Clase Auxiliar: Cálculo en Varias Variables

MICHAEL KOWALCZYC & EMILIO VILCHES

18 DE MARZO DE 2008

- **P1.** Sean $x, y \in \mathbb{R}^n$ probar que:
 - a) $|||x|| ||y||| \le ||x y||$.
 - b) $\|\frac{1}{2}(x+y)\|^2 \le \frac{1}{2}\|x\|^2 + \frac{1}{2}\|y\|^2$.
 - c) $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$ (Identidad del paralelogramo).
- P2. Demuestre las siguientes propiedades:
 - a) Si $A \subseteq B$ entonces $int(A) \subseteq int(B)$.
 - b) Si $A_1, A_2, ..., A_n$ son abiertos entonces $\bigcap_{i=1}^n A_i$ es abierto.
 - c) Si $\{A_i\}_{i\in I}$ es una familia de abiertos entonces $\bigcup_{i\in I} A_i$ es abierto.
- **P3.** Demuestre que el conjunto $S = \{y \in \mathbb{R}^N : ||x|| = 1\}$ es cerrado en \mathbb{R}^N .
- P4. Para los siguientes conjuntos, determine interior, adherencia y frontera.
 - a) $A = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 1, x^2 + y^2 < 1\}$
 - b) $B = \bigcup_{n \in \mathbb{N}} (n, n+1)$
 - c) $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = r^2, 0 < r < 1, r \in \mathbb{Q}\}$
 - $d) D = \left\{ \left(\frac{1}{k}, (-1)^k \right) \in \mathbb{R}^2 \mid k \in \mathbb{N} \right\}$
- **P5.** Sean $A, B \subseteq \mathbb{R}^N$ y $a \in \mathbb{R}^N$ se define

$$A + a = \{x + a \colon x \in A\} \quad A + B = \{x + y \colon x \in A, y \in B\}$$

- a) Pruebe que si A es abierto entonces A + a es abierto.
- b) Pruebe que si A es abierto entonces A + B es abierto.
- **P6.** Sea $f: \mathbb{R}^N \to \mathbb{R}$ continua, pruebe que para todo $\lambda \in \mathbb{R}$
 - a) $S_{\lambda} = \{x \in \mathbb{R}^N : f(x) \leq \lambda\}$ es un conjunto cerrado.
 - b) $S_{\lambda} = \{x \in \mathbb{R}^N : f(x) = \lambda\}$ es un conjunto cerrado.
 - c) $S_{\lambda} = \{x \in \mathbb{R}^N : f(x) < \lambda\}$ es un conjunto abierto.
- **P7.** Sea $F: \mathbb{R}^n \to \mathbb{R}^n$, donde \mathbb{R}^n está dotado de la norma euclidiana $\|\cdot\|$. Se dice que F es contractante si $\exists k \in \mathbb{R}$ tal que 0 < k < 1 y $\|F(x) F(y)\| \le k \|x y\| \ \forall x, y \in \mathbb{R}^n$. En lo que sigue F será una función contractante. Considere la sucesión definida por $x_{n+1} = F(x_n)$:
 - a) Demuestre que $||x_{n+1} x_n|| \le k^n ||x_1 x_0|| \ \forall n \in \mathbb{N}$.
 - b) Pruebe que $||x_{n+p} x_n|| \le \frac{k^n}{1-k} ||x_1 x_0|| \ \forall p \in \mathbb{N}$. Concluya que la sucesión $\{x_n\}_{n \in \mathbb{N}}$ es de Cauchy.
 - c) Demuestre que $\{x_n\}_{n\in\mathbb{N}}$ converge a un x^* tal que $F(x^*)=x^*$ (llamado Punto fijo de F).
 - d) Demuestre que x^* es único.