MA1101: Introducción al Algebra

Profesora: María Leonor Varas (Sección 3) Auxiliares: Sebastián Astroza & Andrés Zúñiga

Clase Auxiliar Extra N°2 09 de Abril de 2009

P1 Sean $f: E \to F$ y $g: F \to E$ dos funciones tales que $g \circ f = id_E$. Probar que f es inyectiva y que g es sobreyectiva.

P2 $f: \mathbb{N} \to \mathbb{N} \text{ y } g: \mathbb{N} \to \mathbb{N} \text{ definidas en cada } n \in \mathbb{N} \text{ por } f(n) = 2n+1 \text{ y } g(n) = n^2+1.$

- I) Determinar si f y g son inyectivas, sobrevectivas o biyectivas.
- II) Obtener $f \circ g \vee g \circ f$
- III) Calcular $(g \circ f)(A)$ y $(f \circ g)^{-1}(A)$ donde $A = \{1, 2, 3, 4, 5\}$.

 $|\mathbf{P3}|$ Sea $f: E \to F$ una función.

- a) Discuta y justifique: $\forall A \subseteq F$, $f^{-1}(A^c) = (f^{-1}(A))^c$.
- b) Discuta y justifique: $\forall B \subseteq F$, $f(f^{-1}(B)) = B \cap f(E)$.
- c) Pruebe que: $\forall A \subseteq F, \ \forall B \subseteq F, \ f^{-1}(A\Delta B) = f^{-1}(A)\Delta f^{-1}(B)$.
- **P4** a) Sea $f: \mathbb{R} \to \mathbb{R}$ una función que verifica para cada $x \in \mathbb{R}$ que $f \circ f(x) = x + 1$. Probar que f es una función biyectiva.

Pruebe además que no es cierto que f(x+y) = f(x) + f(y), para cualquier par de reales $x \in y$.

- b) Sea $g: \mathbb{N} \to \mathbb{N}$ una función que verifica para cada $n \in \mathbb{N}$ que $g \circ g(n) = 2n$. ¿Qué podría decir sobre la biyectividad de g?
- c) Sea $h:A\to B$ una función. Pruebe que:

$$h \ inyectiva \Leftrightarrow \exists \xi : B \to A \ tal \ que \ \xi \circ h = id_A$$

- **P5** a) Sea \mathcal{F} el conjunto de las funciones de \mathbb{R} en \mathbb{R} . Se define $\varphi : \mathcal{F} \to \mathbb{R}$ como $\varphi(f) = f(0)$. Demuestre que φ es una función epiyectiva.
 - b) Sea $f: E \to F$ una función que satisface la propiedad

$$\forall A, B \subseteq E \ [A \subseteq B \land A \neq B] \Rightarrow f(A) \neq f(B)$$

Pruebe que f es inyectiva.

c) Sea $f: E \to F$ una función. Pruebe que:

$$f$$
 es biyectiva $\Leftrightarrow \forall (B \subseteq E) \ f^{-1}(B) = B$

- |P6| Sea $f: A \to B$, una función entre los conjuntos A y B, no necesariamente biyectiva.
 - a) Pruebe que si f es sobreyectiva, entonces para cada $Y \subseteq B$, se tiene que

$$f(f^{-1}(Y)) = Y$$

b) Definamos la función $\psi : \mathcal{P}(B) \to \mathcal{P}(A)$ tal que $\psi(Y) = f^{-1}(Y)$. Pruebe que ψ es inyectiva si y sólo sí f es sobreyectiva. **P7** Sea $f: \mathbb{Z} \to \mathbb{Z}$ una función con la propiedad siguiente: $f(n+m) = f(n) + f(m), \ \forall n, m \in \mathbb{Z}$.

- I) Probar que f(0) = 0.
- II) Probar que f(-m) = -f(m) para cada $m \in \mathbb{Z}$.
- III) Pruebe que f es inyectiva sí y solo si $f^{-1}(\{0\}) = \{0\}$.

$$f: A \subseteq \mathbb{R} \to B \subseteq \mathbb{R}$$

 $x \longmapsto f(x) = \sqrt{x^2 - 9}$

Determine el máximo conjunto A donde f es función y el conjunto B de modo que f sea biyectiva. Determine la función inversa de f.

b) Sean $f: \mathbb{Z} \to \mathbb{Z}$, $g: \mathbb{Z} \to \mathbb{Z}$ $y h: \mathbb{Z} \to \mathbb{Z}$ tres funciones definidas en cada $x \in \mathbb{Z}$ como:

$$f(x) = 1 - x$$
, $g(x) = -x - 1$ y $h(x) = x + 2$.

- I) Verificar que f, g y h son invertibles
- II) Probar que $h \circ g \circ f = g \circ f \circ h = id_{\mathbb{Z}}$.
- III) Deducir de (II) que $f^{-1} \circ g^{-1} = h$.
- c) Sea $A \subseteq \mathbb{R}, \ A \neq \emptyset, \ f: A \to \mathbb{R}$ la función tal que $f(x) = \frac{\sqrt{2}}{2}x^2 x$, en cada $x \in A$.
 - I) Demostrar que si $A \subseteq \mathbb{Q}$ entonces f es inyectiva.
 - II) Si $A = \mathbb{R}$ determinar f(A).
- **P9** Considere $A = \{1, ..., n\}$. Sea $B \subseteq A$, $B \neq A$, un subconjunto estricto de A. Definamos $G_B = \{f : A \to A/f \text{ es biyección y } f(i) = i, \forall i \in B\}$ el conjunto de todas las biyecciones que dejan invariante a B.
 - a) Pruebe que $G_B \neq \emptyset$.
 - b) Pruebe que si $f \in G_B$ y $g \in G_B$ entonces $g \circ f \in G_B$.
 - c) Pruebe que $f \in G_B$ entonces $f^{-1} \in G_B$.
- **P10** Sea E un conjunto fijo no vacío, y Ψ_A la función característica de A ($\forall A \subseteq E$). Definimos el conjunto de todas las funciones de E en $\{0,1\}$; esto es $\mathcal{F} = \{f : E \to \{0,1\}/f \text{ es función }\}$. Además se define la función λ por:

$$\lambda : \mathcal{P}(E) \longrightarrow \mathcal{F}$$

$$A \to \lambda(A) = \Psi_A.$$

Demuestre que λ es biyectiva.