MA1101: Introducción al Algebra

Profesora: María Leonor Varas (Sección 3) Auxiliares: Sebastián Astroza & Andrés Zúñiga

Clase Auxiliar Extra N°4 28 de Mayo de 2009

- Considere el conjunto $\mathbb{Z}_{13} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ con la operación \cdot_{13} de multiplicación módulo 13. Sean $A_1 = \{1, 12\}$, $A_2 = \{1, 2, 4, 6, 8, 10, 12\}$, $A_3 = \{1, 5, 8, 12\}$. Señale cual de los conjuntos anteriores con la operación \cdot_{13} es un grupo y cual no lo es. Justifique claramente su respuesta.
- P2 Sea (G,*) un grupo y G' un subgrupo de G. Sea $f:G\to G$ un homomorfismo de grupos que satisface la propiedad: $f(G')\subseteq G'$. Se define el conjunto:

$$V = \{ g \in G / \exists n \in \mathbb{N}, f^n(g) \in G' \}$$

donde f^n es la composición de f con ella misma n veces y $f^0=id_G$. Probar que V es un subgrupo de G.

- P3 Considere el grupo abeliano (G, \bullet) . Para $k \in \mathbb{N}, k \geq 2$ se define $G^k = \{a^k / a \in G\}$ donde $a^k = a \bullet a \bullet a \bullet a \bullet \ldots \bullet a$ (k veces)
 - a) Demuestre que (G^k, \bullet) es subgrupo de (G, \bullet)
 - b) En $((\mathbb{Z}_{53}^*), \bullet_{53})$ determine el inverso de $[9]^2$ en que $\mathbb{Z}_{53}^* = \mathbb{Z}_{53} \{[0]\}$ y \bullet_{53} es el producto en \mathbb{Z}_{53}
- P4 Sea $f: \mathbb{R} \to \mathbb{R}$ una función que verifica para cada $x \in \mathbb{R}$ que $f \circ f(x) = x + 1$. Probar que f no es un morfismo de $(\mathbb{R}, +)$
- P5 Sea $S = \mathbb{R} \{-2\}$ y definamos la operación

$$a*b = 2a + 2b + ab + 2, \quad \forall a, b \in S$$

- a) Pruebe (S, +) es un grupo Abeliano.
- b) Sea $H = \{2^n 2 : \forall n \in \mathbb{Z}\}$. Muestre que (H, *) es un subgrupo de (S, *).
- c) Pruebe que existe $a \in S$ tal que $H = \{a^m : m \in \mathbb{Z}\}.$
- P6 Sea (G,\cdot) un grupo Abeliano de cardinalidad |G|=15. Definamos los conjuntos:

$$F = \{ q \in G : q^5 = 1 \}$$

$$H = \{ g \in G : g^3 = 1 \}$$

donde 1 es el neutro del grupo G.

- a) Pruebe que F y H son subgrupos de G.
- b) Pruebe que $F \cap H = \{1\}$.
- c) Pruebe que si F y H no son los subgrupos triviales, entonces |F|=5 y |H|=3. Pruebe además que:

$$\{f \cdot h : f \in F, h \in H\} = G$$

P7 Sea (G, \ominus) un grupo con neutro e tal que $|G| < +\infty$ (G es finito).

- I) Para cualquier $h \in G$ pruebe que $\lambda_h : \mathbb{N} \to G$ tal que $\lambda_h(n) = h^n$ no es inyectiva. Concluya que $\exists m > 0$ tq $h^m = e$.
- II) Sea $H \subseteq G, H \neq \emptyset$ tal que $\forall h, h' \in H \Rightarrow h \ominus h' \in H$.
 - a) Pruebe que si $h \in H$, entonces $h^{-1} \in H$.
 - b) Concluya que H es un subgrupo de G^1 . (Ver nota)
- P8 a) Sea (G, \otimes) un grupo abeliano y $H, K \subseteq G$ subgrupos de G. Sea $H \otimes K := \{h \otimes k/h \in H, k \in K\}$. Probar que $H \otimes K$ es un subgrupo de G.
 - b) Sea (G, *) un grupo tal que $(\forall g \in G)(\exists n \geq 1): g^n = \overbrace{g * g * g * g \dots * g}^{g + g + g \dots * g} = e_G$. Probar que el único homomorfismo $F: (G, *) \to (\mathbb{Z}, +)$ es la función constante $F \equiv 0^2$
 - c) Sea (G, >) un grupo que satisface la propiedad: $(\forall a \in G)$: $a > a = e_G$. Es decir el inverso de cada elemento del grupo, es el mismo elemento. Pruebe que (G, >) es un grupo abeliano.
- Dado (G, *) un grupo, H un subgrupo de G y $a, b \in G$. Se definen las traslaciones de H por a y por b como: $a * H := \{a * h/h \in H\}$ y $H * b := \{h * b/h \in H\}$. Pruebe que:
 - a) Si $c \in G$, entonces $c \in H \Leftrightarrow c * H = H$.
 - b) $\{x*H\}_{x\in G}$ es una partición de G. <u>Nota</u>: Para ello pruebe que $(a*H)\cap (b*H)\neq\emptyset\Rightarrow a*H=b*H$.
 - c) Se define los subgrupos <u>normales</u> de G, como aquellos que cumplen: $\forall a \in G : a * H = H * a$, donde H es subgrupo de G y se denota $H \triangleright G$. Demuestre que $\forall (G, *)$ grupo se tiene que $\{e_G\} \triangleright G$ y $G \triangleright G$. ¿Si G es un grupo abeliano, quienes son sus subgrupos normales?
 - d) Sea $\phi: G \to G$ un homomorfismo, y $\widehat{H} := \{a \in G/\phi(a) = e_G\}$ (es decir $\widehat{H} = Ker(\phi)$). Pruebe que \widehat{H} es un subgrupo de G y además $\widehat{H} \triangleright G$.
- P10 Sea (G, \star) un grupo, X un conjunto no vacío, se define una acción φ sobre X como una función $\varphi: G \times X \to X$ tal que: $\varphi(g, x) \in X$. Denotaremos $g \cdot x := \varphi(g, x)$. Supongamos que φ satisface:
 - a) $(\forall x \in X) e \cdot x = x$, e neutro de (G, \star) .
 - b) $(\forall x \in X)(\forall q, h \in G) : q \cdot (h \cdot x) = (q \star h) \cdot x$.

Dado $x_0 \in X$ definimos el estabilizador por φ de x_0 como $Est(x_0) := \{g \in G/g \cdot x_0 = x_0\}.$

- I) Pruebe que $Est(x_0)$ es un subgrupo e (G, \star) .
- II) Sean $x_0, y_0, g_0 \in G$ tales que $g_0 \cdot x_0 = y_0$. Demuestre que $Est(x_0) = \{g_0^{-1} \star h \star g_0/h \in Est(y_0)\}$. Con esto verifique que $\forall h \in G : Est(h \cdot x_0) = h \star Est(x_0) \star h^{-1}$.
- III) Sea $\mathbf{R}_{\mathbf{x}_0}$ la relación de equivalencia definida en G por: $g\mathbf{R}_{\mathbf{x}_0}h \Leftrightarrow g^{-1} \star h \in Est(x_0)$.
 - 1) Pruebe que $(\forall g, h \in G)$: $[g] = [h] \Rightarrow g \cdot x_0 = h \cdot x_0$. Considere la función $f: G/\mathbf{R}_{\mathbf{x}_0} \to X$, $f([g]) = g \cdot x_0$.
 - 2) Demuestre que f es inyectiva.
 - 3) Suponga que se verifica lo sg
te: $(\forall x, y \in X)(\exists g \in G): y = g \cdot x$. Pruebe finalmente que f es biyectiva.

 $^{^1}$ Con esto habrá demostrado que para grupos finitos, solo basta la cerradura de la operación \odot en H para asegurar que H es subgrupo de G.

²Es decir $F(g) = 0, \forall g \in G$.