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1 Introduction

The Fourier transform is among the most widely used tools for transforming data sequences
and functions (single or multi-dimensional), from what is referred to as the time domain to
the frequency domain. Applications of the transform range from designing filters for noise
reduction in audio-signals (such as music or speech), to fast multiplication of polynomials.

The following document provides a brief introduction to the Fourier transform, for those
of us who are still aliens in the frequency domain. The topic of the Fourier transform and
its applications is covered in numerous, stout books (such as [Bra65, OS75, Wea83, BP85,
Jac90]), and this paper can not and does not intend to cover the area in full. Its goal is
to introduce the basic terminology and the main concepts of the area, providing common
ground for further discussion and study.

The rest of the paper is organized as follows: Section 2 introduces the idea of representing
sequences and functions through sinusoids. Section 3 shows how complex numbers and ex-
ponentials fit into the sinusoids representation framework. Section 4 presents the continuous
Fourier transform. In Section 5 we discuss sampling, which is the mean for converting a
continuous signal into a discrete sequence. Section 6 presents the discrete Fourier transform,
and the prominent related topics — convolution and the fast Fourier transform. Section 7
demonstrates some of the applications of the Fourier transform, and concludes the paper.

2 Functions as Combinations of Sinusoids

Any continuous, periodic function can be represented as a linear combination of sines and
cosines. A sine is a function of the form: Asin(27wt+ ¢), where A is the amplitude, w is the
frequency measured in cycles (or periods) per second, and ¢ is the phase, which is used for
getting values other than 0 at ¢ = 0. A cosine function has exactly the same components
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as the sine function, and can be viewed as a shifted sine (or more accurately — a sine with
phase 7/2).

Thus, given a function f(t¢), we can usually rewrite it (or at least approximate it), for some

n as:
n

f(t) = Z(Akcos(Qﬂwkt) + Bysin(2mwyt)) (1)

k=1
Both sines and cosines are combined, rather than only sines, to allow the expression of
functions for which f(0) # 0, in a way that is simpler than adding the phase to the sine in
order to make it into a cosine.

As an example of a linear combination of sinusoids consider the function:
fi(t) = 0.5sinmt 4 2sindnt + 4eos2mt

Its three sinusoidal components and the function f; itself are depicted in Figure 1, as a,
b, ¢ and d respectively. The function fi(¢) consists of sines and cosines of 3 frequencies.
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Figure 1: A plot of fi(¢), (d), and its components (a, b, ¢), for t = 0..5
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Thus, the frequency analysis of fi(t), can be summarized in a table such as Table 1, which
provides for each frequency of f; the amplitude of the sine wave and of the cosine wave with
this frequency.

k | Frequency (wg) | Cosine Amplitude (Ag) | Sine Amplitude (Byg)
1 1/2 0 1/2
2 2 0 2
3 1 4 0

Table 1: Frequency contents of the function fi(¢)

The representation of a periodic function (or of a function that is defined only on a finite
interval) as the linear combination of sines and cosines, is known as the Fourier series
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expansion of the function. The Fourier transform is a tool for obtaining such frequency
and amplitude information for sequences and functions, which are not necessarily periodic.
(Note that sequences are just a special case of functions.)

3 Fitting in Complex Numbers and Exponentials

Another way of writing sinusoids relies on the following equalities:
ef = cos(0) + 1sin(8) e = cos(8) — isin(6) (2)

where ¢ is the square root of —1. Both are easily derived from the Taylor series expansion
of cos, sin, and e’. Through addition and subtraction they can be rewritten as:
0 —if 0 _ —if
e e . e’ —e
cos(f) = e te” sin(f) = ———— (3)
2 21
Hence, we can substitute the sin and cos expressions of equation 1 by the respective ex-
pressions of equation 3 and get:

"nCA . . B . .
f(t) — Z[—k(GZT”wkt + e—Zﬁzwkt) + _{6(62‘mwkt - e—Zﬁzwkt)] (4)
o 2 21
If we denote: '
Cp=24=B |
Ap+:B
Ck = % k<0

W = —W_g k<0

we can again rewrite f(t):
ft) = 3 [Cuct™] )
k=-n

Under this new notation we can rewrite the frequency analysis of Table 1 as shown in

Table 2.

k | Frequency (wg) | Ckg
-3 -1 2
—2 —2 21
] ~1/2 i/4
0 0 0

1 172 )
2 2 —21
3 1 —2

Table 2: Another form of frequency contents of the function f(#)



Further manipulation of equation 6 is based on using the polar notation for complex num-
bers, that is:
z+ 1y = r(cos(8) + 1sin(f)) = retf

where y
r=|r+y| =/x? 2 and tan(f) ==
|z 41y = /2* +y 6) ="~
Using this representation of complex numbers, we get:
CkGZﬂ'iwkt — rkei(bk 6271'wkt — rkei(Zﬂwkt—}—(bk) (7)
where 5
A2+ B\ T k>0
=T and tan(¢y) = ﬁ_: k<0

From all the above we obtain:

)= 32 reinantton (8)

k=—n
The full details of the above rewriting can be found in [Wea83].

Using the terminology introduced in Section 2, wy, is the k** frequency, ry is the amplitude,
and ¢y, 1s the phase. In the following sections we will be using this terminology as the basis
for discussing the Fourier transform.

4 The Continuous Fourier Transform

The continuous Fourier transform of a function f(¢) is defined as follows:

Flw)= [ f(t)emtd (9)
£(t) = /_ 0; Fw)e?™ du (10)

Equation 10 is the continuous generalization of expressing f(¢) as a combination of sinu-
soids, as discussed in the previous sections. It is known as the inverse Fourier transform.
Equation 9 provides the means for finding the amplitude for each frequency w, given that
the integral indeed converges. The result of applying the Fourier transform to a function is
called the frequency spectrum or the power spectrum of the function, or in short the spectrum.

Here are examples of several useful functions and their respective Fourier transforms:

n t| < 1
2 | —n
Example 1 The Pulse function is defined as: py/,(t) = 0 otherwise
Its Fourier transform is a sinc function, obtained as follows:
00 ) i ) 2miw/n __ —2mw/n ; (2 / )
i) ne € sin(2rw/n
P " :/ . " t —27rzwtdt :/ v —21rzwtdt — : — — < 9
1/n(w) P (t)e 1 5¢ 3 i S/ sinc(2rw/n)
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Figure 2: A plot of py/,(t), and its Fourier transform P /,(w)

The respective graphs for py/,(t) and P ,(w) are shown in Figure 2.

Example 2 The § function is defined as: 6(t) = limy,o0 p1/n(t)

This function is also known as the Dirac delta function or the unit impulse function. It is 0
for all ¢, except for 0, and we can think of §(0) as being oo.

The Fourier transform of §(t) is:

Alw) = lim P(w) = lim S2Te/m)

n—00 n—00 27TW/7’L

=1

Example 3 Let f(t) be some simple cosine function: f(t) = cos(2mat)

Its Fourier transform is:

Flw) = /_(: cos(2mat)e ™t dt = §(w+a) ;— §(w — a)

The respective graphs for f(t) and F(w) are shown in Figure 3.

() F(w)

Figure 3: A plot of f(t) = cos(2wat), and its Fourier transform F(t)

Table 3 lists some of the Fourier transform properties, which make it so useful in practice.
We follow the convention of source functions denoted by small letters, while their Fourier
transform results (which are assumed to exist) are capitalized.
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Property f(t) F(w)

1. Linearity afi(t) 4+ bfa(t) aFi(w) + bFy(w)
2. Convolution' Theorem  fi(t) * fo(t) Fi(w)F(w)

3. Product Theorem fi(t) fa(t) Fi(w) * Fy(w)

4. Time Shifting f(t —to) F(w)e=2mwto

5. Frequency Shifting f(t)e2miwot F(w — wo)

6. Scaling? flat) la| F(w/a)

7. Parseval’s Theorem S 1 f(@))2dt = [20 | F(w)]*dw

Table 3: Some Basic Properties of the Fourier Transform

Most of the above properties can be proved easily from the definition of the transform and
its inverse. Proofs for the more complicated properties (such as Parseval’s theorem), as well
as some additional properties can be found in [Wea83, 0S89, Jac90].

Properties 2 and 3 state, respectively, that convolution in the time domain corresponds
to multiplication of coefficients in the frequency domain, and vice versa. This is one of
the most useful properties of the transform, and is taken advantage of in filter design, in
reasoning about sequence behavior, as well as in fast multiplication of polynomials, as will
be discussed later on, when discussing the discrete version of the transform.

Property 4 above states that shifting of the original function in time corresponds to a
change of phase of the sinusoids comprising the function. Similarly, property 5 states that
a sinusoidal modulation in the function corresponds to a phase shift in frequency.

Parseval’s theorem states that the total energy of a signal is the same in the time domain
as 1t is in the frequency domain.

Since most physical signals, from radio waves to seismic phenomena, are continuous, and
have a continuous range of frequencies, the functions that are used to model them are
continuous as well, and having continuous transform is desirable. However, in many cases,
the function describing a phenomenon is unknown. Data that characterizes it needs to be
gathered and analyzed. Moreover, measured discrete values at various points in time are
relatively easy to obtain, and computers which process such data are inherently discrete
as well. Therefore, we are interested in a transform from the discrete time domain to the
discrete frequency domain, and an inverse discrete transform to take us in the opposite
direction. The rest of this paper discusses various aspects of the discrete signals and their
transforms.

5 Sampling

Discrete sequences most commonly occur as a representation of continuous signals. They
are obtained through periodic sampling of the signal.

A correct choice of sampling intervals is crucial for getting a faithful representation of the

!The convolution of the functions f(z) and g(z) is: f(z) * g(z) = f_oooo F(&)g(z — &)dE.
In particular, f(—t) corresponds to F(—w).



Figure 4: Three sinusoids. The black dots mark the sampling points.

original signal. Consider for instance the three sinusoids depicted in Figure 4. Suppose
we sample them only where the three black dots are in the figure, that is, at the intersec-
tion points of the three sequences. Clearly, these points don’t have enough information to
distinguish one sinusoid from the others. Therefore, if we were to reconstruct the original
sinusoids from these points, at best one of them would have been recovered correctly. The
other two sinusoids could not have been the same as the recovered one. We will see what a
“good” sampling is later on in this section.

Given a continuous signal z.(t), we fix a time interval of length 7" and obtain a discrete
signal z[n] = z.(nT) for —oo < n < oo. T is called the sampling period and w, = 1/T is
called the sampling frequency.

At the conceptual level, the discrete sequence z[n] can be viewed as though it is a continuous
sequence x,4(t) with value 0 for all ¢ # nT and with value z[n] at ¢+ = nT. Putting it more
formally, we define:

s(t) = i 0(t—nT) and x4(t) = z.(t)s(t)

n=—oo

where § is the Dirac delta discussed in Section 4, Example 2. Thus, z,4(¢) is the result
of multiplying the original continuous signal z.(¢) by an impulse train, s(¢). (The reason
for referring to s(t) as “an impulse train” is obvious from looking at its graph, given in

Figure 5.)

s®

]

Figure 5: The impulse train s(t)
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Hence, from the Product Theorem of Table 3, we know that the Fourier transform of ()
is the same as the convolution of the Fourier transforms of z.(t) and s(¢), which we denote
as X.(w) and S(w), respectively. S(w) is the Fourier transform of an impulse train, which
is an impulse train as well (see [0S89] for further details), and is expressed as:

= — z d(w — kwy)
k_—oo
Therefore, we obtain the following:
= — Z X kws
k_—oo

Figure 6 shows the relationship between X, and X;.

Plot (a) in the figure shows the result of the Fourier transform on the original signal, and
plot (b) shows the Fourier transform of the impulse train. The result of their convolution,

X (@)
1
N Wy )
@
S(w)
| | ) | | |
—2Wg —Wsg 0 Ws 2ws 3ws w
(b)
X ()
T
Wy Wy (‘os w
(©)

(d)

Figure 6: The frequency-domain effects of sampling z.(¢). (a) The spectrum plot for
z.(t). wy is its maximum frequency. (b) The spectrum plot for the impulse train. (¢) The
spectrum of the sampled signal, where ws; > 2wy. (d) Aliasing when w, < 2wy



which is the Fourier transform of the sampled signal, is shown in plot (¢). We can see
that sampling of a signal z.(t) in the time domain, corresponds in the frequency domain to
duplication of the original signal’s spectrum, X.(w), centered around integer multiples of the
sampling frequency w,. Thus, all we need to do in order to recover the original continuous
signal from the sampled one, is to “get rid” of the frequencies introduced by the sampling
(which correspond to the duplications), and keep only the frequencies centered around 0,
which are the original frequencies. (In terms of the triangles of Figure 6(c), we want to erase
all triangles except for the one centered around 0, so that we are left with the spectrum of

z.(1)).

This can be achieved by filtering the sampled signal x4(t), using a low-pass filter. Such a
filter takes a signal x(¢), and eliminates from it all frequencies of absolute value greater than
some threshold wy. Thus, it produces a signal y(¢) whose spectrum is the same as that of
z(t) for all frequencies between [—wy,wy], but with no frequencies above wy or below —wy

By applying such a filter with wy < wy < (ws — wy) to the sampled signal (padded with
0’s on the unsampled intervals), we obtain the original signal, given that precautions were
taken to sample frequently enough, such that wy < (ws — wn), or equivalently, such that
2wy < wy.

Figure 6(d) demonstrates what happens if the above requirement is not met. We can see
(looking at the dashed lines) that the duplications of z.’s spectrum overlap each other, which
means that the spectrum of the sampled signal (shown as the solid line) contains frequency
amplitudes that were not there to begin with, while original amplitudes of frequencies are
lost. Hence, faithful reconstruction of the original signal from its samples is not possible.
This phenomenon, of having original amplitudes of frequencies replaced by bogus amplitudes
is known as aliasing.

The fact we have stated above, that if our sampling frequency w;y is at least twice the highest
frequency of the original signal, w,,, a faithful reconstruction of the signal from its samples is
possible, is exactly the contents of Nyquist’s Theorem, and a sampling frequency w, = 2wy
is called the Nyquist frequency.

It is important to note that our reasoning about the frequencies of the sampled sequence
with respect to the original sequence i1s a mental exercise rather than an algorithmic method.
In order to recover the original sequence from the sampled one, we don’t need to apply the
Fourier transform to the sampled sequence, cut off its high frequencies, and perform the
inverse Fourier transform. We simply take the sampled sequence and feed it to a low-pass
filter, which processes it and reconstructs the original signal from it. The frequency domain
reasoning just showed us why a low-pass filter is a tool for recovering a continuous signal
from its samples.

Once a signal is sampled, we have a discrete sequence, which is either a faithful representation
(if the sampling frequency was at least the Nyquist frequency), or an unfaithful represen-
tation of it, (if a lower sampling frequency was used). In any case, a discrete sequence can
be processed using discrete methods, which facilitate the usage of digital computers. The
discrete form of the Fourier transform, (known as the DFT) is discussed in the following
sections.



6 The Discrete Fourier Transform

6.1 Definition of the DFT

The Discrete Fourier Transform (DFT) maps a discrete periodic sequence f[k] (where k is
an integer, and the period is V), to another discrete sequence F'[j], of frequency coefficients.

It is defined as:?

Fljl = 3 flk]e?msmN 0<j<N-1 (11)
k=0
1 N-1 o
flK] = & X FLle™™™ 0<k<N -1 (12)
7=0

The interpretation of the above equations is that at point k, the sequence value f[k] is a
linear combination of the values of N sinusoids, €, ..., e?™/NkN=1) The coefficients of the
sinusoids are F'[0], ..., F[N — 1] respectively, and their frequencies are j/N cycles per sample
or 2mj/N radians per sample (where 0 < 7 < (N —1). We should note that:

—2mikj/N _ _—2mik(j+N)/N

€ €

Thus the function F[j], like the original f[k], is periodic with period N, and therefore the
frequency range to be considered is 0..27 radians/sample, or 0..N cycles/sample.

It is also interesting to note that for any frequency other than the j/N’s, a discrete sinusoid
is not periodic. For a discrete cosine (or sine) f[k] = Acos(2mwok) to be periodic with period
N, it must satisty:

Acos(2mwo(k + N)) = Acos(2mwok)

which means: 27rwoN = 2775, or equivalently, wgN = j, for some integer j. The equality
holds only for the frequencies of the form j/N (in units of cycles/samples).

Here are some examples of applying the DFT to discrete sequences:

Example 4 Let p[k] be a discrete pulse function, with periodicity 10, defined as:
1 0+10m <k <44 10m For some integer m
plkl =19

otherwise

Its Fourier transform is:

: i . ¥ o Sin(my/2)
P[j] = p[k]e—%uk/lo _ e~ 2miik/10 _ —4mij/10 7 :
kz:% kz:% sin(mj/10)

The respective graphs for p[k] and P[j] are shown in Figure 7.

3The exact formulation of the DFT varies slightly in books. Some have the % coefficient in front of the

expression for F[j] rather than for f[k], while others have a coefficient \/LN rather than 3 and use it both

for F[j] and for f[k]. The latter is the form Mathematica uses. All 3 forms are correct as long as they are
used consistently.

10



pLK] [PLTI

1e

-10 012345678910 01234567829

Figure 7: A plot of p[k], and the amplitude of its DFT | P[j]|.

Example 5 We have defined the continuous ¢ function in Example 2, and have used it
in the previous section. Its much simpler discrete counterpart, the discrete § function, for

N =10 is defined as:

S[k] =

0 otherwise

{1 k=04 10m

Its Fourier transform is:
9 ..
A[]] :Z 5[k]e—2m]k/10 -0 =1
k=0

The respective graphs for §[k] and A[j](w) are shown in Figure 8.

d[ k] Djl
1 1
“0123456 78610 — K 012 3 456 789

Figure 8: A plot of §[k], and its DFT A[y].

To make notation simpler, throughout the rest of this section we denote €*™/N = Wy and

obtain:
Fi) = Y O™ 0<j<N -1 (13)
I = 5 X LY 0Sk<N - (14)
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Wy is called the principal N root of unity since (Wx )N = €™ = cos(2m) + isin(27) = 1.
Similarly, (Wy)¥, where 0 < k < N — 1 are all the N distinct complex roots of unity.

6.2 DFT Properties

Before providing the properties of the DFT, some subtleties that arise from the periodicity
of the sequences, must be addressed.

First, we must remember that any sequence we are dealing with in the context of the DFT
is periodic, with some integer periodicity N. Given a finite (non-periodic) discrete sequence
z[k] of length n, (i.e. 0 <k <n —1), to which we want to apply the Fourier transform, we
regard 1t as though it is periodic with periodicity N = n. Thus, we effectively define a new

sequence, y[m] for all integer m:*

y[m] = x[m mod n] where m modn =m —n|z/y|
and apply the DFT to one period of y[m].

Hence, if we regard any sequence z[k] (and its DFT X[j]), as periodic with period N, the
shift of x[k] by [ is interpreted as: z[k 4[] = z[(k + 1) mod N| and is called a circular shift.
The same convention holds for shifting X[y].

Second, when applying the DFT to a combination of two periodic sequences, z1[k] and
zo[m], we must account for the periodicity of the combination. Since the DFT is defined
over a single period, for the DFT of the combination to be well defined, it must have a single
periodicity. There are three forms of combinations we have encountered in the continuous
case, namely, linear combination (ax; + bxy), multiplication x1x, and convolution x * x4.
Both linear combination and multiplication for the continuous case, are defined such that
x1(t) is paired with the corresponding 5(¢). Similarly, in the discrete case each x;[i] should
be combined with the corresponding z,[i]. Thus z; and z; must be of the same periodicity
N, and the resulting sequence is of periodicity N, as well. However, if the two sequences
are of two different periodicities, Ny, N, (assume, without loss of generality, Ny < Nj),
either we disallow their combination, and term it “undefined”, or we pad the sequence of
the periodicity Ny with 0’s at the end of each period, thus practically converting it into a
sequence of periodicity Ny, and therefore the combination is well defined. Whether the 0
padding is reasonable or not depends mostly on the application. Such padding is used, for
instance, for supporting the Fast Fourier Transform.

The last kind of combination that needs to be addressed is the convolution. We recall that
one of the important properties of the continuous transform is the duality between convo-
lution in the time domain and multiplication in the frequency domain, and vice versa. We
want to retain this property in the discrete case. Thus, given two periodic discrete sequences,
Ty, Ty, of periodicity® N, with respective DFTs X[j], X3[j], we want their convolution result
z3 to have DFT X3 = X, X,. By defining the circular convolution of x1,x, to be:
N-1
zs3[k] = Y xi[m]zs[(k — m) mod N] (15)

m=0

4See [GKPY1] for details on the mod operation.
*The period must be the same in order for the (dual) multiplication to be well defined.
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we obtain the desired correspondence [OS75]. As an example of circular convolution consider
the two periodic sequences, with N = 3:

< g, ay,dq, g, A1, A3, dg... > and < by, b,,b,,b5,b,,b,,b4, ... >
Their circular convolution is the sequence:
< apbg + a1by + asbi, agby + ai1bg + asby, agby + a1by + azby >

which is also regarded as a discrete periodic sequence with N = 3, by repeatedly duplicating
these 3 elements, while preserving the above order. Thus, the circular convolution maps a
pair of sequences of periodicity N to a third sequence of the same periodicity. (We extend
the definition to non-periodic sequences of the same length N, by regarding them as periodic,
as defined earlier in this section).

Table 4 lists the discrete counterparts of the properties given in Table 3 for the continuous
case. We assume that we are dealing only with well defined combinations.

Property flk] Flj]
1. Linearity afilk] + bfa[k] aFi[j] + bF3[j]
2. Convolution® Theorem  fi[k] * f,[k] Fi[j]Fyy]
3. Product Theorem filk] f2] %] Fi[j] = F5[5]°
4. Time Shifting” Ik — kol Fljlwy’*
5. Frequency Shifting” f[k]W]’?O F[j — jo]
7. Parseval’s Theorem Zév:_ol |fK]|? = % Zé\]:o |F[5]I?

Table 4: Basic Properties of the Discrete Fourier Transform

6.3 The Fast Fourier Transform

One of the most appealing aspects of the DFT is the existence of an efficient procedure for
calculating it, using O(NlogN) complex operations, rather than O(N?) operations required
for the naive algorithm.

The algorithm for fast DFT, is known as the FFT (the Fast Fourier Transform). It takes
advantage of symmetry properties of the complex roots of unity (the Wx’s we have defined
earlier), and uses repeated clever partitioning of the input sequence into two equally long
subsequences, each of which can be separately (and quickly) processed. In order to take full
advantage of the repetitive partitioning into equal two parts, the original sequence needs to
be of length or periodicity which is a power of 2. If it is not originally so, it 1s padded with
0’s — as mentioned earlier in Section 6.1. The full details of the algorithm are beyond the
scope of this paper. An excellent presentation of it, including the fundamental mathematical
background can be found in [Sav96]. Other good sources for discussion of the FFT and its
applications are [CLR89, OS75, Wea83].

6Circular convolution
“Circular shift
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The FFT algorithm gives rise to an efficient convolution algorithm, due to the duality
between convolution in the time domain and multiplication in the frequency domain. Con-
volution can be implemented by applying the FFT to the original sequences, multiplying
the results, and performing the inverse FFT to obtain the results of the convolution. We
should note that in many real applications which require convolution, (such as polynomial
multiplication or filtering of signals), the convolution is not circular, it does not regard
sequences as periodic, and does not require the sequences to be of the same length. This
form of convolution is known as linear convolution. Given 2 sequences 1, x5 of length M, N
respectively, their linear convolution z3 of length M + N — 1 is defined as:

:L’3[k]:zk:l’1[m]$2[k‘—m] 0<kE<M+N-1

m=0
where x1[m] is taken to be 0 for m > M and x3[m] is taken as 0 for m > N.

For example, consider the two sequences, of length 4 and 2, respectively:
< dag,ay,dg,az > and < by, b, >
Their linear convolution is:

< agbo, agby + a1by, aiby + azby, azby + asby, asb; >

This sort of convolution, does not preserve the duality with multiplication between the
time/frequency domains. In order to benefit from the duality, the linear convolution needs
to be expressed as a circular one. The transformation from linear to circular convolution
can be achieved through the padding of the two sequences with 0’s at their respective ends,
thus making them both into sequences of length M + N — 1. The resulting sequences are
both regarded as periodic with periodicity M + N — 1, and their circular convolution is the
same as the linear convolution of the original sequences. More detailed description of this

method can be found in [OS75, TALS9].

7 Some Applications and Conclusions

The former sections provided an introduction to the Fourier transform. The motivation
behind it, was the wide use of the transform and its properties in various and diverse areas.
In what follows we demonstrate several distinct ways in which the transform is applied. The
examples differ in the use of DFT properties, and in the resulting benefits.

7.1 Polynomial Multiplication

The canonical example for using the FFT in computer science, is for fast multiplication
of polynomials [CLR89, AHU74]. The observation underlying the algorithm is that when
multiplying two polynomials, P and P, of degrees N—1 and M —1 respectively, the M+ N —1
coefficients of the resulting polynomial (), are the result of convolving the coefficients of P;

and P;.

14



Using the convolution theorem of the DFT, one can execute the polynomial multiplication,
by treating the coefficients of P, and P, as two discrete sequences of length N and M,
respectively. The sequences are padded with 0’s at their ends, to obtain length that is
of the smallest power of 2 that is greater than N + M — 1. Then the FFT is applied to
both sequences, and pointwise multiplication of respective results is carried out. The inverse
FFT maps the obtained results to the actual coefficients of the result polynomial. The whole
process takes time which is O((N + M — 1)log(N + M — 1)), rather than O((N + M —1)?).

We note that in this case, the executions of both the FFT and the inverse FFT are actual
steps of the algorithm.

7.2 Sequences Retrieval

A very different use of the FFT was recently demonstrated for fast retrieval of an explicitly
given sequence, from a large database of stored sequences [AFS93, FRM94]. The problem
addressed in this case is the need to compare the whole given query sequence to each of
the whole stored sequences, retrieving the sequences which are within a certain Euclidean
distance from the query.

Such comparison over a large database with long sequences, takes too much time, and is not
feasible. To avoid it, rather than conducting search over the whole sequences, each sequence
in the database is represented by its “fingerprints” which are the first few coefficients of
its DFT. The query sequence is also transformed, and its first few DFT coeflicients are
compared against the coefficients stored in the databases.

Since most sequential data stored in databases can be well characterized by its lower frequen-
cies, such representatives are indeed a reliable criteria for comparing sequences. Parseval’s’
theorem guarantees that sequences that are almost the same in the time domain, are also al-
most the same in the frequency domain. This ensures that if the search results in sequences
that match the query sequence up to some error tolerance,all the correct matches have been
retrieved, with the possibility of some false matches, which can be discarded later on.

The FFT is used here as a preprocessing step before storing a sequence in the database,
and for converting the query sequence into a representation compatible with the database,
before the search is executed. The inverse FFT is not used.

7.3 Filtering

The last example for using the DFT, is for reducing noise from data, as is done in the context
of constructing a model through delayed coordinate embedding [Sau93]. The algorithm
presented in the paper constructs a multi-dimensional model for a given sequence of 1-
dimensional observations. An initial step in obtaining the higher dimensionality is the use
of a sliding window over the observation sequence, which results in vectors of observations.

To filter out noise from the observation vectors before further processing them, a transforma-
tion is applied to each vector, which eliminates the high frequency components of the data.
(Usually “noise” corresponds to high frequency data, while the actual data is characterized
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by low frequency). The transformation is equivalent to applying the DFT, multiplying the
resulting vector by a sequence such that the lower coefficients (the low frequency coefficients)
are multiplied by numbers close to 1 and the higher frequency coefficients are multiplied
by numbers close to 0. The inverse DFT is applied to the result. The overall effect of the
three operators, is equivalent to a single transformation (matrix) which is a low-pass filter.
Multiplying each vector by this matrix results in a new vector which is the same as the
original in its lower frequencies but missing the higher frequencies, thus it is a less “noisy”
vector®.

We note that in this case we don’t algorithmically apply the FFT and the inverse FFT to
each vector. The Fourier transform calculations were done in order to obtain the low-pass
filter matrix, and multiplying a vector by this matrix has an equivalent effect to that of
applying the FFT, multiplying by a sequence that eliminates high frequency components,
and applying the inverse transform.

7.4 Concluding Remarks

Throughout the paper, we have demonstrated and emphasized that the Fourier transform is
a way to represent functions and sequences, as a combination of sinusoids. That is, sequences
and functions are spanned using sinusoids as a basis. Sinusoids are a good choice of basis for
smooth “rounded ” functions, which are periodic, continuous and differentiable at all points.
However, for functions and sequences which correspond to square waves, (such as the pulse
functions we have seen in the examples), or demonstrate non-periodic local phenomena,
other forms of bases may prove simpler to use. The Haar wavelets, which are squared-shaped
and compactly-supported functions, form a basis which spans square functions easily, and
can be used conveniently to express local (non-periodic) high-frequency fluctuations. The
wavelet transform is a generalization of the Fourier transform, and is actually a family of
transforms. It allows a wide variety of function forms to serve as basis functions. For a
quick introduction on the Wavelet transform and its applications see [SDS94]|. An extensive
discussion on wavelets can be found in [Dau92, Mal89].

The Fourier Transform is a broad subject, of which we have covered only a small fraction.
We have taken a rather pragmatic approach, presenting the transform from a mathematical
point of view, and providing intuition through examples and applications. A lot of the math-
ematical detail was omitted. Moreover, we have not addressed the engineering approach to
the transform, which uses it to characterize systems. A discussion of what “systems” are,
and the status of the Fourier transform with respect to them can be found in [0S89].
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