MA1101: Introducción al Algebra

Profesora: María Leonor Varas (Sección 3) Auxiliares: Sebastián Astroza & Andrés Zúñiga

Clase Auxiliar Extra N°3 23 de Abril de 2009

- P1 Sean E_1 y E_2 dos conjuntos no vacíos y \mathcal{R}_1 y \mathcal{R}_2 relaciones de orden definidas en E_1 y E_2 respectivamente.
 - a) Demuestre que \mathcal{R} definida en $E_1 \times E_2$ por: $(x,y)\mathcal{R}(u,v) \Leftrightarrow [x\mathcal{R}_1u \wedge y\mathcal{R}_2v]$ es relación de orden en $E_1 \times E_2$
 - b) Si $|E_1| \ge 2$ y $|E_2| \ge 2$ y \mathcal{R}_1 , \mathcal{R}_2 son relaciones de orden total, pruebe que \mathcal{R} es sólo de orden parcial.
- P2 Sea \mathcal{Q} una relación en \mathbb{R} . Se define $\mathbb{R}^{\mathbb{N}} = \{f : \mathbb{N} \to \mathbb{R} : f \ es \ funcion\}$. Además se define en $\mathbb{R}^{\mathbb{N}}$ la relación \mathcal{R} como

$$f\mathcal{R}g \leftrightarrow \exists n \in \mathbb{N}, \ \forall \ k \in \{0,\dots,n\}, \ f(k)\mathcal{Q}g(k)$$

- a) Pruebe que $f\mathcal{R}g \Leftrightarrow f(0)\mathcal{Q}g(0)$
- b) Muestre que \mathcal{R} es relación de orden $\Leftrightarrow \mathcal{Q}$ es relación de orden.
- c) Pruebe que si \mathcal{Q} es una relación de equivalencia, entonces \mathcal{R} también lo es. Encuentre $\mathbb{R}^{\mathbb{N}}/\mathcal{R}$. Demuestre además que la función $\varphi: \mathbb{R}^{\mathbb{N}}/\mathcal{R} \to \mathbb{R}/\mathcal{Q}$ definida por $\varphi([f]_{\mathcal{R}}) = [f(0)]_{\mathcal{Q}}$ es inyectiva.

P3 a) Pruebe que:
$$\sum_{k=1}^{n-1} x^k = \frac{x - x^n}{1 - x} , \quad \forall n \ge 2, \quad x \ne 1$$

- b) Demuestre que: $\sum_{k=0}^{7} \left[(\sqrt{3})^{7-k} (\sqrt{2})^k \right] = 65(\sqrt{2} + \sqrt{3})$
- c) Sea $S = 1 + (1+b)q + (1+b+b^2)q^2 + \ldots + (1+b+\ldots+b^n)q^n$, donde $n \in \mathbb{N}$, $q, b \in \mathbb{R}$, $q, b \neq 1$. Escribir S como una expresión de dos sumatorias y calcúlela.

$$d) \ \ \text{Calcule} \qquad \sum_{k=1}^n \frac{k+2}{k(k+1)2^k} \quad \ \ \mathbf{y} \qquad \sum_{i=1}^{2n} (-1)^i \cdot i$$

- e) Demuestre que $\forall n \in \mathbb{N} \quad n \geq 3$ $\frac{3}{2} \frac{1}{n} + \frac{1}{n^2} < \sum_{k=1}^n \frac{1}{k^2}$
- P4 Pruebe que todo $n \in \mathbb{N}$, con $n \geq 2$, es un número primo o es producto de números primos.
- P5 Demuestre que $\forall n \geq 1, 3^{2n} 1$ es divisible por 8.
- $\fbox{P6}$ Sea E un conjunto no vacío y \preccurlyeq una relación de orden total. Se define:

$$\mathcal{P}_F(E) = \{ A \in \mathcal{P}(E) : A \ es \ finito \}$$

Pruebe que:

$$(\forall A \in \mathcal{P}_F(E))(\exists a^* \in A)(\forall a \in A) \ a^* \preceq a$$

P7 | Sea E un c
jto no vacío. Considere la relación sobre $\mathcal{P}(E)$ definida por:

$$ARB \Leftrightarrow \exists f: E \to E$$
, biyectiva y tal que $f(A) = B$.

- I) Pruebe que ${\mathcal R}$ es una relación de equivalencia.
- II) Pruebe que $[A]_{\mathcal{R}} = \{B \in \mathcal{P}(E) : |A| = |B|, |E \setminus B| = |E \setminus A|\}.$
- III) Sea $E = \mathbb{Z}$ y $P \subseteq \mathbb{Z}$ el conjunto de los números pares. ¿Es cierto que $(\mathbb{Z} \setminus \{0\})\mathcal{R}P$?
- P8 Sea un conjunto $E \neq \emptyset$. Sea además \mathcal{P} una relación refleja y transitiva definida sobre E. Se define una nueva relación \mathcal{R} sobre E dada por:

$$a\mathcal{R}b \Leftrightarrow a\mathcal{P}b \wedge b\mathcal{P}a$$
.

- a) Probar que \mathcal{R} es una relación de equivalencia.
- b) Sea $E/\mathcal{R} = \{[a]_{\mathcal{R}}/a \in E\}$ donde $[a]_{\mathcal{R}} = \{b \in E/a\mathcal{R}b\}.$
 - I) Probar que si $a' \in [a]_{\mathcal{R}} \land b' \in [b]_{\mathcal{R}}$ entonces $a\mathcal{P}b \Leftrightarrow a'\mathcal{P}b'$.
 - II) Se define la relación \mathcal{Q} sobre E/\mathcal{R} como: $[a]_{\mathcal{R}}\mathcal{Q}[b]_{\mathcal{R}} \Leftrightarrow a\mathcal{P}b$. Pruebe que \mathcal{Q} es rel. de orden sobre E/\mathcal{R} .
- P9 Sean X,Y conjuntos y $f: X \to Y$ una función. Sea \mathcal{R} una relación de equivalencia definida sobre Y. Se define en X la relación preimagen de \mathcal{R} que denotamos $f^{-1}(R)$ por:

$$xf^{-1}(R)\overline{x} \Leftrightarrow f(x)\mathcal{R}f(\overline{x}).$$

- I) Probar que $f^{-1}(R)$ es una relación de equivalencia en X.
- II) Probar que $[x]_{f^1(R)} = f^{-1}([f(x)]_R)$ para cada $x \in X$.
- P10 Definamos los conjuntos:

$$\mathcal{F} = \{ f : \mathbb{N} \to \mathbb{Z}, \text{ función tal que } \forall i \in \mathbb{N} : |f(i+1) - f(i)| = 1 \} \text{ y } \mathcal{F}_0 = \{ f \in \mathcal{F} : f(0) = 0 \}.$$

Se definen las relaciones \leq y \sim de la sigiente manera:

$$f \le g \Leftrightarrow (\forall i \in \mathbb{N}) \ f(i) \le g(i)$$

$$f \sim g \Leftrightarrow (\exists k \in \mathbb{Z})(\forall i \in \mathbb{N}) \ f(i) - g(i) = k$$

- a) Demuestre que \sim es una relación de equivalencia.
- b) Demuestre que $(\forall f \in \mathcal{F})(\exists g \in \mathcal{F}_0) \ f \sim g$.
- c) Demuestre que existe $h \in \mathcal{F}_0$ tal que $(\forall f \in \mathcal{F}_0)$: $h \leq f$.
- d) Sean $f, g \in \mathcal{F}_0$ arbitrarios. Demuestre que $(\forall i \in \mathbb{N})(\exists k \in \mathbb{Z}) : f(i) g(i) = 2k$.
- P11 | Sea \mathcal{R} una relación en $\mathbb{Z} \times \mathbb{Z}$ definida por

$$(a,b)\mathcal{R}(c,d) \Leftrightarrow a+b \equiv_2 c+3d.$$

- a) Pruebe que \mathcal{R} es rel. de equivalencia.
- b) Muestre que $[(0,0)]_R \cup [(1,0)]_R = \mathbb{Z}^2$ y que $[(0,0)]_R \cap [(1,0)]_R = \emptyset$.