
Software evolution
background, theory, practice

Alexandre Bergel
abergel@dcc.uchile.cl



During a 1968 study, Lehman studied the evolution of OS/360,
and over a 20 years period he formulated 8 statements knows as 

Laws of Software Evolution

Lehman was an engineer at IBM during 60’s, and was deeply involved into the OS/360, which was an 
operating system. According to Wikipedia: “OS/360, officially known as IBM System/360 Operating 
System,[1] was a group of batch processing operating systems developed by IBM for their then-new 
System/360 mainframe computer, announced in 1964. They were among the earliest operating systems 
to make direct access storage devices a prerequisite for their operation.”

Lehman’s original work is founded on the analysis of the programming process at IBM.



Meir M Lehman,
id., Programs, Cities, Students, Limits to Growth?, Inaugural 

Lecture, May 1974. Publ. in Imp. Col of Sc. Tech. Inaug.l Lect. Ser., 
vol 9, 1970, 1974, pp. 211 - 229. Also in Programming 

Methodology, (D Gries ed.), Springer, Verlag, 1978, pp. 42 - 62

Meir M Lehman,
Laws of Software Evolution Revisited, 1997



I - Continuing change
II - Increasing complexity

III - Self regulation
IV - Conservation of organizational stability

V - Conservation of Familiarity
VI - Continuing growth
VII - Declining quality

VIII - Feedback system

In “Laws of Software Evolution Revisited” [Lehman97], an historical background is provided. 
"The first three of a total of now eight laws of software evolution were formulated in the mid seventies 
[Leh74] arising from analysis of data first acquired during a study of the IBM programming process 
[Leh69]. These three were discussed in somewhat greater detail in 1978 [Leh78]. Two further laws were 
introduced in a 1980 paper [Leh80a] with the sisth introduced in a footnote [Leh91]. [...] All relate 
specifically to E-type systems [Leh80b] that is, broadly speaking, to software systems that solve a 
problem or implement a computer application in the real world."



I - Continuing change

 “An E-type program that is used must be continually 
adapted else it becomes progressively less 
satisfactory.”

 Software programs behave in an organic way

 

The first Lehman's law suggests that the growth of an E-type software system share similarities with an 
organism. “Growth results from feedback pressures caused by mismatch between the software and its 
operational domain. 

This need for continuing adaptation and evolution is intrinsic to software applications and systems. It is, 
in part, due to the fact that development, installation and operation of the software changes the 
application and its operational domain so creating mismatch between the two. 

Evolution is achieved in a feedback driven and controlled maintenance process. If the consequent 
pressure for evolution to adapt to the new situation is resisted the degree of satisfaction provided by the 
system in execution declines with time.”



II - Increasing complexity

 “As a program is evolved its complexity increases 
unless work is done to maintain or reduce it”

 “This law may be an analogue of the second law of 
thermodynamics or an instance of it”

 

“It results from the imposition of change upon change upon change as the system is adapted to a 
changing operational environment. As the need for adaptation arises (Law I and VII) and changes are 
successively implemented, interactions and dependencies between the software component increase in 
an unstructured pattern and lead to an increase in system entropy. “

One definition of "Entropy": lack of order or predictability; gradual decline into disorder
This definition is important in Software Engineering, we will come back to it when we will talk about 
Software Maintenance.

“If the growth in complexity is not constrained, the progressive effort needed to maintain the system 
satisfactory becomes increasingly difficult. “



II - Increasing complexity

anti regressive 
effort

progressive
effort

=> determined by feedback

In 1974, Lehman [Leh74] showed that “if anti regressive effort is invested to combat the growth in 
complexity, less effort is available for system growth. Given that resources are always limited the rate of 
system growth declines as the system ages whichever strategy is followed. In practice the balance 
between progressive and anti-regressive activity is determined by feedback.”



III - Self regulation

 “The program evolution process is self regulated with 
close to normal distribution of measures of product 
and process attributes”

 Positive and negative feedback regulate the evolution process



IV - Conservation of Organisational 
Stability (invariant work rate)

 “The average effective global activity rate on an 
evoling system is invariant over the product life time”

 “the level of activity is not decided exclusively by management but 
by a host of feedback inputs and controls”



V - Conservation of Familiarity

 “During the active life of an evolving program, the 
content of successive releases is statically invariant”

 “The more changes and additions are associated with a particular 
release, the most difficult it is to for all concerned to be aware, to 
understand and to appreciate what is required of them”



VI - Continuing growth

 “Functional content of a program must be continually 
increased to maintain user satisfaction over its lifetime”

 “The E-type system inevitably grows with time driven by feedback 
from user and marketeers”

 Different but not unrelated to the first law



VII - Declining quality

 “E-type programs will be perceived as of declining 
quality unless rigorously maintained and adapted to a 
changing operational environment”

 “A system that has performed satisfactorily for some period of 
time may suddenly exhibit unexpected, previously unobserved, 
behaviour.”

 “... uncertainty increases with time unless successful attemps to 
detect and rectify the embodiment are taken as part of the 
maintenance activity.”

 



VIII - Feedback system

 “E-type programming processes constitute multi-
loop, multi-level feedback systems and must be 
treated as such to be successfully modified or 
improved”

 Popularity of Scrum and Extreme Programming illustrate this law


