
The Principle of Software 
Process Change

Alexandre Bergel
abergel@dcc.uchile.cl

Part of this lecture is based on “Managing the Software Process”, from Watts S. Humphrey (SEI Series in 
Software Engineering), 1990



Context of this lecture

 There is a very strong wish from the Chilean IT society 
to become an off-shoring and outsourcing place

 Getting a CMMI evaluation or ISO 9126 certification is 
crucial for opening the market

 Proximity to the North American market make us 
think in terms of software process

 Being agile and responsive to process changes is 
crucial to be competitive



Goal of this lecture

 Getting a general sense of software process change

 Especially focusing on:

 resistance to change, champions, sponsors, unfreezing, refreezing

 

This lecture describes the principles for changing the software process and discusses some common 
misconceptions about software work. The objective of this lecture is to have a general sense of software 
process change, focusing on the issues as resistance to change, champions, sponsors, agents, 
unfreezing, and refreezing before launching a software process change program.



Software process in perspective

 When some approach seems to fit a need, we often 
think it will solve all the problems

 Software process management is a powerful 
mechanism

 to assess software problems

 to frame organizational improvement

 However, it is not a cure-all



Process in perspective

 Two other areas that need to be considered are 
people and design methods



People

 Software quality is extremely sensitive to the talent of 
its builders

 Large software teams must contain a mix of talent

 Not all errors are made by the least skilled 
professionals



People and skills

 Better people clearly do better work

 When focusing only on talent, you may bump into:

 short supply of the best people

 you probably have the best team you can get right now

 with a proper guidance, most people can do better work

 Important to make better use of the talent we have



Design

 Superior products have superior designs

 Successes are always designed by people who 
understand the applications

 A software program can be viewed as executable 
knowledge

 Knowledge + creative design => a quality product

Some studies [1] showed that successes are always designed by people who understand the application 
best. For example, a well-designed program to control a missile was designed by someone who 
understood missiles.

[1] Curtis, W., H. Krasner, V. Shen, and N. Iscoe. “On building software process models under the 
lamppost.” IEEE Proceedings, ICSE’87



The Six The Six Basic Principles



 The basic principles of software process change are

 1 - Major changes to the software process must start at the top

 2 - Ultimately, everyone must be involved

 3 - Effective change requires a goal and knowledge of the current process

 4 - Change is continuous

 5 - Software process changes need periodic reinforcement

 6 - Software process improvement requires investment



 Major changes require leadership

 Conviction that long-term improvements are possible 
and essential

 Managers must set 

 challenging goals

 monitor process

 insist on performance

 Process problems are management’s responsibility

1 - Changes must start at the top



2 - Everyone must be involved

 A mature process help getting individual actions 
structured, efficient, and reinforced

 As in professional sports, all the team members need 
to support each other

 When they don’t, they act like a mob of individual 
players resulting in a loose of synergistic cohesion

With an immature software process, software professionals are forced to improvise solutions



3 - Change is built on knowledge

 An effective change program requires a reasonable 
understanding of the current status

 People often feel that their problems are unique, 
however studies show this is not true

 Experiences shows that problems were already 
addressed in the past, in the same organization

 

[1] Humphrey, W. S., T. Kasse, and D. Kitson. “State of Software Engineering Practice”, Software 
Engineering Institute Technical Report, CMI/SEI-89-TR-1



4 - Change is continuous

 When dealing with software process dynamic

 reactive changes generally make things worse

 every defect is an improvement opportunity

 crisis prevention is more important than crisis recovery

 Defect prevention is a powerful technique for 
improving the software process

 track every problem and periodically to establish prevention 
actions teams

One of the most difficult things for a management team to recognize is that human intensive processes are never static. Both 
the problems and the people are in constant flux, and this fluidity calls for periodic adjustment of tasks and relationships. 
Even with a stable population, the people continually learn new skills and find different ways to solve problems. 

The *Reactive changes generally make things worse* point comes from industrial engineering. In a crisis, the focus is on 
quickly fixing the immediate problem, on not on improving the process. It is wise to make permanent process changes in a 
disciplined way. By occasionally adding new review steps or requiring additional tests, the process can soon become an 
incoherent patchwork rather than an orderly improvement framework.

Defect prevention is a powerful technique for improving the software process. The general idea is to track every problem and 
periodically to establish prevention action teams. 

One of the greatest conundrums of software management is maintaining sufficient priority on problem prevention. People 
gain greater visibility from putting out fires than from preventing them. These ‘‘heroes’’ are then more likely to be promoted 
than the quiet and effective professionals who stayed out of trouble. At lower maturity levels, management must consciously 
reward preventing as well as fixing.



5 - Changes won’t stick by 
themselves

 Improvements are likely to deteriorate over the time

 Entropy refers to the steady increase in the 
randomness or disorder

 Precise and accurate work is so hard that is rarely 
sustained for long without reinforcement

Software engineering is a tough discipline, and it is getting tougher. There are endless opportunities for 
error. 
The actions of even the best-intentioned professionals must be tracked, reviewed, and checked, or 
process deviations will occur. 



6 -Investment

 It takes times, skill, and money to improve the 
software process

 To improve the software process, someone must work on it!

 Improvements should be made in small, tested steps

 Train, train, train!



on misCommon misconceptions



Effective changes depends on realism. Without an appreciation of 
the current state of the software process and a realistic view of the 

future, it is easy to succumb to wishful thinking



We must start with first requirements
There is a widespread but fallacious view that requirements are the 
customers’ job and that development should not start until they are 

explicitly defined

Requirement must change as the software job progresses

Demand for firm and unchanging requirements is most wishful thinking
Requirements must change as the software job progress
Software development is a learning process
Incremental development process gradually increases the level of detail



If it passes test, it must be OK
If the generally dismal record of software quality problems doesn’t 

prove this false, nothing will



The problem are technical
In spite of many improved languages, tools, and environments, the 

problem of software cost, schedule, and quality remain



We need better people
Since the software professionals make the errors, some people 

erroneously feel that they should be blamed for them



ing SofImplementing a Software Process 
Change



Effective change process

 An effective change process has three phases:

 unfreezing, moving, refreezing

 Unfreezing is best initiated by an effort to understand 
organizational problems

 



Champions, sponsors, and agents

 Champions are the one who initiate the change

 Someone in authority needs to sponsor them

 Next step is to identity the change agents

 lead change planning and implementation

 



ummSummary



This lecture describes the principle for changing the software 
process ...



... and discusses some common misconceptions that can inhibit the 
improvement efforts



 The basic principles of software process change are

 1 - Major changes to the software process must start at the top

 2 - Ultimately, everyone must be involved

 3 - Effective change requires a goal and knowledge of the current process

 4 - Change is continuous

 5 - Software process changes need periodic reinforcement

 6 - Software process improvement requires investment



 Need to be connected to the real World

 We must start with first requirements

 If it passes test, it must be OK

 The problem are technical

 We need better people

 

Common misconceptions


