Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Viernes 19 de Junio de 2009

Auxiliar MA3801 Análisis 2009

Profesor: Rafael Correa

Profesores Auxiliares: Roberto Castillo, Omar Larré, Andrés Fielbaum

Problema 1

- 1. Sea G espacio de Banach, $B \subset G$. Supongamos que $\forall f \in G^*$, f(B) es acotado en \mathbb{R} . Luego B es acotado.
- 2. Sea E Banach. Si $(x_n)_{n\in\mathbb{N}}$ es tal que $x_n \to x$, entonces $||x_n||$ es acotado y $||x|| \le \lim\inf ||x_n||$.

Problema 2

Sea E e.v.n. de dimensión no finita, $S := \{x \in E : ||x|| = 1\}$. Se tiene que

$$\overline{S}^{\sigma(E,E^*)} = \{x \in E : ||x|| \le 1\}$$

Problema 3

Sea E Banach y $(x_n)_{n\in\mathbb{N}}$ en E tal que $x_n \rightharpoonup x$ en E.

- 1. Muestre que existe una sucesión $(y_n)_{n\in\mathbb{N}}$ en E tal que
 - $a) y_n \in conv\left(\bigcup_{i=n}^{\infty} \{x_i\}\right)$
 - $b) y_n \to x$
- 2. Muestre que existe una sucesión $(z_n)_{n\in\mathbb{N}}$ en E tal que
 - a) $z_n \in conv\left(\bigcup_{i=1}^n \{x_i\}\right)$
 - b) $z_n \to x$

Problema 4

Considere el espacio l^1 , y la sucesión $e_n = (0, 0, ..., 0, 1, 0, ...)$ donde el 1 esta en la posición n. Mostrar que $(e_n)_{n \in \mathbb{N}}$ es acotado en l^1 y no tiene subsucesiones convergentes en la topología débil. ¿Qué se puede deducir del espacio l^1 ?