Clase Auxiliar : Cálculo en Varias Variables

Profesor: Michal Kowalczyk Auxiliares: Emilio Vilches - Gonzalo Mena

3 de junio de 2009

- **P1.** Sea $f: \mathbb{R}^3 \to \mathbb{R}$ definida por $f(x, y, z) = x \ln z + y^3 + x^2 + 4z^2 + 4y^2 4x + 5y + 10$. Demuestre que f no tiene ni un mínimo ni máximo global.
- **P2.** Sea $f: \mathbb{R}^3 \to \mathbb{R}$ definida por $f(x,y,z) = 3x^2 6x + 3y^2 6y 2xy + (z^2 1)^2$ a) Encuentre máximos y mínimos globales y puntos silla b) Determine si f posee máximos o mínimos globales Indicación: Demuestre que $||f|| \to \infty$ cuando $||x|| \to \infty$
- **P3.** Sea $f(x, y, z) = x^2 + y^2 + z^2$ y $M = \{(x, y, z): x + y + z = 1\}$, demostrar que f tiene un mínimo absoluto sobre M y encontrar el valor de éste.
- **P4.** Sean a, b, c > 0 demostrar

$$abc^3 \le 27 \left(\frac{a+b+c}{5}\right)^5$$

Indicación: Considere $f(x, y, z) = \ln x + \ln y + 3 \ln z$ sujeto a $x^2 + y^2 + z^2 = 5$ para x, y, z > 0.