Universidad de Chile

Facultad de Ciencias Físicas y Matemáticas

Departamento de Ingeniería Matemática

Guía para exámen MA3403

Profesor: Servet Martínez, Auxiliares: Gonzalo Contador, Francisco Unda.

Esta guía contiene problemas de la última materia vista en clases: distribuciones conjuntas y condicionales absolutamente contínuas, y estadística. Sin embargo, la materia a evaluar en el exámen será toda la materia vista en el curso.

P1. Sean X e Y variables aleatorias absolutamente contínuas. Se sabe que X sigue una distribución exponencial de parámetro 1, y que la densidad condicional de Y dado X está dada por $f_{Y|X}(y \mid x) = e^{x-y}$ para y > x, y 0 en caso contrario. Calcule:

```
a) f_{X|Y}(x \mid y).
b) \mathbb{E}(X \mid Y).
c) \mathbb{E}(Y)
```

P2. Sean X, Y, Z variables aleatorias con densidad conjunta dada por

$$f(x,y,z) = 2e^{-x-2y}$$

donde $x, y > 0, z \in [0, 1]$.

- a) Muestre que las 3 variables son independientes, y explicite su distribución.
- b) Calcule $\mathbb{P}(\frac{Y}{Z} > 1)$ y $\mathbb{E}(XYZ^2)$.
- **P3.** En un ascensor con capacidad para k personas, se suben en cada viaje un número de personas entre 1 y k de manera equiprobable. Cada persona se baja en uno de N pisos de manera equiprobable e independiente de los otros pasajeros. Considerando N > k, calcule el valor esperado de paradas realizadas por el ascensor en cada viaje. (Hint: condicione respecto a la cantidad de pasajeros y calcule las esperanzas condicionales asociadas)
- **P4.** Sea $\hat{\theta}$ el estimador de máxima verosimilitud de un parametro θ , y $g:\Omega\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ una función biyectiva y contínua. Muestre que $g(\hat{\theta})$ es el estimador de máxima verosimilitud de $g(\theta).(Nota: este resultado se conoce como propiedad de invarianza del estimador de máxima verosimilitud)$
- **P5.** Considere $X_1...X_n$ muestra aleatoria simple de $X \sim Uniforme(\theta, \theta + 1)$. Explicite, en función de los valores muestrales, el dominio donde la función de verosimilitud es distinta de cero. Imponga condiciones sobre los valores muestrales para que el estimador de máxima verosimilitud exista, y para que éste sea único.

- **P6.** Sea $X_1...X_n$ muestra aleatoria simple de $X \sim Uniforme(\mu, \sigma^2), \sigma > 0$.
- a) Si σ es conocido, muestre que $\sum X_i$ es un estadístico suficiente para μ . Calcule el estimador de máxima verosimilitud en este caso y muestre que es insesgado.
- b) Si μ es conocido, muestre que $\sum (X_i \mu)^2$ es un estadístico suficiente para σ^2 . Calcule el estimador de máxima verosimilitud en este caso y muestre que es insesgado. (Hint: puede serle útil calculaar un estimador para σ y utilizar el resultado de la P4)
- c) Calcule el estimador de máxima verosimilitud $\hat{\sigma^2}$ para σ^2 en el caso en que μ es desconocido. Muestre que en este caso $\hat{\sigma^2}$ es sesgado y que $\frac{n}{n-1}\hat{\sigma^2}$ es insesgado. Compare la varianza de ambos estimadores.
- **P7.** Considere $X \sim Normal(\mu, \sigma^2)$ y \overline{X} la media muestral obtenida a partir de una muestra de tamaño n. Muestre que el intervalo de confianza de nivel $1-\alpha$ de largo mínimo para el parámetro desconocido μ tiene la forma $I=[\overline{X}-\frac{z\sigma}{\sqrt{n}},\overline{X}+\frac{z\sigma}{\sqrt{n}}]$, donde z es tal que $\mathbb{P}(Y>z)=\frac{\alpha}{2}$ para $Y\sim Normal(0,1)$
- **P8.** Muestre que, si $\hat{\beta}$ es estimador insesgado de β obtenido con una muestra de tamaño n, entonces $\hat{\beta}$ es consistente si y solo si $\lim_{n\to\infty} \mathbb{V}ar(\hat{\beta}) = 0$. (Hint: Utilice las desigualdades de Tchebychev y Markov)