moose model
	A note on edges
	Nesting
	A small exercise now
	Interactions
	Links

