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DETERMINISTIC IMPULSE CONTROL PROBLEMS*

G. BARLESf

Abstract. We prove that the optimal cost function of a deterministic impulse control problem is the
unique viscosity solution of a first-order Hamilton-Jacobi quasi-variational inequality in
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Hamilton-Jacobi equations, quasi-variational inequality

Introduction. Impulse control problems lead, via the dynamic programming prin-
ciple, to the study of various kinds of quasi-variational inequalities (see for more
details and for many examples A. Bensoussan and J. L. Lions [3]).

In this work, we are interested in deterministic impulse control in RN. More
precisely, our main result states that the optimal cost function of a deterministic impulse
control problem is the unique viscosity solution of a first-order Hamilton-Jacobi
quasi-variational inequality in N of a particular form:

max(H(x,u, Du),u-Mu)=O in,(P)

where

H(x, t, p)= sup (b(x, v). p+ht-f(x, v)),

Mq(x)= inf (q(x+)+c(:));

V is a separable metric space, b and f are functions from V into , c is a
continuous positive function, A > 0 (precise assumptions are detailed in 2). Let us
just mention that the state of the controlled system is given by the solution Yx(t) of
the following problem"

dyx(t)+b(yx( t),v( t)) O, ]0,, O,+l[,
dt

yx(O)=x,

y( 0 -l-O) Yc( O, -0) + ,,
where 0 (0i)i is a nondecreasing sequence of positive reals which satisfies:
when n--> +o and (:i)u is a sequence of elements of (+).

Finally, v(t) is any measurable function which states its values in a compact subset
of V. Finally, K (0, sc, v(. )) is the control The optimal cost function u is given by"

u(x)=inf f(y(t), v(t)) e-’ dr+ c(i)c-",

We first recall below the definition and main properties of the notion of viscosity
solutions for problems like (P). These results are easy extensions of those obtained
by M. G. Crandall and P. L. Lions [6], M. G. Crandall, L. C. Evans and P. L. Lions
[5] and P. L. Lions [10] for first-order Hamilton-Jacobi equations. Let us just mention
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that the form of M creates some difficulties for stability results (see for more details
G. Barles ]).

In 2, we introduce the deterministic impulse control problem and we prove
various results concerning the optimal cost function u which are similar to those
obtained in the classical deterministic case (see P. L. Lions [10]). An essential tool is
the dynamic programming principle (we give two forms of this result). We indicate
some properties of u (its regularity, its behavior at infinity, the fact that u is the
maximal subsolution of the Q..I. in the distribution sense). Finally, we show that u
is a viscosity solution of (P).

In the last section, we prove that problem (P) has a unique viscosity solution. In
this context, the particular form of H and the well-known results of optimal stopping
time problems enable us to adapt a proof due to B. Hanouzet and J. L. Joly [9] for
the elliptic Q.V.I.

The methods we use combine elements from the deterministic control (see P. L.
Lions [10]), from the first-order Hamilton-Jacobi equations (especially the methods
due to the notion of viscosity solutions--see M. G. Crandall, L. C. Evans and P. L.
Lions [5], M. G. Crandall and P. L. Lions [6] or P. L. Lions [10]) and from the theory
of elliptic Q.V.I. (see A. Bensoussan and J. L. Lions [3]).

1. Viscosity solutions for first-order Hamilton-Jacobi quasi-variational
inequalities. We just want to recall the main equivalent definitions and to mention the
most important properties of the viscosity solutions of first-order Hamilton-Jacobi
quasi-variational inequalities, without proofs. More details and complete proofs can
be found in G. Barles 1]. The notion of viscosity solutions of first-order Hamilton-
Jacobi equations was introduced by M. (3. Crandall and P. L. Lions 6] and all the
results mentioned below are straightforward extensions of those obtained by M. (3.

Crandall and P. L. Lions [6], M. (3. Crandall, L. C. Evans and P. L. Lions [5] of
P. L. Lions [10].

1.1. Main definitions. We denote by BUC (RN), the space of bounded and uni-
formly continuous functions on RN.

We recall the following notions of sub- and superdifferential of continuous func-
tions considered in [5] and [6]. Let p C(N).

DEFINITION 1.1. (i) The superditterential of p at Xo, denoted by D+p(Xo),
is the set (possibly empty) defined by

(1) D+o(Xo) {p N, lim sup
(x) (X) (PlX X) <-- O}.[X-Xol

(ii) The subditterential of o at XoeN N, denoted by D-o(Xo), is the set given by
D-o(Xo) =-D/(-)(Xo), i.e.,

(2) D-q(Xo) {p RN, lim,_,,oinf
, (Xo)- (t, lx Xo)

>_ o],.

Remark 1.1. For x N, D+o(x) (resp. D-p(x)) is a closed convex set in N.
Remark 1.2. The notion of subdifferential considered in [6] has been introduced

independently for different purposes, by E. de Giorgi, A. Marino and M. Tosques [7]
and A. Marino and M. Tosques [12].

DEFINITION 1.2. U BUC (N) said to be a viscosity solution of the problem (P)
if we have:

(3) VyeN, VpD+u(y), max(H(y, u(y),p), u-Mu)<=O,
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(4) Vy N, Vp D-u(y), max (H(y, u(y), p), u Mu) >- O.

Let us give another equivalent definition which is more practical in particular to
show uniqueness results.

PROPOSrrION 1.1. U BUC (N) is a viscosity solution of the problem (P) if and
only if the two following properties hold:

Vth CI(N), at each local maximum point Xo of u-49, we have
(5)

max (H(xo, U(Xo), Drb(Xo)), U(Xo)- Mu(xo)) <=0;

(6)
Vb C(IIv), at each local minimum point Xo of u 49, we have

max (H(xo, U(Xo), D4)(Xo)), U(Xo)- Mu(xo))>-O.

Remark 1.3. The proof is exactly the same as for first-order Hamilton-Jacobi
equations; we just have to consider the Hamiltonian:

H(x, t,p) max (H(x, t,p), t-Mu(x)).

The two definitions mean that u is a viscosity solution of the obstacle problem,
with the implicit obstacle Mu. The following proposition shows how we can use the
particular form of M.

PROPOSITION 1.2. u BUC ([s) is a viscosity solution of the problem (P) if and
only if the two following properties hold" for all q clb(N)"

(7)
at each global maximum point Xo of u- q, we have

max (H(xo, U(Xo), Dq(Xo)), q(Xo)-Mq(Xo))-< 0;

(8)
at each global minimum point Xo of u- , we have

max (H(xo, U(Xo), Dq(Xo)), q(Xo)-Mq(Xo))>=0.

Remark 1.4. This proposition can be extended to more general operators M. It
suffices that M is nondecreasing and that M satisfies

Vb BUC (u), Vc , M(4)+c)=M(rk)+c.

1.2. Main properties of viscosity solutions of problem (P). Most of the properties
of the viscosity solutions of first-order Hamilton-Jacobi equations are still valid for
the viscosity solutions of the problem (P). It is an easy consequence of Remark 1.3.
Only the stability results need to be considered because of the nonlocal form of M.
So, we give a stability result.

PROPOSITION 1.3. Assume that ue is a viscosity solution of
max (He(x,ue,Due),ue-Mue)=O inN

and that He converges to H uniformly on compact subsets of N X X N and u converges
to u BUC (NN) uniformly on compact subsets of when e goes to zero, with the
following condition"

(9)

Then u is a viscosity solution of the problem (P).
Remark 1.5. With the same assumptions, the result is also valid for the vanishing

viscosity method.
Remark 1.6. The condition (9) is quite optimal. One can find in G. Barles [1] a

count,,rexample of the statement in Proposition 1.3 in the case when (9) is not satisfied.
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More details and complete proofs can be found in G. Barles [1]; the proof of this
result being essentially routine adaptations of M. G. Crandall and P. L. Lions [6].

2. The determiaistic imlulse caatrol lrolflem. Our purpose is to show that the
optimal cost function of a deterministic impulse control problem is always a viscosity
solution of a problem (P).

We also give regularity results and results concerning the behavior at infinity for
this optimal cost function. All these results are analogous to those obtained in the
classical deterministic control problem (see P. L. Lions [10]). These are obtained
essentially by using the dynamic programming principle.

2.1. Settiag af the lrolflem. Through all this section, 0 =(0i)i will be a non-
decreasing sequence of positive reals satisfying:

(10) 0n +oo when n

and se= (:i)i will be a sequence of elements of (R+).
Letting V be a separable metric space, we consider the functions bi(1 <-i<= N)

and f satisfying:

e c(xV),
(11)

Vv e v (., v) e w,(’) and sup

where (0 b, _-< _-< N), f.
Finally, v(.) will be measurable function which takes its value in a compact

subset of V. Then the collection K (0, sc, v(. )) will be called the control
Next, we consider a system whose state is given by the solution y,(t) of the

following problem:
dyx(t)+b(yx(t), v(t)) 0 for ]0,, 0,+[ for all N,

dt

(12) yx(O)=x,

yx( O, +O) yx( O,-O) + ,.
The assumptions (11) imply the existence and the uniqueness of a solution yx(t) of (12).

Then we define the cost function (or pay-off function) for each control K:

(13) J(x, K)= f(yx(t), v(t)) e-x’ dr+ Y c() e-,,
where h > 0 and c is a continuous function from (R+)r into R which satisfies

c=k+co wherek>0,

(14) Co(:l + se2) <-- Co(sol)+ Co(se2) for all :1:2 e (+)
Co(0)=0, c(s)_-<c(:2) if(2-,)e(+).

The problem to solve is to minimize the cost function over all controls K, that is
to find for all x e:
(15) u(x) inrf (J(x, K)).

2.2. Dynamic lrogramming lrineilfle. The dynamic programming principle is the
essential tool to obtain the solution of our problem. We shall give two forms of this
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result; the first shows that u is the solution of an optimal stopping time problem, the
second being more classical.

Remark 2.1. In the introduction of this part, we took 0o _-< 01""-<-0,-<-" in
fact the assumption (14) implies that we may assume without loss of generality:
0o<0’’’<0,,<’’’in(15).

THEOREM 2.1. Under assumptions (11), (14), we have

(16) u(x) inf
(v(-),Oo)

v(t)) e-t dt+ Mu(y,(Oo-O)) e-).
Remark 2.2. The formula (16) means that u is the solution of an optimal stopping

time problem as should be expected (for optimal stopping time problems, see for
instance A. Bensoussan and J. L. Lions [3]). Remark also that if we take 0o 0, we
have: u(x) <- Mu(x).

THEOREM 2.2. Under assumptions (11), (14) we have

(I T )(17) u(x)=inrf f(yx(t), v(t)) e-x’dt+ E c(i) e-X’+e-XrU(yx(T-O))
0 O<T

Remark 2.3. These two results are easy adaptations of classical results and we
just recall briefly the ideas of their proofs (cf. also [10]).

Proof of Theorem 2.1. We call t(x) the right-hand side of (16).
Step 1. u(x) <- a(x).

u(x) <-- f(yx(t), v(t)) e-x’ at+ E c(:,) e-x,.

Then

u(x)= Iogf(yx(t), v(t)) e-x’ dt

+e f(y(t+Oo),v(t+Oo))e-"’dt+ c(i)e-"(,-o+c(o)

Taking the infimum in the bracket, we obtain easily

v(t)) dt+e-o[u(y(Oo 0)+sro)+C(sro)].u(x)<= e-’

As the left-hand side does not depend on K, we conclude easily by taking the infimum
in the right-hand side.

Step 2. (x) <- u(x). Let e > 0; we choose K such that u(x) + e >-_ J(x, K), where
K (0, st, v). The same computation yields

v(t)) dt+e-Xo[u(y(Oo O)+:o)+C(:o)].u(x)+e>= e-h’

Then

u(x)+e>-_a(x).

Since e is arbitrary,, we conclude easily.
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Proof of Theorem 2.2. The proof is essentially the same as the proof of Theorem
2.1. We just take T instead of 0o. In fact, we obtain

u(x) inf f(yx(t), v(t)) e-xt dt + 2 c(i) e-a’
Oi<T

+ e-xT min (U(yx(T-O)), Mu(yx( T- 0)))).
The result is then given by the inequality u(x) Mu(x) in .

2.3. Properties of u. First, we give a result concerning the regularity of u" let

o=sup(_(x-x"b(x,v)-b(x’,v)))x, Ix-x’l
vV

PoeosIIO 2.1. Under assumptions (11), (14), we have" u BUC (N). More
precisely, we have"

if0<h<Ao, uC’(s) with=A/Ao;
ifA=Ao, uC,(S)forall[O,l[;
if x > ;, w,(a).

Proof of Proposition 2.1. The proof is exactly the same as in the standard
deterministic case (see P. L. Lions [10]).

We use (17) to obtain

u(x)-u(x’)sup If((), v( )) -f(,( ), v(t))l e-’ d+2 e-rlull(
K

(Recall that
For a given control K, we have (see [10])"

lye(t) y,(t)l e’lx x’l.
So we use (11) to obtain

u(x)-u(x’)<_ Ceao-*)’lx-x’ dt+2llullLoo<N) e-
4-where C SUpvv IIf(’, v)ll,,. If A > Ao, we let T--> oo.

In the other case, we may assume Ix-x’l < and we choose T such that e-xoT=
Ix-x’[. Then one concludes easily.

Now, we can show the relation between the deterministic impulsive control and
the first-order Hamilton-Jacobi quasi-variational inequalities.

THEOREM 2.3. Under assumptions (11), (14) and if u is differentiable at x, we have

(18) max (sup (b(x, v). Du(x)+ Au-f(x, v)), u(x)- Mu(x)
\ vV /

Remark 2.4. We shall use the notation

(19) H(x, t, p) sup (b(x, v)p+ At-f(x, v)).
V

By the well-known Rademacher theorem, we have the following corollary"
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/ then u WI’(N)COROLLARY 2.1. Under assumptions (11), (14) and ifA> Ao,
and satisfies

(20) max(sup(b(x,v)Du+Au-f(x,v)),u-Mu)=O,,v a’e’inIRN"

ProofofTheorem 2.3. It is again a more or less standard proof (see P. L. Lions 10]).
Step 1. max (H(x, u(x), Du(x)), u(x)-Mu(x))<=0. We take the particular con-

trol v(t) v V and 0o +c. For all T, we have by the dynamic programming principle

u(x) <= f(y),( t), v( t)) e-xt dt + e-XTu(y,( T)).

Dividing by T and letting T 0, we obtain the result as in [10]:

H(x, u(x), Du(x)) <=0.

As we know that u(x)<= Mu(x), the proof of the first step is complete.
Step 2. max (H(x, u(x),Du(x)), u(x)-Mu(x))>=O. If u(x)= Mu(x), we have

nothing to show.
If u(x) < Mu(x), we must prove that H(x, u(x), Du(x)) >= O. We need the following

lemma:
LEMMA 2.1. Let x N such that u(x) < Mu(x). Then there exists e > 0 such that

u(x) in/of f(Yx(t), v(t)) e -xt dt + ., c(i) e-x’

0o

Proof of Lemma 2.1. Let K" (0", sc", v ") a sequence such that

J(x, l")-, u(x).

We denote by x(n) J(x, K")- u(x),

u(x)+x(n)= f(y,(t), v"(t)) e-at dt+ Z c(7) e-a7.

By the same computation as in the proof of Theorem 2.1, we obtain

o,f(y (t) v"u(x)+x(n)>= 7, (t)) e-’dt+e-gMu(yT(-O)).
o

Since ly,(o,-O)-xl<= Ilbll(vO,, if there exists a subsequence 0’ which
converges to 0, we deduce easily that

u(x)Mu(x).

(Recall that Mu BUC () because u BUC (), so Mu is continuous at x.) So
we obtain a contradiction which proves the lemma.

Using Lemma 2.1 and (17) with T< e, we obtain:

vr<e u(x)=inf f(y(t) v(t))e-’dt+e-"rU(yx(T))
v(.)

y is defined by (12) with 0o e.
We conclude as in the standard case of continuous control only (see [10]).
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THEOREM 2.4. Under assumptions (11), (14) and h>0, uC’(RN)f’lL(Rv)
for some a ]0, 1] and satisfies:

u(x)<-_Mu(x),
(21)

Ylv V b(x, v)Du+Au-f(x, v)<-O inD’().
In addition, if w BUC (N) and satisfies:

w <-_ Mw,
(22)

YIv V b(x, v)Dw+Aw-f(x, v)<-O in D’(u),
then w <- u.

Remark 2.5. The last property means that u is the maximum subsolution of (P)
in D’(rv) (for related results see P. L. Lions [10], R. Gonzalez and E. Rofman [8] or
P. L. Lions and J. L. Menaldi [11]).

ProofofTheorem 2.4. We choose the particular control 0o +m, v(t) -= v V. Then

lt>-O l(u(x)-u(yx(t)) e-at)<-- 7, f(yx(t) v) e-’ dt.

We conclude in the same way as in P. L. Lions [10].
Remark 2.6. For the second part, in order to be clear we use the following remark.

We can consider in the definition of u only the case of a finite number of impulses
(i.e. a finite number of 0 or 0.+, +00).

Then

(ioinf f(y,,(t) v(t)) e-"t dt+ , c(i) eu(x)=o..o.. ,=,

LEMMA 2.2. Under the assumptions of Theorem 2.4, if w eL(Rv)O cm(Rtv)
satisfies

w(x)<=Mw(x),
(23)

Vv V, b(x, v)Dw(x)+Aw(x)<-f(x, v)+ ina

for >-0, then w<-_u+6/A.
Proof of Lemma 2.2. Let 0=(0,..., 0,),:=(:t,...,:), v(t) a control. We

assume that 0o> 0 Then, since we C():
Yli W(yx(O,+O)) e-X’-w(y,,(O,+t-O)) e

f ’+I
{Ow(yx(s))b(yx(s), v(s))+Aw(yx(s))} e"as as,

I0w(x)- w(yx(Oo-O)) e-a= {Dw(yx(s))b(yx(S), o(s))+ AW(yx(S))} e-as as.

Since Dw b + Aw <=f+ 6, we obtain

w(x)-w(y,,( T)) e-"r<= f(yx(s), v(s)) e-"Sds

+ e-"’(w(yx(O,-O))-w(yx(O,+O)))+ 6e-Xds.
i=t

But yx(O,+O)=y,,(O,-O)+ and from (23)

w(yx O, o) w(yx O, +0)) _<- c(,).
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Therefore, we finally obtain

w(x) w(yx( T)) e-at< f(yx(s), v(s)) e +o

Letting T c, we have the result (because w is bounded).
In order to prove the theorem, it is enough to build we C(RN) L(), which

converges uniformly to w in s and such that:

Vv V b(x, v)Dw(x)+Aw(x)f(x, v)+(e),
(4)

w(x)Mw,(x)

where (e)0, as e0+.
Let p D+(), supp p Bl, ja p(x) dx and let p defined by:

It is well known that w=w.p=I,w(y)p(x-y)dyC(N)GL(N), con-
verges uniformly to w (actually IIw-
Moreover w satisfies the first inequality in (24) (s P. L. Lions [10]).

To conclude, we just have to prove wMw. Since w(x)k+co()+w(x+{)
and p 0:

(x)

Then, w Mw and the proof is complete.
Let us finally give a result concerning the behavior of u at infinity.
PROPOSITION 2.2. Under assumptions (11 ), (14) and if we assume

(25)

and

(26)

then

(27)

f(x, v) - if Ix]- +o uniformly with respect to v,

u(x)- 1/ if lxl- +.
Remark 2.7. The boundedness of u implies that in the definition of u we can

impose the following additional condition on the control:

VT>0 E c(sC,) -<ce+xr.
0i<_ T

But from assumption (14), we have

C( i) c(i) C e+xT
Oi T 0 T

Then, from (25), we obtain

(28) ., <=C(T).
0<= T

ProofofProposition 2.2. Let e > 0. We want to show that for Ix[ large enough, we
have:
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Since f is bounded, we can choose T independent of x and of all controls (0, , v)
such that

(29) f(yx(s)" v(s)) e-s ds <-_-
r 4

Now we fix T with the property (29) and such that

(30) l" e-’s ds <--
r 4

We use the following inequalities:

) (Ioinf f(yx(t), v(t)) e-’ dt <= u(x) <= inf f(y,,(t), v(t)) e-’ dt
KI K2

where K {K (v, 0, sc) such that satisfies (28)} and K2 {K (v, 0, sc)/0o +}.
Then, from (29) and (30),

--+ inf [f(y (t), v(t)) l] e-’ dt
2

(31)

_-<u(x)-_-<-+inf [/(y(t), v( t)) l] e-" dt
K

Considering Remark 2.7, we have for all K e K and for all x e N:
O<-t<= r, [y(t)-xl<-IlbllooT+C(T),

and then

lYx(t)l -> Ix[- [[b I[T- C(T).

So, for Ixl large enough, we have If(y,(t), v(t))-ll<=eA/2 for t[0, T]. Finally:

Io(32) If(yx(t), v(t))-ll e-’ dt<-- for all K e K, and g e K;

(31) and (32) give the result.
Remark 2.8. The result of Proposition 2.2 is false without (25). Take in R: b--0,

0 < A < 1, c k < f if Ixl ->- 2, 0 if Ixl <- and 0 <=f-<_ if Ixl [, 2]. Then u k if
X-->

2.4. The viscosity formulation of the dynamic programming principle.
THEOREM 2.5. Let u be the optimal costfunction defined by (15). Under assumptions

(11), (14), then u BUC (RN) is a viscosity solution of
(33) max (H(x, u, Du), u- Mu) =0 in .

Proof of Theorem 2.5. The proof is inspired from the corresponding one in P. L.
Lions 10].

Let b CI(IN) and Xo a local maximum point of u- b. We fix a control K such
that v(t) v V and 0o +. Then for all T > 0 we have

U(Xo) <- f(y( t), v) e -at dt + u(yo( T)) e-hr.

If T is small enough we have u(yo(T))<=4(yo(T))+(U(Xo)-Cb(Xo) because
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lYo(t)-Xol <- Ct. So we obtain easily

U(Xo)
e-aT)

--< f(Yo( t), v) e -at dt + e-at
[b(Y"(T)) @ (Xo)]

T T T

Letting T 0, we obtain

Vv V b(xo, v)D@(xo)+AU(Xo)-f(xo, v)O,

which ends the first pa of the proof.
Let C() and Xo a local minimum of u-; then two cases are possible.
Case 1. U(Xo)= Mu(xo) and there is nothing to prove.
Case 2. U(Xo) < Mu(xo). We use Lemma 2.1 to claim, for 0 < T < e,

u(xo) inf f(Yx(t), v(t)) e- dt + u(y(r)) e-r
v(.)
Oo T

By assumption for T small enough u(y,,o(T)) >= 49(Y,,o(T))+(U(Xo) 4(Xo)). So we have

>- inf f(Y,,o( t), v( t)) e-x’ dt + e-aT
[(Yo(T)) (Xo)]

T .) T

But

and

]f(Yo( t), to(t)) f(xo, v( t)) <-_ Clyo( t) Xol t

49(y,,o( T))- (Xo) b(yo(S) v(s))Dd(y,c(s)) as,

Ib(y,(s), v(s))D4)(y,,(s))-b(xo, v(s))D(xo)]--C(s),

where C(s) 0 if s 0/, using the fact that b is Lipschitz and D4 continuous at Xo.
We deduce easily:

_>- inf (f(xo, v(t)) b(xo, v( t))Dqb(Xo)) dt e(T)
T .

where e (T) - 0 when T- O.
Now we remark that:

(f(xo, v(t))-b(xo, v(t))D4)(Xo)) dt>--vinf (f(xo, v)-b(xo, v)D(xo)).

Letting To 0, we obtain the result

sup (b(xo, v)D4)(Xo)+AU(Xo)-f(xo, v))>-O.

Remark 2.9. We have shown that u is a viscosity solution of the problem (P). In
fact, this result will be completely satisfactory if we prove a uniqueness result for
viscosity solutions of (33). This is the goal of the third part.

3. A uniqueness result for viscosity solutions of quasi-variational inequality (33).
THEOREM 3.1. Under assumptions 11 ), (14) and A > O, there exists a unique viscosity

solution of the problem (33) in BUC (v).
Remark 3.1. The idea of the proof consists in adapting the method due to B.

Hanouzet and J. L. Joly [9] for elliptic Q.V.I. (see also A. Bensoussan [2] or A.
Bensoussan and J. L. Lions [4]).
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Remark 3.2. The proofuses in an essential way results concerning optimal stopping
time problems (in the deterministic case) that we give briefly in the following proposi-
tion. For more details and complete proof of this result, see P. L. Lions [10], A.
Bensoussan and J. L. Lions [3] or the part II which gives all the ideas necessary to
the proof.

Let us define the optimal stopping time problem

dYx(t)+b(yx(t) v(t))=0 forall t->0,
dr"

(34)
yx(O)=x,

(35) J(x, v, O)= f(yx( t), v( t)) e-x’ at + O(yx(O)) e-x,

(36) u(x) inf J(x, v, 0).
(v,o)

Now we have the following result:
POPOSTIO 3.1. Under assumptions (11) and A > O, and if g/ BUC (), then

u given by (36) is the unique viscosity solution in BUC (v) of
(37) max (H(x, u, Du), u- ) =0.

In addition, if q W’() and A > A+ then u W’(v)O

Proofof Theorem 3.1. Without loss of generality, we can assume that f->_ 0 (if this
is not the case, we add constants to u and f).

We define the operator T, for w BUC (v), by:

(38) Tw(x) inf f(y(t) v(t)) e-’ dt + M(y(O)) e-"
(v,O)

where Yx is defined by (34).
We need the two following lemmas:
LEMMA 3.1. Tmaps BUC (v) into BUC (v), is increasing and concave. Further-

more, Tw is the unique viscosity solution in BUC (v) of
(39) max(H(x,z, Dz),z-Mw)=O in

LEMA 3.2. Let Uo defined by

uo(x) inf f(Yx( t), v( t)) e-’ dt
v(.)

with Yx defined by (34).
Let tz > 0 be such that u011 < k and ix < 1. Let z and two positivefunctions

of BUC () satisfying

(40) z <= yz for one 3’ [0, ].

Then

(41) Tz T. <= ),(1-tx)Tz.

Remark 3.3. The formulation of Lemma 3.2 is very much akin to the lemma due
to B. Hanouzet and J. L. Joly [9] used in elliptic Q.V.I.

Remark 3.4. Let us just recall that Uo defined in Lemma 3.2 is the unique viscosity
solution in BUC (rv) of: H(x, u, Du)=0 in Rv (cf. P. L. Lions [10]).
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Moreover, by uniqueness result in N (see M. G. Crandall and P. L. Lions [6] or
P. L. Lions [10]) or directly, we have Tw <-Uo for all w e BUC (N). (This inequality
can be obtained by (38).)

We first show the theorem using the two lemmas.
If we consider two viscosity solutions u and v of (33), we can assume that they

are positive: it suffices to add max (llulloo, [[v[[oo) to u and v and so f is changed in

f+ a max
Besides, by Lemma 3.1, u and v are fixed points of T. (It is a consequence of the

uniqueness for the obstacle problem in BUC (R) for Mu and My).
To conclude, we just have to use the Lemma 3.2" since v_>-0, u-v <_-u, then:

Tu Tv <- (1-1 )u,

but u Tu and v Tv; we obtain by induction

Vn e U V -<- (1-- tz u.

Since u is bounded, letting n - o, we have u <_- v. Changing u and v, we have the result.
Next, we prove the two lemmas.
Proof of Lemma 3.1. T maps BUC () in BUC () is an easy consequence of

the Proposition 3.1 because M maps BUC () in BUC (n). The fact that T is
increasing is obvious. Let us prove the concavity.

Let w and w2 BUC () and/ [0, 1].

inf f(Yx( t), v( t)) e-at atT(txwt +(1-tz)w2)(x)=(o(.),o)
+ e-aM(lzw + (1 -/x) w2)(yx(0))).

But M is concave:

Then

T(txw + (1 -/x)w2)(x) >_- inf f(Yx(t) v(t)) e-At dt
(v(.),o)

+ e-aM(txMWl(yx(0)) + tx)Mw2)(yx(0))).
We conclude easily using that:

v(t)) e-a’ dt+e-a(MWl(yx(O))+(1-1x)Mw2(Yx(O)))

tz f(yx( t), v(t)) e-at dt + e-aMWl(Yx( O))

+(1-/x) f(y,,(t), v(t)) e-h’ dt+ Mw2(Yx(O))

T(tzw+(1-tz)w2)>=lxTw+(1-tx)Tw, T is conca,,e.

Finally, we prove that Tw is the unique viscosity solution of (39) in BUC (N). In
fact, it is an easy consequence of uniqueness results for first-order Hamilton-Jacobi
equations in . It suffices to consider the Hamiltonian

H(x, t, p) max (H(x, t, p), t- Mw(x))

(see M. G. Crandall and P. L. Lions [6] or P. L. Lions [10]). This ends the proof of
Lemma 3.1].
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Proof of Lemma 3.2. According to the monotonicity of T, (38) implies that

T3>-_ T((1- ),)z).

Using the concavity gives T3->_ 3/) Tz + 3,T(O).
We first prove that/xu0<= T(0):

(I0T(0)(x)= inf f(y(t), v(t)) e-dt+ke-(v(.),o)

Now we use that k>-iXuo(y,,(O)) and that txf<-f (f->0):

T(O)(x) >-_ inf If(y( t), v( t)) e- dt + iuo(y( O)) e-(v(.),o)

But, for all 0 > 0, using the dynamic programming principle for standard deter-
ministic control problems, we have

f(y(t, v( e-"’+Uo(yx(o e- >-,Uo(X.

This last inequality gives the result we need.
Now using Remark 3.4 gives uo_-> Tz. Then

ri>- ,) r+,r,
and we easily deduce the result:

rz r- ,( rz.
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