
Software Quality 
Factors
Alexandre Bergel

abergel@dcc.uchile.cl



Source

 Object-Oriented Software Construction, second 
edition, Bertrand Meyer



Engineering seeks quality

Software engineering is the production of quality software



Software quality is best described as a combination 
of several factors



External and internal factors

 We all want our software system to be fast, reliable, 
easy to use, structured, ...

 These adjectives describe two different sorts of 
qualities

 external quality factors given by the user point of view (e.g., speed)

 internal quality factors perceptible only to computer professional 
(e.g., modular, readable)

In the end, only external factors matter. If I use a web browser, little do I care whether the source 
program is readable or modular. But the key to achieving these external factors is in the internal ones: 
for the users to enjoy the visible qualities, the designers and implementers must have applied internatl 
techniques that will ensure the hidden qualities



Goal of this lecture

 To present a set of quality factors 
that matter for Software

We should not however lose track of the global picture; the internal techniques are not an end in 
themselves, but a means to reach external software qualities



A review of external factors

 Correctness

 Robustness

 Extendibility

 Reusability

 Compatibility

 Efficiency

 Portability

 Ease of use

 Timeliness



Correctness if the ability of software products to perform 
their exact tasks, as defined by their specification



Correctness is the prime quality

 If a system does not do what it is supposed to do, 
everything else matters little

 But this is easier said than done...

 Requirement specification plays an important rôle



Layers in software development

 Methods for ensuring correctness will usually be 
conditional

 A software touches so many areas that it is often 
impossible to guarantee its correctness

hardware
operating system

compiler
kernel library
base library

application system



Conditional correctness

 each layer is correct on the assumption that the lower 
levels are correct

 This is the only realistic technique since it lets us 
concentrate at each stage on a limited set of problems

You cannot usefully check that a program in a high-level language X is correct unelss you are able to 
assume that a program in a high-level language X is correct unless you are able to assume that the 
compiler on hand implements X correctly. This does not necessarily mean that you trust the compiler 
blindly, simply that you separate the two components of the problem: compiler correctness, and 
correctness of your program relative to the language’s semantics.

Note that some attempts to prove the correctness of compilers are being conducted at INRIA with the 
OCaml compiler.



Some techniques to gain 
correctness

 testing

 debugging

 type checking

 use of assertions

 use of formal methods



Robustness is the ability of software systems to react 
appropriately to abnormal conditions



Robustness complements 
correctness

specification
correctness

Robustness



Correctness addresses the behavior of a system in cases covered 
by its specification

Robustness characterizes what happens outside of that 
specification



Some techniques to gain robustness

 Providing erroneous input

 Getting a community of users

 ...



Extensibility is the ease of adapting software products to 
changes of specification



Software is supposed to be soft

 Nothing can be easier than to change a program if 
you have access to its source code

 Just use your favorite text editor

 The problem of extendibility is one of scale



Scalability problem

 For small programs change is usually not a difficult 
issue

 But as software grows bigger, it becomes harder and 
harder to adapt

We need extendibility because at the basis of all software lies some human phenomenon and hence 
fickleness. The obvious case of business software where passage of a law of a company’s acquisition 
may suddenly invalidate the assumptions on which a system rested.



 A large software system often looks to its maintainers as 
a giant house of cards



Not a new problem

 Traditional approaches to software engineering did 
not take enough account of changes



Two principles for extendibility

  design simplicity: a simple architecture will always be 
easier to adapt to changes than a complex one

 decentralization: the more autonomous the modules 
are, the higher chance a simple change will affect a 
small number of modules only. Chain of reaction must 
be avoided



Some techniques to gain 
Extensibility

 Language constructs

 classes, modules, functions, packages

 Design patterns



Reusability is the ability of software elements to serve for the 
construction of many different applications



Common patterns

 Software systems often follow similar patterns

 Exploiting this commonality is the key of reuse

It should be possible to exploit this commonality and avoid reinventing solutions to problems that have 
been encountered before.
By capturing such a pattern, a reusable software element will be applicable to many different 
developments.



Some techniques to gain reusability

 Language support

 classes, modules, functions, packages

 Documentation

 unit test, textual description, formal description



Compatibility is the ease of combining software 
elements with others



Some techniques to gain reusability

 Standardized file format

 text format, xml

 Standardized data structure

 in Lisp, all data and programs are represented by binary trees

 Standardized user interfaces

 Standardized access protocols

 Corba, Ole-com ActiveX, Service Web



Efficiency is the ability to place as few demands 
on hardware resources



Some techniques to gain efficiency

 Adoption of better algorithm

 Memory profiling

 Network monitoring

 Execution benchmarking



Portability is the ease of transferring software products to various 
hardware and software environments



Not only hardware

 Portability addresses variations not just of the 
physical hardware but more generally of the hardware-
software machine



Ease of use is the ease with which people of various backgrounds 
and qualification can learn to use software product



Structural simplicity

 As with many other qualities, one of keys to ease of 
use is structural simplicity

 A well-designed system, built according to a clear, 
well thought-out structure, will be easier to use than a 
messy one

 The condition is not sufficient of course, but it helps 
considerably



Importance of OO techniques

 Object-oriented languages appear at first to address 
design and implementation

 But it yields powerful new interface ideas that help the 
end users



User interface design principle

 Do not pretend you know the user; 
you just don’t



Functionality is the extent of possibilities provided by a system



A good software product is based on a small number 
of powerful ideas



Timeliness is the ability of a software system to be released when or 
before its users want it



Where Moose is useful?

 Correctness

 Robustness

 Extendibility

 Reusability

 Compatibility

 Efficiency

 Portability

 Ease of use



Where Moose is useful?

 Correctness

 Robustness

 Extendibility

 Reusability

 Compatibility

 Efficiency

 Portability

 Ease of use


