
Software evolution
introduction

Alexandre Bergel
abergel@dcc.uchile.cl

Software evolve, pretty much as 
any artifact created by humans

A software get born one day, fathered by a team comprising developers and managers. Similarly to human being, it grows up to reach a mature 
stage. Each new requirement asked by customers contributes to this grow. The grow goes smoothly when it has been foreseen. In case of non 
anticipation, evolution results in a degradation in quality and maintainability. 



software |!sôft"we(!)r|
noun

the programs and other operating information used 
by a computer

evolution |"ev!!lo# sh !n|
noun

the gradual development of something, esp. from a 
simple to a more complex form



evolution |"ev!!lo# sh !n|
noun

the gradual development of something, esp. from a 
simple to a more complex form

The important point to keep in mind is that “evolution” is related to “complexity”, by definition.

The goal of this lecture is to:

- introduce some problems related to software evolution
- introduce mechanisms and approaches to cope with 
this complexity



Let’s pick an example, the AWT and Swing libraries

A more complete description of this example may be found in 
Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz, Classbox/J: Controlling the Scope of Change in Java, In Proceedings of Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA'05), New York, NY, USA, ACM Press, pp. 177-189, 2005
http://www.iam.unibe.ch/~scg/Archive/Papers/Berg05bclassboxjOOPSLA.pdf

java.awt

Component

ButtonContainerWindow
Frame

Widgets are components (i.e., inherit from Component)

A frame is a window (Frame is a subclass of Window)

Presentation of AWT

The slide shows the 5 more representative of the AWT library. Just from the class hierarchy organization, two statements at least can be 
formulated:
  - All AWT widgets are components
  - A frame is a window since the class Frame inherits from the class Window. 



javax.swing

java.awt

Component

ButtonContainerWindow
Frame

JButton

JComponent

JWindowJFrame

Swing extends AWT

The package javax.swing models the core of Swing. The 4 most important classes are represented on the slide. Inheritance is used to define 
Swing as an extension of AWT. 

javax.swing

java.awt

Component

ButtonContainerWindow
Frame

JButton

JComponent

JWindowJFrame

Problem #1: broken inheritance

Are not subclasses of JComponent

As we saw, in AWT all widgets are AWT components and a frame is a window. In Swing, this does not hold anymore. Whereas a JButton is a 
JComponent, a JFrame and a JWindow are not a JComponent. 



javax.swing

java.awt

Component

ButtonContainerWindow
Frame

JButton

JComponent

JWindowJFrame

Problem #1: broken inheritance

Missing link between JFrame and JWindow

Moreover, a frame is not a window in Swing.

java.awt

Component

ButtonContainerWindow
Frame

javax.swing

JButtonaccessibleContext
rootPane
update()
setLayout()
...

accessibleContext
rootPane
update()
setLayout()
...

accessibleCont
extupdate()

Code Duplication

JComponent
JFrame JWindow

Problem #2: presence of code duplication

This kind of “missing inheritance link” shown before needs to be simulated somehow. This missing link is “emulated” by duplicating the code 
from JComponent to JWindow and JFrame and from JWindow to JFrame. 50% of JWindow is duplicated in 30% of JFrame. This corresponds 
to hundreds of lines of code. 

Presence of code duplication is well know to complicate maintenance since duplicated part needs to be synchronized in case of a modification.



public class Container extends Component {

  Component components[] = new Component [0];

  public Component add (Component comp) {...}

}

public class JComponent extends Container {

  public void paintChildren (Graphics g) {

    for (; i>=0 ; i--) {

     Component comp = getComponent (i);

     isJComponent = (comp instanceof JComponent);

     ...

     ((JComponent) comp).getBounds();

    }

  }}

Problem #3: explicit type checks and casts

The third problem identified in Swing is the excessive presence of explicit type checks and casts. As an example, consider the class Container. 
The class Container belongs to AWT. As its name will testify, a container contains other components. The variable !components" is an array of 
Component

JComponent is a subclass of Container that defines a central notion in Swing. A Swing component may contain other components therefore. 
When displayed on the screen, the method paintChildren is invoked and iterates over all contained components. Each component needs to 
know whether it is a AWT or Swing one, since an AWT and a Swing component are not displayed following the same manner. Distinction 
between an AWT and a Swing component is made using meta-programming contastruct, such as 'instanceof'. Downcasts are then 
subsequentially used. Downcasts have the tendency to throw runtime exception in case of failed runtime check. This way of programming 
decrease the readibility of the code and may hamper the robustness. 

let’s step back

 AWT couldn’t be enhanced without risk of breaking 
existing code

 Swing is built on top of AWT using subclassing

 As a result, the quality of the Java GUI framework 
decreased with its evolution

AWT was released with Java 1.0 in January 1996. AWT was meant to be a small library to design graphical user interfaces. It only has 5 main 
widgets. The increasing popularity of Java forced Sun to deliver a better framework to design GUI. Modifying AWT in such a drastic way (look 
and feel, more widget, double buffering where the most wanted features) couldn't be achieved without impacting numerous already existing 
clients. 

Instead of modifying Swing, Sun adopted the resolution to create Swing, a new library at the top of AWT. Swing was not made from scratch, 
AWT code has been reused by being subclassed. 

Because Java does not provide better way to extend the code then subclassing, quality of Swing is clearly suboptimal. The issues presented 
before are not the only one. For example, the component layouting is another part of the library that are poorly designed.



Why should we care?

 Swing appeared in 1998, and has almost not evolved 
since!

 Swing is too heavy to be ported on PDA and 
cellphones

 SWT is becoming a new standard

 Either a system evolves, or it dies

Yeah, Swing is poorly designed. What shall I care? 
You care because Swing hasn't significantly evolved for a long time and its pachydermatous content can hardly be ported to embedded and 
light consumption devices. Moreover, supporting native widgets is clearly the way that should be adopted by GUI frameworks in order to benefit 
from advanced OS capabilities. Other libraries such as SWT are slowly becoming a new standard.

Either a system evolves, or it dies [Lehman94]

Other examples



Construction sites for an European truck maker

Construction sites for an European truck maker

2,5 millions of line of code
over 15 years of development

80% C, C++
~ 30 instances all over the world



Paris, 2008

~100 packages
~ 500 classes

Large software in a French telecom company

Typical large scale long living 
systems

 Large

 thousands of classes

 2s to read a line of 1 Million LOC system => 3 months

 Undocumented - knowledge loss

 Lack of structure overview (layers, cycles, core)

 Multi developers

 Multi years development



“As soon as the competent crew leaves the organization, 
the maintenance iceberg becomes visible”

Chris Verhoef

System evolution is like... SimCity



Course content

 Programming languages

 Pharo, virtual classes, Traits

 Programming environment

 Moose, software visualization

 Software engineering

 Source code quality, testing

Course content

 International experts and researchers

 Participation of widely recognized researchers in the field

 Summer school in November 9-14

 The rôle of programming languages in software evolution



Class evaluation

 Based on a survey or a tool development

 Survey on a given topic

 e.g., metrics, nested inheritance, evolution of website

 Tools development

 Language extension in Pharo (e.g., virtual class, code versioning, 

code packaging)

 Tools development on Moose

 

Survey

 No need to program

 You should cover a complete research field

 Give an illustrative and representative example (e.g., 
AWT-Swing)

 Produce a good/high quality report



Tool development

 Will have to be done in collaboration with one or more 
European institutes

 Be active on mailing list

 Stored on SqueakSource

 Ask for user feedback

 Conducted in Pharo and Moose

 Producing a short report

“The best way to predict the future is to invent it”
Alan Kay


