CHAPTER 1

Ī

 b_{ℓ}

.

1.1 Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that $d_1 = 30$ mm and $d_2 = 50$ mm, find the average normal stress in the mid section of (a) rod AB, (b) rod BC.

ŗ

SOLUTION

ί_

L

(2) rod AB Force:
$$P = 60 \times 10^3$$
 N tension
Area: $A = \frac{T}{4} d_1^2 = \frac{T}{4} (30 \times 10^{-3})^2 = 706.86 \times 10^{-6}$ m²
Normal stress: $G_{AB} = \frac{P}{A} = \frac{60 \times 10^3}{706.86 \times 10^{-6}} = 84.88 \times 10^6$ Pa
 $G_{AB} = 84.9$ MPa

(b) rod BC
Force:
$$P = 60 \times 10^3 - (2)(125 \times 10^3) = -190 \times 10^3 N$$

Area: $A = \frac{\pi}{4} d_2^2 = \frac{\pi}{4} (50 \times 10^{-3})^2 = 1.9635 \times 10^{-5} m^2$
Normal stress: $G_{BC} = \frac{P}{A} = \frac{-190 \times 10^3}{1.9635 \times 10^{-3}} = -96.77 \times 10^6 Pa$
 $G_{BC} = -96.8 MPa$

1.2 Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that the average normal stress must not exceed 150 MPa in either rod, determine the smallest allowable values of the diameters d_1 and d_2 .

SOLUTION

 \Box

۱ [] .

Q.

rod AB Force: $P = 60 \times 10^3 N$ Stress: $G_{AB} = 150 \times 10^6 Pa$ Area: $A = \frac{P}{H} d_1^2$ $G_{AB} = \frac{P}{A}$: $A = \frac{P}{G_{AB}}$ $\frac{T}{H} d_1^2 = \frac{P}{G_{AB}}$ $d_1^2 = \frac{HP}{TG_{AB}} = \frac{(H)(60 \times 10^3)}{T(150 \times 10^6)} = 509.3 \times 10^6 m^2$ $d_1 = 22.56 \times 10^{-3} m$ $d_1 = 22.6 mm$

For a BC
Force
$$P = 60 \times 10^3 - (2)(125 \times 10^3) = -190 \times 10^3 N$$

Stress: $G_{BC} = -150 \times 10^6 Pa$ Area: $A = \frac{4}{7} d_2^2$
 $G_{BC} = \frac{P}{A} = \frac{4P}{\pi d_2^2}$
 $d_2^2 = \frac{4P}{\pi G_{BC}} = \frac{(4)(-190 \times 10^3)}{\pi (-150 \times 10^6)} = 1.6128 \times 10^{-3} m^2$
 $d_2 = 40.16 \times 10^{-3} m$ $d_2 = 40.2 mm$

1.3 Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that $d_1 = 1.25$ in. and $d_2 = 0.75$ in., find the normal stress at the midpoint of (a) rod AB, (b) rod BC.

SOLUTION

(a) rod AB P = 12 + 10 = 22 kips $A = \frac{1}{4} d_1^2 = \frac{1}{4} (1.25)^2 = 1.2272 \text{ in}^2$ $G_{AB} = \frac{P}{A} = \frac{22}{1.2272} = 17.93 \text{ ksi}$

(b) rod BC

$$P = 10 \text{ kips}$$

 $A = \frac{\pi}{4} d_2^2 = \frac{\pi}{4} (0.75)^2 = 0.4418 \text{ in}^3$
 $G_{AB} = \frac{P}{A} = \frac{10}{0.4418} = 22.6 \text{ ksi}$

PROBLEM 1.4

1.4 Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that the normal stress must not exceed 25 ksi in either rod, determine the smallest allowable values of the diameters d_1 and d_2 .

SOLUTION

30 in.

$$B$$

 12 kips
25 in.
 $-d_1$
 12 kips
 10 kips

rod AB: P = 12 + 10 = 22 kips GAB = 25 ksi AAB = Hdi $G_{AB} = \frac{P}{A_{AB}} = \frac{4P}{\pi d_{1}^{2}}$ $d_1^2 = \frac{4P}{\pi G_{a0}} = \frac{(4)(22)}{\pi (25)} = 1.1205 \text{ in}^2$ $d_1 = 1.059$ in rod BC: P = 10 kips $G_{Bc} = 25$ ksi $A_{Bc} = \# d_2^2$

 $d_2^2 = \frac{4P}{\pi Gac} = \frac{(4)(10)}{\pi (25)} = 0.5093 \text{ in}^2$ d2 = 0.714 in.

1200 N

1.5 A strain gage located at C on the surface of bone AB indicates that the average normal stress in the bone is 3.80 MPa when the bone is subjected to two 1200-N forces as shown. Assuming the cross section of the bone at C to be annular and knowing that its outer diameter is 25 mm, determine the inner diameter of the bone's cross section at C.

SOLUTION

$$\begin{aligned}
\sigma &= \frac{P}{A} \quad \therefore \quad A = \frac{P}{\sigma} \\
Geometry : \quad A &= \frac{T}{4} \left(d_{1}^{2} - d_{2}^{2} \right) \\
d_{2}^{2} &= d_{1}^{2} - \frac{4A}{\pi} = d_{1}^{2} - \frac{4P}{\pi\sigma} \\
d_{2}^{2} &= (25 \times 10^{-3})^{2} - \frac{(4)(1200)}{\pi (3.80 \times 10^{6})} \\
&= 222.9 \times 10^{-6} \quad m^{2} \\
d_{1} &= 14.93 \times 10^{-3} \quad m \quad d_{1} = 14.93 \, \text{mm} \quad \blacksquare
\end{aligned}$$

PROBLEM 1.6 1.6 Two steel plates are to be held together by means of ¼-in.-diameter highstrength steel bolts fitting snugly inside cylindrical brass spacers. Knowing that the average normal stress must not exceed 30 ksi in the bolts and 18 ksi in the spacers, determine the outer diameter of the spacers which yields the most economical and safe design.

SOLUTION

 \square

 $\left[\right]$

At each bolt location the upper plate is pulled down by the tensile force P_{b} of the bolt. At the same time the spacer pushes that plate upward with a compressive force P_{s} . In order to maintain equilibrium $P_{b} = P_{s}$ For the bolt $G_{b} = \frac{P_{b}}{A_{b}} = \frac{4P_{b}}{\pi d_{b}^{2}}$ or $P_{b} = \frac{\pi}{4} G_{b} d_{b}^{2}$ For the spacer $G_{s} = \frac{P_{s}}{A_{s}} = \frac{4P_{s}}{\pi (d_{s}^{2} - d_{b}^{*})}$ or $P_{s} = \frac{\pi}{4} G_{s} (d_{s}^{2} - d_{b}^{2})$ Equating P_{b} and P_{s} $\frac{\pi}{4} G_{b} d_{b}^{2} = \frac{\pi}{4} G_{s} (d_{s}^{2} - d_{b}^{2})$ $d_{s}^{2} = d_{b}^{2} + \frac{G_{b}}{G_{s}} d_{b}^{2} = (1 + \frac{G_{b}}{G_{s}}) d_{b}^{2}$ $d_{s} = (1 + \frac{30}{18})(\frac{1}{4})^{2} = 0.16667 \text{ in}^{*}$ E

Π

1.10 The frame shown consists of *four* wooden members, *ABC*, *DEF*, *BE*, and *CF*. Knowing that each member has a 2×4 -in. rectangular cross section and that each pin has a $\frac{1}{2}$ - in. diameter, determine the maximum value of the average normal stress (a) in member *BE*, (b) in member *CF*.

1.11 For the Pratt bridge truss and loading shown, determine the average normal stress in member BE, knowing that the cross-sectional area of that member is 5.87 in².

SOLUTION

Use portion of truss to the left of a section cutting members BD, BE, and CE.

PROBLEM 1.12

1.12 Knowing that the average normal stress in member CE of the Pratt bridge truss shown must not exceed 21 ksi for the given loading, determine the cross-sectional area of that member which will yield the most economical and safe design. Assume that both ends of the member will be adequately reinforced.

SOLUTION

12 ft

Use entire truss as free body $\Im \Sigma M_{H} = 0$ $(9)(80) + (18)(80) + (27)(80) - 36 A_{y} = 0$ $A_{y} = 120 \text{ Kips}$

A Fab Fab Fab Fab Fab Fab Fab

80 kips

S0 kips

SO kips

Use portion of truss to the left of a section cutting members BD, BE, and CE

$$ZM_{R} = 0$$

 $IR F_{ce} - (9)(120) = 0 \qquad \therefore \qquad F_{ce} = 90 \text{ kips}$
 $G_{ce} = \frac{F_{ce}}{A_{ce}}$
 $A_{ce} = \frac{F_{ce}}{G_{ce}} = \frac{90}{21} = 4.29 \text{ in}^{2}$

1.13 A couple M of magnitude 1500 N \cdot m is applied to the crank of an engine. For the position shown, determine (a) the force P required to hold the engine system in equilibrium, (b) the average normal stress in the connecting rod BC, which has a 450mm² uniform cross section.

4

Caller State

PROBLEM 1.14

1.14 Two hydraulic cylinders are used to control the position of the robotic arm ABC. Knowing that the control rods attached at A and D each have a 20-mm diameter and happen to be parallel in the position shown, determine the average normal stress in (a) member AE, (b) member DG.

1

1:15 The wooden members A and B are to be joined by plywood splice plates which will be fully glued on the surfaces in contact. As part of the design of the joint and knowing that the clearance between the ends of the members is to be 8 mm, determine the smallest allowable length L if the average shearing stress in the glue is not to exceed 800 kPa.

SOLUTION

There are four separate areas of glue. Each area must transmit half of the 24 kN load. Therefore F = 12 kN = 12×103 N shearing stress in glue 2 = 800 × 103 Pa $z = \frac{F}{A}$: $A = \frac{F}{z} = \frac{12 \times 10^3}{800 \times 10^3} = 15 \times 10^{-3} \text{ m}^2$

Let l = length of glue area and <math>w = width = 100 mm = 0.1 m $A = lw : l = \frac{A}{W} = \frac{15 \times 10^{-3}}{0.1} = 150 \times 10^{-3} \text{ m} = 150 \text{ mm}$ L = 2l + gap = (2)(150) + 8 = 308 mm

PROBLEM 1.16

1.16 Determine the diameter of the largest circular hole which can be punched into a sheet of polystyrene 6-mm thick, knowing that the force exerted by the punch is 45 kN and that a 55-MPa average shearing stress is required to cause the material to fail.

SOLUTION

A =
$$\pi dt$$
 for cylindrical failure surface
Shearing stress $\mathcal{L} = \frac{P}{A}$ is $A = \frac{P}{2}$
Equating A's $\pi dt = \frac{P}{2}$
Solving for d: $d = \frac{P}{\pi t \mathcal{L}} = \frac{45 \times 10^3}{\pi (0.006)(55 \times 10^6)} = 43.4 \times 10^5 \text{ m}$
 $d = 43.4 \text{ mm}$

¥ 🕐

 $\left[\right]$

1.17 Two wooden planks, each 76 - in. thick and 6 in. wide, are joined by the glued mortise joint shown. Knowing that the joint will fail when the average shearing stress in the glue reaches 120 psi, determine the smallest allowable length d of the cuts if the joint is to withstand an axial load of magnitude P = 1200 lb.

PROBLEM 1.18

For a luminum

1.18 A load P is applied to a steel rod supported as shown by an aluminum plate into which a 0.6-in,-diameter hole has been drilled. Knowing that the shearing stress must not exceed 18 ksi in the steel rod and 10 ksi in the aluminum plate, determine the largest load P which may be applied to the rod.

SOLUTION

For steel
$$A_1 = \pi dt = \pi (0.6)(0.4)$$

 $= 0.7540 \text{ in}^2$
 $T_1 = \frac{P}{A_1} : P = A_1 T_1 = (0.7540)(12)$
 $= 13.57 \text{ kips}$
For aluminum $A_2 = \pi dt = \pi (1.6)(0.25) = 1.2566 \text{ in}^2$
 $T_2 = \frac{P}{A_2} : P = A_2 T_2 = (1.2566)(10) = 12.57 \text{ kips}$

Limiting value of P is the smaller value " P = 12.57 Kips

1.21 Three wooden planks are fastened together by a series of bolts to form a column. The diameter of each bolt is $\frac{1}{2}$ in. and the inner diameter of each washer is $\frac{5}{6}$ in., which is slightly larger than the diameter of the holes in the planks. Determine the smallest allowable outer diameter d of the washers, knowing that the average normal stress in the bolts is 5 ksi and that the bearing stress between the washers and the planks must not exceed 1.2 ksi.

SOLUTION

Bolt: $A_{but} = \overline{4} d_b^2 = \overline{4} (\frac{1}{2})^2 = 0.19635 \text{ in}^2$ $G_b = \frac{P}{A}$: Tensile force in bolt $P = G_b A = (5)(0.19635) = 0.98175 \text{ kips}$ Washer: inside diameter = $d_i = \frac{5}{8}$ in, outside diameter = d_0 Bearing area $A_w = \frac{T}{4} (d_0^2 - d_i^2)$ and $A_w = \frac{P}{G_b}$. Equating $\frac{T}{4} (d_0^2 - d_i^2) = \frac{P}{G_b}$ $d_0^2 = d_i^2 + \frac{4P}{TG_b} = (\frac{5}{8})^2 + \frac{(4)(0.9875)}{T(12.5)} = 1.4323 \text{ in}^2$ $d_0 = 1.197 \text{ in}$

PROBLEM 1.22

1.22 Link AB, of width b = 2 in. and thickness $t = \frac{1}{4}$ in., is used to support the end of a horizontal beam. Knowing that the average normal stress in the link is - 20 ksi and that the average shearing stress in each of the two pins is 12 ksi, determine (a) the diameter d of the pins, (b) the average bearing stress in the link.

SOLUTION

	Rod AB is in compression. $A = bt$ where $b = 2in$ and $t = \frac{1}{4}in$ $P = -GA = -(-20)(2)(\frac{1}{4}) = 10$ kips	
	Pin: $\gamma_{p} = \frac{P}{A_{p}}$ and $A_{p} = \frac{\pi}{4}d^{2}$ a) $d = \sqrt{\frac{4A_{p}}{\pi}} = \sqrt{\frac{4P}{\pi z_{p}}} = \frac{(4)(10)}{\pi(12)} = 1.030$ in	-
(b) $G_b = \frac{P}{dt}$	$=\frac{10}{(1.030)(0.25)} = 38.8 \text{ ksi}$	-

1.8 Each of the four vertical links has an 8 \times 36- mm uniform rectangular cross **PROBLEM 1.24** section and each of the four pins has a 16- mm diameter. 1.24 For the assembly and loading of Prob. 1.8, determine (a) the average shearing stress in the pin at C, (b) the average bearing stress at C in link CE, (c) the average bearing stress at C in member ABC, knowing that this member has a 10 \times 50-mm uniform rectangular cross section. 0.4 mSOLUTION 0.25 m Use bar ABC as a free body A B C 20 kl F_{ce} $\sum M_{R} = 0 - (0.040) F_{cf} - (0.025)(20 \times 10^3) = 0$ $F_{ce} = -12.5 \times 10^{3}$ $A = \frac{1}{4}d^2 = \frac{1}{4}(0.016)^2 = 201.06 \times 10^{-6} \text{ m}^2$ (a) Shear in pin at C Double shear $2 = \frac{F_{ce}}{2A} = \frac{12.5 \times 10^3}{12)(201.06 \times 10^{-6})} = 31.1 \times 10^{-6}$ 31.1 MPa (b) Bearing in link CE at C $A = dt = (0.016)(0.008) = 128 \times 10^{-6} m^2$ $G_{b} = \frac{1}{\Delta} \frac{F_{cr}}{A} = \frac{(0.5)(12.5 \times 10^{3})}{128 \times 10^{-6}} = 48.8 \times 10^{6}$ 48.8 MPa (c) Bearing in ABC at C $A = dt = (0.016)(0.010) = 160 \times 10^{-6} m^2$ $G_b = \frac{F_{ce}}{\Lambda} = \frac{12.5 \times 10^3}{100 \times 10^{-6}} = 78.1 \times 10^6$ 78.1 MPa

.....

 \square

/

1.29 The 6- kN load **P** is supported by two wooden members of 75×125 - mm uniform rectangular cross section which are joined by the simple glued scarf splice shown. Determine the normal and shearing stresses in the glued splice.

75 mm

SOLUTION

 $P = 6 \times 10^3 N$ $\theta = 90^{\circ} - 70^{\circ} = 20^{\circ}$ A. = (0.075)(0.125) = 9.375 × 10-3 m² $G = \frac{P}{A_0} \cos^2 \theta = \frac{(G \times 10^3) \cos^2 20^\circ}{9.375 \times 10^3} = 565 \times 10^3$ G = 565 kPa $\mathcal{L} = \frac{P}{2A_0} \sin 2\theta = \frac{(6 \times 10^3) \sin 40^\circ}{(2)(9.375 \times 10^{-3})} = 206 \times 10^3$ 2 = 206 kPa

PROBLEM 1.30

1.30 Two wooden members of 75×125 - mm uniform rectangular cross section are joined by the simple glued scarf splice shown. Knowing that the maximum allowable tensile stress in the glued splice is 500 kPa, determine (a) the largest load **P** which can be safely supported, (b) the corresponding shearing stress in the splice.

SOLUTION

$$A_{o} = (0.075)(0.125) = 9.375 \times 10^{-3} m^{2}$$

$$\Theta = 90^{\circ} - 70^{\circ} = 20^{\circ} \quad G = 500 \times 10^{3} \text{ Pa}.$$

$$G = \frac{1}{A_{o}}\cos^{2}\Theta$$

$$P = \frac{A_{o}G}{\cos^{2}\Theta} = \frac{(9.375 \times 10^{-3})(500 \times 10^{3})}{\cos^{2}20^{\circ}} = 5.3085 \times 10^{3}$$
(a)
$$P = 5.31 \text{ kN}$$

$$T = \frac{P \sin 2\Theta}{2A_{o}} = \frac{(5.3085 \times 10^{3}) \sin 40^{\circ}}{(2)(9.375 \times 10^{-3})} = 181.99 \times 10^{3}$$
(b)
$$T = 182.0 \text{ kPa}.$$

1.31 Two wooden members of 3 × 6- in. uniform rectangular cross section are joined by the simple glued scarf splice shown. Knowing that the maximum allowable shearing stress in the glued splice is 90 psi, determine (a) the largest load P which can be safely applied, (b) the corresponding tensile stress in the splice.

SOLUTION

 $\theta = 90^{\circ} - 40^{\circ} = 50^{\circ}$ $A_0 = (3)(6) = 18 in^2$ $\mathcal{I} = \frac{P}{2A} \sin 2\Theta$ $P = \frac{247}{\sin 2\theta} = \frac{(2)(18)(90)}{\sin 100^{\circ}} = 3290$ P= 3290 16. (b) $G = \frac{P\cos^2\theta}{A_0} = \frac{3290\cos^2 50^\circ}{18} = 75.5$ G = 75.5 psi

PROBLEM 1.32

(a)

1.32 Two wooden members of 3×6 - in. uniform rectangular cross section are joined by the simple glued scarf splice shown. Knowing that P = 2400 lb, determine the normal and shearing stresses in the glued splice.

SOLUTION

$$\Theta = 90^{\circ} - 40^{\circ} = 50^{\circ} \qquad P = 2400 \ 16.$$

$$A_{o} = (3)(6) = 18 \ in^{2}$$

$$G = \frac{P}{A_{o}} \cos^{2}\Theta = \frac{(2400) \cos^{2} 50^{\circ}}{18} = 55.1$$

$$G = 55.1 \ psi$$

$$\mathcal{I} = \frac{P}{2A} \ sin 2\Theta = \frac{(2400) sin 100^{\circ}}{(2)(18)} = 65.7$$

$$\mathcal{I} = 65.7 \ sin 2\Theta = \frac{(2400) sin 100^{\circ}}{(2)(18)} = 65.7$$

1.33 A centric load **P** is applied to the granite block shown. Knowing that the resulting maximum value of the shearing stress in the block is 2.5 ksi, determine (a) the magnitude of **P**, (b) the orientation of the surface on which the maximum shearing stress occurs, (c) the normal stress exerted on that surface, (d) the maximum value of the normal stress in the block.

SOLUTION

$$A_{o} = (6)(6) = 36 \text{ in}^{2} \qquad \mathcal{T}_{max} = 2.5 \text{ ksi}$$

$$\Theta = 45^{\circ} \quad \text{for plane of } \mathcal{T}_{max}$$

$$(a) \quad \mathcal{T}_{max} = \frac{|P|}{2A_{o}} \therefore |P| = 2A_{o} \quad \mathcal{T}_{max} = (2)(36)(2.5)$$

$$= 180 \quad \text{Kips}$$

$$(b) \quad \sin 2\theta = 1 \quad 2\theta = 90^{\circ} \quad \Theta = 45^{\circ}$$

$$(c) \quad \overline{5}_{45} = \frac{P}{A_{o}} \cos^{2} 45^{\circ} = \frac{P}{2A_{o}} = \frac{-180}{(2)(36)} = -2.5 \text{ ksi}$$

$$(d) \quad \overline{5}_{max} = \frac{P}{A_{o}} = \frac{-180}{36} = -5 \text{ ksi}$$

PROBLEM 1.34

1.34 A 240- kip load P is applied to the granite block shown. Determine the resulting maximum value of (a) the normal stress, (b) the shearing stress. Specify the orientation of the plane on which each of these maximum values occurs.

6 in

SOLUTION

Ao = (6)(6) = 36 in² $G = \frac{P}{A_0} \cos^2 \Theta = \frac{-240}{36} \cos^2 \Theta = -6.67 \cos^2 \Theta$ (a) may tensile stress = 0 at $\Theta = 90^{\circ}$ may. compressive stress = 6.67 ksi at $\Theta = 0^{\circ}$ (b) $\mathcal{L}_{max} = \frac{P}{2A_0} = \frac{240}{(2)(36)} = 3.33$ ksi at $\Theta = 45^{\circ}$

1.35 A steel pipe of 300- mm outer diameter is fabricated from 6- mm- thick plate by welding along a helix which forms an angle of 25° with a plane perpendicular to the axis of the pipe. Knowing that a 250- kN axial force P is applied to the pipe, determine the normal and shearing stresses in directions respectively normal and tangential to the weld.

SOLUTION

$$d_{0} = 0.300 \text{ m} \quad r_{0} = \frac{1}{2}d_{0} = 0.150 \text{ m}$$

$$r_{1} = r_{0} - t = 0.150 - 0.006 = 0.144 \text{ m}$$

$$A_{0} = \pi(r_{0}^{2} - r_{1}^{2}) = \pi(0.150^{2} - 0.144^{2})$$

$$= 5.54 \times 10^{-3} \text{ m}^{2}$$

$$\theta = 25^{\circ}$$

$$G = \frac{P}{A_{0}} \cos^{2}\theta = \frac{-250 \times 10^{3} \cos^{2} 25^{\circ}}{5.54 \times 10^{-3}}$$

$$= -37.1 \times 10^{6} \qquad G = -37.1 \text{ MPa}$$

$$\mathcal{L} = \frac{P}{2A_{0}} \sin 2\theta = \frac{-250 \times 10^{3} \sin 50^{\circ}}{(2)(5.54 \times 10^{-3})}$$

$$= -17.28 \times 10^{5} \qquad \mathcal{L} = 17.28 \text{ MPa}$$

PROBLEM 1.36

1.36 A steel pipe of 300- mm outer diameter is fabricated from 6- mm- thick plate by welding along a helix which forms an angle of 25° with a plane perpendicular to the axis of the pipe. Knowing that the maximum allowable normal and shearing stresses in directions respectively normal and tangential to the weld are $\sigma = 50$ MPa and $\tau = 30$ MPa, determine the magnitude P of the largest axial force that can be applied to the pipe.

SOLUTION

6 mm

 $d_{0} = 0.300 \text{ m} \quad r_{0} = \frac{1}{2} d_{0} = 0.150 \text{ m}$ $r_{i} = r_{0} - t = 0.150 - 0.006 = 0.144 \text{ m}$ $A_{0} = \pi (r_{0}^{2} - r_{i}^{2}) = \pi (0.150^{2} - 0.144^{2})$ $= 5.54 \times 10^{-5} \text{ m}^{2}$ $Based \text{ on } |5| = 50 \text{ MFa:} \quad 5 = \frac{P}{A_{0}} \cos^{2}\theta$ $P = \frac{A_{0}5}{\cos^{2}\theta} = \frac{(5.54 \times 10^{-2})(50 \times 10^{6})}{\cos^{2} 25^{\circ}} = 337 \times 10^{3}$ $Based \text{ on } |t| = 30 \text{ MFa} \qquad T = \frac{P}{2A_{0}} \sin 2\theta$ $P = \frac{2A_{0}T}{\sin 2\theta} = \frac{(2)(5.54 \times 10^{-3})(30 \times 10^{6})}{\sin 50^{\circ}} = 434 \times 10^{3}$ $Smaller \text{ valve is the allowable value of P} \text{ is } P = 337 \text{ kN} \quad = 1$

600 mm

1.37 Link BC is 6 mm thick, has a width w = 25 mm, and is made of a steel with a 480- MPa ultimate strength in tension. What was the safety factor used if the structure shown was designed to support a 16-kN load P?

SOLUTION

Use bar ACD as a free body and note that member BD is a twoforce member

ΣM. = 0 $(480) F_{8c} - (600) P = 0$ $F_{ec} = \frac{600}{480} P = \frac{(600)(16 \times 10^3)}{480} = 20 \times 10^3 N$

Ultimate load for member BC Fy = SUA $F_{J} = (480 \times 10^{6})(0.006)(0.025) = 72 \times 10^{8} N$ Factor of safety F.S. = $\frac{F_0}{F_0} = \frac{72 \times 10^3}{20 \times 10^3} = 3.60$

PROBLEM 1.38

600 mm -

1.38 Link BC is 6 mm thick and is made of a steel with a 450- MPa ultimate strength in tension. What should be its width w if the structure shown is being designed to support a 20-kN load P with a factor of safety of 3?

SOLUTION

Use bar ACD as a free body and note that member BC is a two-force member. ZMA = 0 480 Fac - 600 P = 0 $F_{BC} = \frac{600 P}{480} = \frac{(600)(20 \times 10^3)}{480} = 25 \times 10^3 N$ For a factor of satety F.S. = 3, the ultimate load of member BC

 $F_{u} = (F.S.)(F_{sc}) = (3)(25 \times 10^{3}) = 75 \times 10^{3} N$ But $F_0 = G_0 A$: $A = \frac{F_0}{G_0} = \frac{75 \times 10^3}{450 \times 10^6} = 166.67 \times 10^6 m^2$ For a rectangular section A = wt or $w = \frac{A}{f} = \frac{166.67 \times 10^{-6}}{0.006}$ $W = 27.8 \times 10^{-3} \text{ m}$ or 27.8 mm

1.42 Members AB and AC of the truss shown consist of bars of square cross section **PROBLEM 1.42** made of the same alloy. It is known that a 20-mm-square bar of the same alloy was tested to failure and that an ultimate load of 120 kN was recorded. If a factor of safety — 0.75 m of 3.2 is to be achieved for both bars, determine the required dimensions of the cross section of (a) bar AB, (b) bar AC. SOLUTION Length of member AB 1.4 m 1AB = 10.752+0.42 = 0.85 m 28 kNUse entire truss as a free body $\Im \Sigma M_c = 0$ $1.4 A_{x} - (0.75)(28) = 0$ $A_{x} = 15 kN$ $+1\Sigma F_y = 0$ Ay - 28 = 0 $A_y = 28 \text{ kN}$ Use joint A as free body 28 kN $A_{x} = F_{AB} = \frac{0.75}{0.85} F_{AB} - A_{x} = 0$ $F_{AB} = \frac{(0.85)(15)}{0.75} = 17 \text{ kN}$ $+12F_y = 0$ Ay $-F_{AC} - \frac{0.4}{0.85}F_{AB} = 0$ $F_{AC} = 28 - \frac{(0.4)(17)}{0.85} = 20 \text{ kN}$ For the test bar $A = (0.020)^2 = 400 \times 10^6 \text{ m}^3$ $P_0 = 120 \times 10^3 \text{ N}$ For the material $G_0 = \frac{P_0}{A} = \frac{120 \times 10^3}{400 \times 10^{-6}} = 300 \times 10^6$ Pa (a) For member AB F.S. = $\frac{P_U}{F_{AB}} = \frac{G_UA}{F_{AB}} = \frac{G_UA}{F_{AB}}$ $\alpha^{2} = \frac{(F.S.) F_{AB}}{S_{11}} = \frac{(3.2)(17 \times 10^{3})}{300 \times 10^{6}} = 181.33 \times 10^{-6} \text{ m}^{2}$ $a = 13.47 \times 10^{-3} m$ 13,47 mm (b) For member AC F.S. = $\frac{P_U}{F_{AL}} = \frac{G_U A}{F_{AL}} = \frac{G_U b^2}{F_{AL}}$ $b^2 = \frac{(F.S.)F_{AL}}{G_U} = \frac{(3.2)(20 \times 10^3)}{300 \times 10^6} = 213.33 \times 10^{-6} \text{ m}^2$ 1 = 14-61×10-5 m 14.61 mm

120 mm

20 kN

1.43 The two wooden members shown, which support a 20-kN load, are joined by plywood splices fully glued on the surfaces in contact. The ultimate shearing stress in the glue is 2.8 MPa and the clearance between the members is 8 mm. Determine the factor of safety, knowing that the length of each splice is L = 200 mm.

SOLUTION

There are 4 separate areas of glue. Each glue area must transmit 10 KN of shear fload.

 $P = 10 \times 10^{S} N$

Length of splice L = 2l + c where l = length of glue and <math>c = clearance. $l = \frac{1}{2}(L-c) = \frac{1}{2}(0.200 - 0.008) = 0.096 m$. Area of glue $A = lw = (0.096)(0.120) = 11.52 \times 10^{-5} m^{2}$ Ultimate load $P_{0} = 2uA = (2.8 \times 10^{6})(11.52 \times 10^{-5}) = 32.256 \times 10^{3} N$ Factor of safety F.S. $= \frac{P_{0}}{P} = \frac{32.256 \times 10^{3}}{10 \times 10^{6}} = 3.23$

PROBLEM 1.44

1.43 The two wooden members shown, which support a 20-kN load, are joined by plywood splices fully glued on the surfaces in contact. The ultimate shearing stress in the glue is 2.8 MPa and the clearance between the members is 8 mm.

1.44 For the joint and loading of Prob. 1.43, determine the required length L of each splice if a factor of safety of 3.5 is to be achieved.

SOLUTION

There are 4 separate areas of glue. Each glue area must transmit 10 kN of shear load.

 $P = 10 \times 10^3 N$

Required ultimate load $P_0 = (F.5.)(P) = (3.5)(10 \times 10^3) = 35 \times 10^3 N$ Required length l of each glue area

$$P_{u} = \mathcal{T}_{u}A = \mathcal{T}_{u}Iw$$
 $l = \frac{P_{u}}{\mathcal{T}_{u}w} = \frac{35 \times 10^{3}}{(2.8 \times 10^{6})(0.120)} = 104.17 \times 10^{3}$

Length of splice $L = 2l + c = (2)(104.17 \times 10^{-3}) + 0.008$ = 216.3 × 10⁻³ m 216 mm

1.45 Three $\frac{3}{4}$ - in.-diameter steel bolts are to be used to attach the steel plate shown to a wooden beam. Knowing that the plate will support a 24-kip load and that the ultimate shearing stress for the steel used is 52 ksi, determine the factor of safety for this design.

SOLUTION

For each bolt
$$A = \frac{T}{4}d^2 = \frac{T}{4}\left(\frac{3}{4}\right)^2 = 0.4418 \text{ in}^4$$

 $P_u = A \mathcal{L}_u = (0.4418)(52) = 22.97 \text{ k/ps}$
Per bolt $P = \frac{24}{3} = 8 \text{ k/ps}$
F.S. $= \frac{P_u}{P} = \frac{22.97}{8} = 2.87$

PROBLEM 1.46

1.46 Three steel bolts are to be used to attach the steel plate shown to a wooden beam. Knowing that the plate will support a 24-kip load, that the ultimate shearing stress for the steel used is 52 ksi, and that a factor of safety of 3.37 is desired, determine the required diameter of the bolts.

SOLUTION

For each bolt $P = \frac{24}{3} = 8$ kips Required $P_{U} = (F.S.)P = (3.37)(8) = 26.96$ kips $\mathcal{U}_{U} = \frac{P_{U}}{A} \therefore A = \frac{P_{U}}{2_{U}} = \frac{26.96}{52} = 0.51846$ in² $A = \frac{T}{4}d^{2} \therefore d = \sqrt{\frac{4A}{\pi}} = \sqrt{\frac{(4)(0.51896)}{\pi}} = 0.8125$ in.

1.47 A load P is supported as shown by a steel pin which has been inserted in a short PROBLEM 1.47 wooden member hanging from the ceiling. The ultimate strength of the wood used is 60 MPa in tension and 7.5 MPa in shear, while the ultimate strength of the steel is 150 MPa in shear. Knowing that the diameter of the pin is d = 16 mm and that the magnitude of the load is P = 20 kN, determine (a) the factor of safety for the pin, (b) the required values of b and c if the factor of safety for the wooden member is to be the same as that found in part a for the pin. **SOLUTION** $P = 20 \text{ kN} = 20 \times 10^3 \text{ N}$ (a) Pin: A = $\frac{1}{4}d^2 = \frac{1}{4}(0.016)^2 = 201.06 \times 10^6 \text{ m}^2$ Double shear $\mathcal{Z} = \frac{P}{2A}$ $\mathcal{Z}_0 = \frac{P_0}{2A}$ $P_0 = 2A T_0 = (2)(201.16 \times 10^6)(150 \times 10^6)$ = 60.319×103 N $F.S. = \frac{P_U}{P} = \frac{60.319 \times 10^3}{20 \times 10^3} = 3.02$ Pu = 60.319 × 103 N for same F.S. (b) Tension in wood $G_0 = \frac{P_0}{A} = \frac{P_0}{W(h-d)}$ where W = 40 mm = 0.040 m $b = d + \frac{P_0}{WG_1} = 0.016 + \frac{60.319 \times 10^3}{(0.040)(60 \times 10^6)} = 41.1 \times 10^3 m$ b = 41.1. mm Shear in wood $P_u = 60.319 \times 10^3$ N for same F.S. Double shear; each area is A = WC $\chi_0 = \frac{P_0}{2\Delta} = \frac{P_0}{2WC}$ $C = \frac{P_0}{2 W T_0} = \frac{60.3 M \times 10^3}{(3 \times 0.040) (7.5 \times 10^6)} = 100.5 \times 10^{-5} m$ $c = 100.5 \, \text{mm}$

Π

1.47 A load P is supported as shown by a steel pin which has been inserted in a short wooden member hanging from the ceiling. The ultimate strength of the wood used is 60 MPa in tension and 7.5 MPa in shear, while the ultimate strength of the steel is 150 MPa in shear.

1.48 For the support of Prob. 1.47, knowing that b = 40 mm, c = 55 mm and d = 12 mm, determine the allowable load P if an overall factor of safety of 3.2 is desired.

SOLUTION

Based on double shear in pin

$$P_{U} = 2A \mathcal{I}_{U} = 2 \frac{\pi}{4} d^{2} \mathcal{I}_{U}$$

 $= \frac{\pi}{4} (2) (0.012)^{2} (150 \times 10^{6}) = 33.93 \times 10^{3} \text{ N}$
Based on tension in wood
 $P_{U} = A \mathcal{F}_{U} = w (b - d) \mathcal{F}_{U}$
 $= (0.040) (0.040 - 0.012) (60 \times 10^{6})$
 $= 67.2 \times 10^{3} \text{ N}$

Based on double shear in the wood $P_{U} = 2A T_{U} = 2 W C T_{U} = (2)(0.040)(0.055)(7.5 \times 10^{6})$ $= 33.0 \times 10^{3} N$

Use smallest $P_{U} = 33.0 \times 10^{3} N$ Allowable $P = \frac{P_{U}}{F.S.} = \frac{33.0 \times 10^{3}}{3.2} = 10.31 \times 10^{3} N$ 10.31 kN

1.49 In the structure shown, an 8- mm- diameter pin is used at A, and 12- mmdiameter pins are used at B and D. Knowing that the ultimate shearing stress is 100 MPa at all connections and that the ultimate normal stress is 250 MPa in each of the two links joining B and D, determine the allowable load P if an overall factor of safety of 3.0 is desired.

PROBLEM 1.50

Top view

-200 mm-->|<--180 mm-->| 12 mm

10

Π

. []

]]

Π

 $\parallel O$

1.49 In the structure shown, an 8- mm- diameter pin is used at A, and 12- mmdiameter pins are used at B and D. Knowing that the ultimate shearing stress is 100 MPa at all connections and that the ultimate normal stress is 250 MPa in each of the two links joining B and D, determine the allowable load P if an overall factor of safety of 3.0 is desired

1.50 In an alternative design for the structure of Prob. 1.49, a pin of 10-mm-diameter is to be used at A. Assuming that all other specifications remain unchanged, determine the allowable load **P** if an overall factor of safety of 3.0 is desired.

Statics : Use ABC as free body.

SOLUTION

-0.20 -4-0.18 - P 20 mm -8 mm 8 mm $ZM_{B} = 0$ 0.20 $F_{A} = 0.18 P = 0$ D $P = \frac{12}{5} F_{A}$ 12 mm Front view Side view $ZM_{A} = 0$ 0.20 FBD - 0.38 P = 0 $P = \frac{10}{19} F_{BD}$ Based on double shear in pin A $A = \frac{\pi}{4}d^2 = \frac{\pi}{4}(0.010)^2 = \frac{78.54}{10^6} \times 10^{-6} m^2$ $F_{A} = \frac{220A}{FS} = \frac{(2(100 \times 10^{6})(78.54 \times 10^{-6}))}{3.0} = 5.236 \times 10^{3} N$ P = 19 FA = 5.82 × 10 N Based on double shean in pins at B and D $A = \frac{\pi}{4}d^2 = \frac{\pi}{4}(0.012)^2 = 113.10 \times 10^{-6} m^2$ $F_{so} = \frac{2\mathcal{E}A}{F_{s}} = \frac{(2)(100 \times 10^{6})(113.10 \times 10^{-6})}{3.0} = 7.54 \times 10^{3} N$ $P = \frac{10}{19} F_{BD} = 3.97 \times 10^3 N$

Based on compression in links BD

For one link $A = (0.020)(0.008) = 160 \times 10^{-6} m^2$ $F_{8D} = \frac{26_0 A}{F.S.} = \frac{(2)(250 \times 10^6)(160 \times 10^{-6})}{3.0} = 26.7 \times 10^3 N$ $P = \frac{10}{19} F_{8D} = 14.04 \times 10^3 N$

Allowable value of P is smallest : P= 3.97 × 10° N

3.97 KN

[--]

PROBLEM 1.58

*1.58 The Load and Resistance Factor Design method is to be used to select the two cables which will raise and lower a platform supporting two window washers. The platform weighs 160 lb and each of the window washers is assumed to weigh 195 lb with his equipment. Since these workers are free to move on the platform, 75% of their total weight and of the weight of their equipment will be used as the design live load of each cable. (a) Assuming a resistance factor $\phi = 0.85$ and load factors $\gamma_D = 1.2$ and $\gamma_L = 1.5$, determine the required minimum ultimate load of one cable. (b) What is the conventional factor of safety for the selected cables?

SOLUTION

$$\begin{split} \gamma_{p} P_{p} + \gamma_{L} P_{L} &= \varphi P_{u} \\ P_{u} &= \frac{\gamma_{p} P_{p} + \gamma_{L} P_{L}}{\varphi} \\ &= \frac{(1.2)(\frac{1}{2} \times 160) + (1.5)(\frac{3}{4} \times 2 \times 195)}{0.85} \\ &= 629 \ \text{lb.} \end{split}$$

Conventional factor of safety

$$P = P_0 + P_1 = \frac{1}{2} \times 80 + 0.75 \times 2 \times 195 = 372.5 \text{ Jb}$$

F.S. = $\frac{P_0}{P} = \frac{629}{372.5} = 1.689$

__) | __, \

/

1.C1 A solid steel rod consisting of *n* cylindrical elements welded together is subjected to the loading shown. The diameter of element *i* is denoted by d_i and the load applied to its lower end by \mathbf{P}_i , with the magnitude P_i of this load being assumed positive if \mathbf{P}_i is directed downward as shown and negative otherwise. (a) Write a computer program which can be used with either SI or U.S. customary units to determine the average stress in each element of the rod. (b) Use this program to solve Probs. 1.1 and 1.3.

SOLUTION

FORCE IN ELEMENT L:
It is the sum of the forces applied
to that element and all lower ones:
$F_{i} = \sum_{k=1}^{L} P_{k}$

Problem 1.1		Problem 1.3			
Element	Stress (MPa)	Element Stress (ksi)			
1	84.883	1 22.635			
2	-96.766	2 17.927			

1.C2 A 20-kN force is applied as shown to the horizontal member ABC. Member ABC has a 10×50 -mm uniform rectangular cross section and is supported by four vertical links, each of 8×36 -mm uniform rectangular cross section. Each of the four pins at A, B, C, and D has the same diameter d and is in double shear. (a) Write a computer program to calculate for values of dfrom 10 to 30 mm, using 1-mm increments, (1) the maximum value of the average normal stress in the links connecting pins B and D, (2) the average normal stress in the links connecting pins C and E, (3) the average shearing stress in pin B, (4) the average shearing stress in pin C, (5) the average bearing stress at B in member ABC, (6) the average bearing stress at C in member ABC. (b) Check your program by comparing the values obtained for d = 16 mm with the answers given for Probs. 1.8, 1.23, and 1.24. (c) Use this program to find the permissible values of the diameter d of the pins, knowing that the allowable values of the normal, shearing, and bearing stresses for the steel used are, respectively, 150 MPa, 90 MPa, and 230 MPa. (d) Solve part c, assuming that the thickness of member ABC has been reduced from 10 to 8 mm.

SOLUTION

FORCES IN LINKS P=20 kN F.B. DIAGRAM OF ABC: $2F_{CE}A \rightarrow \Sigma M = 0: 2F_{BD}(BC) - P(AC) = 0$ FBD=P(AC)/2(BC) (TENSION) $\frac{B}{BD} = \frac{P(AC)}{2(BC)} (TENSION)$ $= 0.4 \text{ m} = + \sum_{B} \frac{F_{BD}}{B} = 0:2F_{CE}(BC) - P(AB) = 0$ ₹2F_{RD} $F_{CF} = P(AB)/2(BC)$ (COMP.) (1) <u>LINK BD</u> F_{BD} Thickness = t_{L} $A_{BD} = t_{L} (W_{L} - d)$ $L_{UL} = d$ $C_{BD} = + F_{BD} / A_{BD}$ (2) LINK C For Thickness = t_{L} $A_{CE} = t_{L}w_{L}$ w_{I} $G_{CE} = -F_{CE}/A_{CE}$ (3) <u>PINB</u> (4) <u>PIN C</u> $\mathcal{T}_{C} = F_{CE} / (\Pi d^{2}/4)$ $\widehat{c}_{B} = F_{BD} / (\mathcal{T} d^{2}/4)$ (5) BEARING STRESS AT B Thickness of Member AC=tAC SHEARING STRESS IN ABC UNDER PINB $F_{B} = C_{Ac} t_{Ac} (W_{Ac}/2)$ $\Sigma F_{y} = 0: 2F_{B} = 2F_{BD}$ 2FBD Sig Bear $B = F_{BD} / (dt_{AC})$ (6) BEARING STRESS AT C CAC = 2 FBD LAC - LAC WAR SigBearC=FCE/(dtAc) (CONTINUED)

PROBLEM 1.C2 CONTINUED

][]

!.**⊟**(

PROGRAM OUTPUTS

đ	Sigma BD	Sigma CE	Tau B	Tau C S	igBear B	SigBear C	
10.00	78.13	-21.70	206.90	79,58	325,00	125.00	
11.00	81.25	-21.70	219.98	65.77	285,45	113.64	
12.00	84.64	-21.70	243.68	55.26	270,83	104.17	
13.00	88.32	-21.70	122.43	47.09	250 00	96.15	
14.00	92.33	-21.70	108.56	40.60	232,24	89.29	
15.00	96.73	-21.70	192 96	35.37	216.67	83.33	. 1
16.00	101.56	-21.70	80.82	31.08	203.12	78.13	╉ (
17.00	106.91	-21.70	71.59	27:54	191.18	73.53	
18.00	$112.85 \\ 119.49$	-21.70 -21.70	63.86 57.31	24.56 22.04	180.56 171.05	69.44 65.79	
19.00 20.00	126.95	-21.70	51.73	19.89	162.50	62.50	
20.00	135.42	-21.70	46.92	18.04	154.76	59.52	
22.00	145.09	-21.70	42.75	16.44	147.73	56.82	
23.00	186,25] -21.70	39.11	15.04	141.30	54.35	
24.00	109,27	-21.70	35.92	13.82	135.42	52.08	
25.00	184,66	₹ -21.70	33.10	12.73	130.00	50.00	
26.00	203,13	-21.70	30.61		125.00	48.08	
27.00	225,69	-21.70	28.38	10.92	120.37	46.30	
28.00	253.92	-21.70	26.39	10.15	116.07	44.64	
29.00	290.18	-21.70	24.60	9.46	112.07	43.10	
30.00	338.54] -21.70	22.99	8.84	108.33	41.67	
							•
			(a) A	NEWED . 14	Common of a Dir	· · · · · · · ·	-
	For $d = 22$ n	nm Tau AC =	(c) A = 65 MPa < 90	NSWER : 16	$ \int \mathbf{mm} \leq d \leq 22 $	2 mm 🛛 🔫	(C)
CHECK	For $d = 22 \text{ m}$	 PART (d): P	= 65 MPa < 90 = 20 kN, AB	MPa O.K	c = 0.40 m,	2 mm <	(0)
CHECK	DATA FOR 3 5 m, TL = 8 m	 PART (d): P	= 65 MPa < 90 = 20 kN, AB mm, TAC = 8) MPa O.K = 0.25 m, BC mm, WAC =	C = 0.40 m, 50 mm		(2)
CHECK NPUT I AC = 0.6 d	DATA FOR 1 5 m, TL = 8 m Sigma BD	PART (d): P nm, WL = 36 Sigma CE	= 65 MPa < 90 = 20 kN, AB mm, TAC = 8 Tau B	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si	c = 0.40 m,	igBear C	(2)
$\frac{\text{CHECK}}{\text{NPUT I}}$ $\frac{\text{AC} = 0.6}{\text{d}}$ $\frac{1}{2}$	DATA FOR 1 5 m, TL = 8 m Sigma BD 78.13	PART (d): P um, WL = 36 Sigma CE -21.70	= 65 MPa < 90 = 20 kN, AB mm, TAC = 8	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58	C = 0.40 m, 50 mm	igBear C 156.25	(2)
CHECK NPUT I AC = 0.6 d .0.00 1.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25	PART (d): P nm, WL = 36 Sigma CE -21.70 -21.70	= 65 MPa < 90 = 20 kN, AB mm, TAC = 8 Tau B	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77	C = 0.40 m, 50 mm	igBear C 156.25 142.05	(2)
CHECK NPUT I AC = 0.6 d .0.00 .1.00 .2.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64	PART (d): P nm, WL = 36 Sigma CE -21.70 -21.70 -21.70	= 65 MPa < 90 = 20 kN, AB mm, TAC = 8 Tau B	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26	C = 0.40 m, 50 mm	SigBear C 156.25 142.05 130.21	(2)
CHECK NPUT I AC = 0.6 d 0.00 1.00 2.00 3.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32	PART (d): P mm, WL = 36 Sigma CE -21.70 -21.70 -21.70 -21.70	= 65 MPa < 90 = 20 kN, AB mm, TAC = 8 Tau B	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09	C = 0.40 m, 50 mm	5igBear C 156.25 142.05 130.21 120.19	(2)
CHECK NPUT I AC = 0.6 d 0.00 1.00 2.00 3.00 4.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32 92.33	PART (d): P m, WL = 36 Sigma CE -21.70 -21.70 -21.70 -21.70 -21.70 -21.70	$= 65 \text{ MPa} < 90$ $= 20 \text{ kN, AB}$ mm, TAC = 8 Tau B $\boxed{206.90}$ 170.99 142.68 122.43 -105.86	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09 40.60	C = 0.40 m, 50 mm	5igBear C 156.25 142.05 130.21 120.19 111.61	(2)
CHECK NPUT I AC = 0.6 d .0.00 1.00 2.00 3.00 4.00 5.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32	PART (d): P mm, WL = 36 Sigma CE -21.70 -21.70 -21.70 -21.70	= 65 MPa < 90 = 20 kN, AB mm, TAC = 8 Tau B	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09 40.60 35.37	C = 0.40 m, 50 mm	5igBear C 156.25 142.05 130.21 120.19 111.61 104.17	(0)
CHECK NPUT I AC = 0.6 d 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32 92.33 96.73 101.56 106.91	PART (d): P m, WL = 36 Sigma CE -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70	= 65 MPa < 90 $= 20 kN, AB$ mm, TAC = 8 Tau B $= 206 - 90$ $= 170 - 99$ $= 142 - 68$ $= 122 - 43$ $= 1.86$	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09 40.60 35.37 31.08	C = 0.40 m, 50 mm	5igBear C 156.25 142.05 130.21 120.19 111.61 104.17 97.66	(2)
CHECK NPUT I AC = 0.6 d 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32 92.33 96.73 101.56	PART (d): P m, WL = 36 Sigma CE -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70	= 65 MPa < 90 $= 20 kN, AB$ mm, TAC = 8 Tau B $206 90$ $170 .99$ $142 .68$ $122 43$ $105 .86$ $91 .86$ $80 .82$ $71 .59$	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09 40.60 35.37 31.08 27.54	C = 0.40 m, 50 mm gBear B S 269.32 38.84 312.50 290.18 270.83 253.91 238.91	5igBear C 156.25 142.05 130.21 120.19 111.61 104.17 97.66 91.91	(0)
CHECK $NPUT I$ $AC = 0.6$ d 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32 92.33 96.73 101.56 106.91 112.85 119.49	PART (d): P m, WL = 36 Sigma CE -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70	= 65 MPa < 90 = 20 kN, AB mm, TAC = 8 Tau B 206, 90 170, 99 142, 68 122, 43 105, 56 91, 86 80, 82	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09 40.60 35.37 31.08	$ \begin{array}{c} = 0.40 \text{ m}, \\ = 50 \text{ mm} \\ \\ gBear B S \\ \hline 406.25 \\ = 36.22 \\ = 38.84 \\ = 312.50 \\ = 290 \\ = 290 \\ = 12.50 \\ = 290 $	5igBear C 156.25 142.05 130.21 120.19 111.61 104.17 97.66 91.91 86.81	(0)
CHECK $NPUT I$ $AC = 0.6$ d 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32 92.33 96.73 101.56 106.91 112.85 119.49 126.95	PART (d): P m, WL = 36 Sigma CE -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70	= 65 MPa < 90 $= 20 kN, AB$ mm, TAC = 8 Tau B $206 90$ $170 99$ $142 68$ $122 43$ $105 86$ $91 80$ $80 82$ $71 59$ $63 . 86$	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09 40.60 35.37 31.08 27.54 24.56	$ \begin{array}{c} = 0.40 \text{ m}, \\ = 50 \text{ mm} \\ \\ gBear B S \\ \hline 406.25 \\ = 38.84 \\ = 32.888 \\ = 38.84 \\ = 312.50 \\ = 290 \\ = 290 \\ = 18 \\ = 270.83 \\ = 253.91 \\ = 238.97 \\ = 225.69 \\ = 213.82 \end{array} $	SigBear C 156.25 142.05 130.21 120.19 111.61 104.17 97.66 91.91 86.81 82.24	(2)
CHECK NPUT I AC = 0.6 d 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 1.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32 92.33 96.73 101.56 106.91 112.85 119.49 126.95 135.42	PART (d): P m, WL = 36 Sigma CE -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70	= 65 MPa < 90 = 20 kN, AB mm, TAC = 8 Tau B 206 90 140.99 142.68 122.43 105.86 91.96 80.82 71.59 63.86 57.31	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09 40.60 35.37 31.08 27.54 24.56 22.04 19.89 18.04	$ \begin{array}{c} = 0.40 \text{ m}, \\ = 50 \text{ mm} \\ \\ gBear B S \\ \hline 406.25 \\ = 36.22 \\ = 38.84 \\ = 312.50 \\ = 290 \\ = 290 \\ = 12.50 \\ = 290 $	SigBear C 156.25 142.05 130.21 120.19 111.61 104.17 97.66 91.91 86.81 82.24 78.13	(2)
CHECK NPUT I AC = 0.6 d 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 1.00 2.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32 92.33 96.73 101.56 106.91 112.85 119.49 126.95 135.42 145.09	PART (d): P m, WL = 36 Sigma CE -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70	= 65 MPa < 90 = 20 kN, AB mm, TAC = 8 Tau B 206 90 170.99 142.68 105.86 91.96 80.82 71.59 63.86 57.31 51.73 46.92 42.75	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09 40.60 35.37 31.08 27.54 24.56 22.04 19.89 18.04 16.44	$\begin{array}{c} = 0.40 \text{ m}, \\ = 50 \text{ mm} \\ \\ gBear B S \\ \hline 406.28 \\ = 32 \\ = 38.84 \\ = 312.50 \\ = 290 \\ = 290 \\ = 12.50 \\ = 290 \\ = 290 \\ = 12.50 \\ = 290 \\ $	SigBear C 156.25 142.05 130.21 120.19 111.61 104.17 97.66 91.91 86.81 82.24	(2)
CHECK NPUT I AC = 0.6 d 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 1.00 2.00 3.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32 92.33 96.73 101.56 106.91 112.85 119.49 126.95 135.42	PART (d): P m, WL = 36 Sigma CE -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70	= 65 MPa < 90 = 20 kN, AB mm, TAC = 8 Tau B 206 90 170.99 142.68 122.43 105.86 91.96 80.82 71.59 63.86 57.31 51.73 46.92 42.75 39.11	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09 40.60 35.37 31.08 27.54 24.56 22.04 19.89 18.04 16.44 15.04	$\begin{array}{c} = 0.40 \text{ m}, \\ 50 \text{ mm} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	5igBear C 156.25 142.05 130.21 120.19 111.61 104.17 97.66 91.91 86.81 82.24 78.13 74.40	(2)
CHECK NPUT I AC = 0.6 d 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 1.00 2.00 3.00 4.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32 92.33 96.73 101.56 106.91 112.85 119.49 126.95 135.42 145.09	PART (d): P m, WL = 36 Sigma CE -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70	= 65 MPa < 90 = 20 kN, AB mm, TAC = 8 Tau B 206 90 170.99 142.68 122.43 105.86 91.96 80.82 71.59 63.86 57.31 51.73 46.92 42.75 39.11 35.92	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09 40.60 35.37 31.08 27.54 24.56 22.04 19.89 18.04 16.44 15.04 13.82	$\begin{array}{c} = 0.40 \text{ m}, \\ = 50 \text{ mm} \\ \\ \text{gBear B S} \\ \hline 406.25 \\ \hline 769.32 \\ \hline 738.84 \\ \hline 718.50 \\ \hline 290 18 \\ \hline 70.83 \\ \hline 290 18 \\ \hline $	SigBear C 156.25 142.05 130.21 120.19 111.61 104.17 97.66 91.91 86.81 82.24 78.13 74.40 71.02 67.93 65.10	(2)
CHECK NPUT I AC = 0.6 d 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 1.00 2.00 3.00 4.00 5.00 5.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32 92.33 96.73 101.56 106.91 112.85 119.49 126.95 135.42 145.09	PART (d): P m, WL = 36 Sigma CE -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70	<pre>= 65 MPa < 90 = 20 kN, AB mm, TAC = 8 Tau B 206 90 170.99 142.68 122.43 105.86 91.66 80.82 71.59 63.86 57.31 51.73 46.92 42.75 39.11 35.92 33.10</pre>	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09 40.60 35.37 31.08 27.54 24.56 22.04 19.89 18.04 16.44 15.04 13.82 12.73	$\begin{array}{c} = 0.40 \text{ m}, \\ = 50 \text{ mm} \\ \\ = 30 \text{ mm} \\ \\ = 300 \text{ mm} \\ \\ = 300 \text{ mm} \\ \\ = 318 \text{ mm} \\ = 318 \text$	SigBear C 156.25 142.05 130.21 120.19 111.61 104.17 97.66 91.91 86.81 82.24 78.13 74.40 71.02 67.93 65.10 62.50	(2)
CHECK NPUT I AC = 0.6 d 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 5.00 6.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32 92.33 96.73 101.56 106.91 112.85 119.49 126.95 135.42 145.09	PART (d): P m, WL = 36 Sigma CE -21.70	= 65 MPa < 90 = 20 kN, AB mm, TAC = 8 Tau B 206 90 170.99 142.68 105.86 91.96 80.82 71.59 63.86 57.31 51.73 46.92 42.75 39.11 35.92 33.10 30.61	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09 40.60 35.37 31.08 27.54 24.56 22.04 19.89 18.04 16.44 15.04 13.82 12.73 11.77	2 = 0.40 m, 50 mm 2 = 0.40 m, 30 mm 30 mm 30 mm 312 m	SigBear C 156.25 142.05 130.21 120.19 111.61 104.17 97.66 91.91 86.81 82.24 78.13 74.40 71.02 67.93 65.10 62.50 60.10	(2)
CHECK NPUT I AC = 0.6 d 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 7.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32 92.33 96.73 101.56 106.91 112.85 119.49 126.95 135.42 145.09	PART (d): P m, WL = 36 Sigma CE -21.70	<pre>= 65 MPa < 90 = 20 kN, AB mm, TAC = 8 Tau B 206 90 170.99 142.43 105.86 22.43 105.86 91.86 57.31 51.73 46.92 42.75 39.11 35.92 33.10 30.61 28.38</pre>	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09 40.60 35.37 31.08 27.54 24.56 22.04 19.89 18.04 16.44 15.04 13.82 12.73 11.77 10.92	2 = 0.40 m, 50 mm 2 = 0.40 m, 30 mm 30 mm $30 \text$	SigBear C 156.25 142.05 130.21 120.19 111.61 104.17 97.66 91.91 86.81 82.24 78.13 74.40 71.02 67.93 65.10 62.50 60.10 57.87	(2)
CHECK NPUT I AC = 0.6 d 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 1.00 2.00 3.00	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32 92.33 96.73 101.56 106.91 112.85 119.49 126.95 135.42 145.09	PART (d): P m, WL = 36 Sigma CE -21.70	<pre>= 65 MPa < 90 = 20 kN, AB mm, TAC = 8 Tau B 206 90 170.99 142.68 122.43 105.86 91.66 80.82 71.59 63.86 57.31 51.73 46.92 42.75 39.11 35.92 33.10 30.61 28.38 26.39</pre>	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09 40.60 35.37 31.08 27.54 24.56 22.04 19.89 18.04 16.44 15.04 13.82 12.73 11.77 10.92 10.15	2 = 0.40 m, 50 mm 1gBear B S 406.25 769.72 738.84 200 18 270.83 253.91 225.69 213.82 203.12 193.45 184.66 176.63 169.27 162.50 156.25 150.46 145.09	igBear C 156.25 142.05 130.21 120.19 111.61 104.17 97.66 91.91 86.81 82.24 78.13 74.40 71.02 67.93 65.10 62.50 60.10 57.87 55.80	(2)
CHECK NPUT I AC = 0.6 d 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 0.00 1.00 8.00 9.00 0.00 1.00 8.00 8.00 8.00 8.00 8.00 8	DATA FOR 5 5 m, TL = 8 m Sigma BD 78.13 81.25 84.64 88.32 92.33 96.73 101.56 106.91 112.85 119.49 126.95 135.42 145.09	PART (d): P m, WL = 36 Sigma CE -21.70	<pre>= 65 MPa < 90 = 20 kN, AB mm, TAC = 8 Tau B 206 90 170.99 142.43 105.86 22.43 105.86 91.86 57.31 51.73 46.92 42.75 39.11 35.92 33.10 30.61 28.38</pre>	MPa O.K = 0.25 m, BC mm, WAC = Tau C Si 79.58 65.77 55.26 47.09 40.60 35.37 31.08 27.54 24.56 22.04 19.89 18.04 16.44 15.04 13.82 12.73 11.77 10.92	2 = 0.40 m, 50 mm 2 = 0.40 m, 30 mm 30 mm $30 \text$	SigBear C 156.25 142.05 130.21 120.19 111.61 104.17 97.66 91.91 86.81 82.24 78.13 74.40 71.02 67.93 65.10 62.50 60.10 57.87	(2)

BC, (3) the average shearing stress in pin A, (4) the average shearing stress in pin C, (5) the average bearing stress at A in member AB, (6) the average bearing stress at C in member BC, (7) the average bearing stress at B in member BC. (b) Check your program by comparing the values obtained for d = 0.8 in. with the answers given for Probs. 1.9, 1.25, and 1.26. (c) Use this program to find the permissible values of the diameter d of the pins, knowing that the allowable values of the normal, shearing, and bearing stresses for the steel used are, respectively, 22 ksi, 13 ksi, and 36 ksi. (d) Solve part c, assuming that a new design is being investigated, in which the thickness and width of the two members are changed, respectively, from 0.5 to 0.3 in. and from 1.8 in. to

(CONTINUED)

PROBLEM 1.C3 CONTINUED

PROGRAM OUTPUTS

PROGRAM OUTPUTS

[].

 $\left[\right]$

PROBLEM 1.C5 CONTINUED

For Pro. 1.29;	P = 6 k N	C LOC MP.	<u>~</u>	I EN MPA
$\frac{For Prod. 1.29}{a = 125 \text{ mm}, b = 1}$	$75 \mathrm{mm}, \alpha = 70^{\circ},$	U = 1.26 Mra,	U	1.50 mile,

ALPHA	SIG(MPa)	TAU(MPa)	FSN	FSS	FS	
5.000	0 0.0049	0.0556	259.1782	26.9942	26.9942	
10.000	0 0.0193	0.1094	65.2905	13.7053	13.7053	
15.000		0.1600	29.3899	9.3750	9.3750	
.000		0.2057	16.8301	7.2925	7.2925	
25.000		0.2451	11.0229	6.1191	6.1191	
30.000		0.2771	7.8750	5.4127	5.4127	
35.000	-	0.3007	5.9842	4.9883	4.9883	
40.000		0.3151	4.7649	4.7598	4,7598	
45.000		0.3200	3.9375	4.6875	3.9375	🔺 (C)
50.000		0.3151	3.3549	4.7598	3.3549	
55.000		0.3007	2.9340	4.9883	2.9340	
60.000		0.2771	2.6250	5.4127	2.6250	
65.000	÷ .	0.2451	2.3968	6.1191	2.3968	4.1
70.000	•	0.2057	2.2296	7.2925	2.2296	◄ (b)
75.000		0.1600	2.1101	9.3750	2.1101	
80.000		0.1094	2.0300	13.7053	2.0300	
85.000		0.0556	1.9838	26.9942	1.9838	

<u>For Prob. 1.32</u>: P = 2400 lb $a = 6 in., b = 3 in., \alpha = 40^{\circ}, C_{U} = 150 psi, C_{U} = 214 psi.$

ALPHA S	SIG(psi)	TAU(psi)	FSN	FSS	FS	
5.0000 10.0000 .0000 25.0000 30.0000 35.0000 40.0000 45.0000 55.0000 60.0000 65.0000 70.0000 75.0000 85.0000	66.6667 78.2432 89.4680 100.0000 109.5192 117.7363 124.4017 129.3128	65.6538 62.6462 57.7350 51.0696 42.8525 33.3333 22.8013	$148.1018 \\ 37.3089 \\ 16.7942 \\ 9.6172 \\ 6.2988 \\ 4.5000 \\ 3.4196 \\ 2.7228 \\ 2.2500 \\ 1.9171 \\ 1.6766 \\ 1.5000 \\ 1.3696 \\ 1.2740 \\ 1.2058 \\ 1.1600 \\ 1.1336 \\ \end{array}$	18.4857 9.3854 6.4200 4.9939 4.1904 3.7066 3.4160 3.2595 3.2100 3.2595 3.4160 3.7066 4.1904 4.9939 6.4200 9.3854 18.4857	18.4857 9.3854 6.4200 4.9939 4.1904 3.7066 3.4160 2.7228 2.2500 1.9171 1.6766 1.5000 1.3696 1.2740 1.2058 1.1600 1.1336	 (b) (c)

PROBLEM 1.C6

Top view

200 mm→|-180 mm→|12 mm

 $8 \,\mathrm{mm}$

1.C6 Member *ABC* is supported by a pin and bracket at *A* and by two links which are pin-connected to the member at *B* and to a fixed support at *D*. (*a*) Write a computer program to calculate the allowable load P_{all} for any given values of (1) the diameter d_1 of the pin at *A*, (2) the common diameter d_2 of the pins at *B* and *D*, (3) the ultimate normal stress σ_U in each of the two links, (4) the ultimate shearing stress τ_U in each of the three pins, (5) the desired overall factor of safety *F.S.* Your program should also indicate which of the following three stresses is critical: the normal stress in the links, the shearing stress in the pin at *A* or the shearing stress in the pins at *B* and *D*. (*b* and *c*) Check your program by using the data of Probs. 1.49 and 1.50, respectively, and comparing the answers obtained for P_{all} with those given in the text. (*d*) Use your program to determine the allowable load P_{all} , as well as which of the stresses is critical, when $d_1 = d_2 = 15$ mm, $\sigma_U = 110$ MPa for aluminum links, $\tau_U = 100$ MPa for steel pins, and *F.S.* = 3.2.

