UChile	Introducción al Álgebra	Mauricio Telias
FCFM	MA1101-1	Tomás Gonzalez
DIM	Otoño '09	Víctor Riquelme

Resolución de Problemas Aleatorios

Problema 1 Sea $p(x) = x^3 + ax^2 + bx + c$ un polinomio con coeficientes en \mathbb{R} . Sea r(x) el resto de la division de p(x) por (x-1). Si r(4) = 0 y x = i es raiz de p(x), calcule a, b, c.

Solucion

Por el teorema de la división sabemos que p(x) = q(x)D(x) + r(x), con D(x) = (x-1) el divisor y r(x) el resto, con gr(r) < gr(D) = 1. Asi, r(x) = r = cte (puede ser 0), por lo que p(x) = q(x)(x-1) + r. Ademas, como r(4) = 0, se tiene que r = 0, de donde nuestro polinomio queda

$$p(x) = q(x)(x-1)$$

El grado de q(x) es menor o igual a 2.

También sabemos que x = i es raiz de p(x) (por lo que tambien es raiz de q(x)), y ademas como p(x) es polinomio a coeficientes reales, x = -i tambien es raiz.

Nuestro polinomio entonces la forma

$$p(x) = (x-i)(x+i)(x-1)$$
$$= (x^2+1)(x-1)$$
$$= x^3 - x^2 + x - 1$$

Entonces, a = -1, b = 1, c = -1.

Problema 2 Sea $J_2 = \{p(x) \in \mathbb{R}[x] | gr(p) \leq 2, a_0 = 0, a_1 \neq 0\}$. En J_2 se define la l.c.i. \triangle a traves de $p(x) \triangle q(x) = \sum_{i=1}^{2} c_i x^i$, donde $p(q(x)) = \sum_{i=0}^{n} c_i x^i$.

- 1. Probar que (J_2, \triangle) es grupo no abeliano.
- 2. Sea $f: J_2 \to \mathbb{R}\setminus\{0\}$ tal que $f(a_1x + a_2x^2) = a_1$. Probar que f es morfismo sobreyectivo de (J_2, \triangle) en $(\mathbb{R}\setminus\{0\}, \cdot)$.
- 3. Sea $H = \{p(x) \in J_2 | a_1 = 1\}$. Probar que (H, \triangle) es subgrupo abeliano de (J_2, \triangle) .

Solucion

(a) Primero veamos que forma tiene el polinomio $p(x)\triangle q(x)$. Sean $p(x)=a_1x+a_2x^2$ y $q(x)=b_1x+b_2x^2$ (de aqui en adelante)

$$p(q(x)) = p(b_1x + b_2x^2)$$

$$= a_1(b_1x + b_2x^2) + a_2(b_1x + b_2x^2)^2$$

$$= a_1b_1x + a_1b_2x^2 + a_2(b_1^2x^2 + b_2^2x^4 + 2b_1b_2x^3)$$

$$= a_1b_1x + a_1b_2x^2 + a_2b_1^2x^2 + a_2b_2^2x^4 + 2a_2b_1b_2x^3$$

$$= [a_1b_1x + (a_1b_2 + a_2b_1^2)x^2] + 2a_2b_1b_2x^3 + a_2b_2^2x^4$$

Entonces, $p(x)\triangle q(x) = a_1b_1x + (a_1b_2 + a_2b_1^2)x^2$

Ahora vemos que $p(x)\triangle q(x) \in J_2$, porque como $a_1, b_1 \neq 0$ entonces $a_1b_1 \neq 0$, y tiene grado menor o igual a 2.

Para probar que existe neutro, encontremos un candidato y veamos que lo es. Sea $e(x) = b_1 x + b_2 x^2 \in J_2$ tal que $p(x) \triangle e(x) = p(x)$.

$$p(x)\triangle e(x) = a_1b_1x + (a_1b_2 + a_2b_1^2)x^2 = a_1x + a_2x^2 = p(x)$$

De lo anterior, $a_1b_1 = a_1$ (entonces $b_1 = 1$), y $a_2 = a_1b_2 + a_2b_1^2 = a_1b_2 + a_2$, de donde se tiene que $b_2 = 0$ (porque $a_1 \neq 0$).

El postulante a neutro es e(x) = x. Falta ver que $e(x) \triangle p(x) = p(x)$ (comprobarlo).

Ahora, encontrar los inversos. Supongamos que $p(x)\triangle q(x) = e(x)$, entonces

$$p(x)\triangle q(x) = a_1b_1x + (a_1b_2 + a_2b_1^2)x^2 = 1x + 0x^2 = e(x)$$

Lo anterior dice que $a_1b_1=1$ (de donde $b_1=1/a_1$), y $a_1b_2+a_2b_1^2=0$, de donde $b_2=-a_2/a_1^3$. El postulante a inverso de p(x) seria $q(x)=\frac{1}{a_1}x-\frac{a_2}{a_1^3}x^2$. Falta ver que se tiene $q(x)\triangle p(x)=e(x)$ (entonces $p(x)^{-1}=q(x)$) (comprobarlo).

Para ver la asociatividad, sean $p(x) = a_1x + a_2x^2$, $q(x) = b_1x + b_2x^2$, $r(x) = c_1x + c_2x^2$.

$$p(x)\triangle q(x) = a_1b_1x + (a_1b_2 + a_2b_1^2)x^2$$

$$q(x)\triangle r(x) = b_1c_1x + (b_1c_2 + b_2c_1^2)x^2$$

$$(p(x)\triangle q(x))\triangle r(x) = a_1b_1c_1x + (a_1b_1c_2 + (a_1b_2 + a_2b_1^2)c_1^2)x^2$$

$$= a_1b_1c_1x + (a_1b_1c_2 + a_1b_2c_1^2 + a_2b_1^2c_1^2)x^2$$

$$p(x)\triangle (q(x)\triangle r(x)) = a_1b_1c_1x + (a_1(b_1c_2 + b_2c_1^2) + a_2(b_1c_1)^2)x^2$$

$$= a_1b_1c_1x + (a_1b_1c_2 + a_1b_2c_1^2 + a_2b_1^2c_1^2)x^2$$

de donde se ve la igualdad.

Para ver la no abelianidad, basta con un contraejemplo. Sean $p(x) = x + 2x^2$, $q(x) = 2x + x^2$.

$$p(x)\triangle q(x) = 1 \times 2x + (1 \times 1 + 2 \times 1^{2})$$
$$= 2x + 3x^{2}$$

$$q(x)\triangle p(x) = 2 \times 1x + (2 \times 2 + 1 \times 2^{2})x^{2}$$

= $2x + 8x^{2}$

(b) Para probar que f es morfismo debemos probar que $f(p(x)\triangle q(x)) = f(p(x)) \cdot f(q(x))$.

$$f(p(x)\triangle q(x)) = f(a_1b_1x + (a_1b_2 + a_2b_1^2)x^2)$$

= a_1b_1
= $f(p(x))f(q(x))$

Para probar que es sobreyectivo se debe probar que para cualquier $a \in \mathbb{R} \setminus \{0\}$ existe $p(x) \in J_2$ tal que f(p(x)) = a. Tomando p(x) = ax se concluye.

(c) Sean $p(x) = a_1x + a_2x^2 \in H$, $q(x) = b_1x + b_2x^2 \in H$. Hay que demostrar que $p(x)\triangle q(x)^{-1} \in H$.

$$q(x)^{-1} = \frac{1}{b_1}x - \frac{b_2}{b_1^3}x^2$$

$$\Rightarrow$$

$$p(x)\triangle q(x)^{-1} = \frac{a_1}{b_1}x + \left(a_1\frac{-b_2}{b_1^3} + a_2\frac{1}{b_1^2}\right)x^2$$

Como $a_1 = b_1 = 1$, lo anterior pertenece a H.

Para ver la abelianidad:

$$p(x)\triangle q(x) = a_1b_1x + (a_1b_2 + a_2b_1^2)x^2 = x + (b_2 + a_2)x^2$$

$$q(x)\Delta p(x) = b_1 a_1 x + (b_1 a_2 + b_2 a_1^2) x^2 = x + (a_2 + b_2) x^2$$

se ve la igualdad.

Problema 3 Si $n = 3k \pm 1$ para algun $k \in \mathbb{N}$, probar sin usar induccion que $p(x) = x^{2n} + 1 + (x+1)^{2n}$ es divisible por $q(x) = x^2 + x + 1$.

Solucion

Nos basta probar que las raices de q(x) son raices de p(x).

Las raices de q(x) son:

$$q(\bar{x}) = 0 \quad \Leftrightarrow \quad \bar{x} = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$$
$$\Leftrightarrow \quad \bar{x} = e^{\pm i \frac{2\pi}{3}}$$

Probemos que $p(\bar{x}) = 0$ para los \bar{x} anteriores. Para ello notemos que

$$\bar{x} + 1 = \frac{1}{2} \pm i \frac{\sqrt{3}}{2} = e^{\pm i \frac{\pi}{3}}$$

y entonces

$$\begin{split} p(\bar{x}) &= \bar{x}^{2n} + 1 + (\bar{x} + 1)^{2n} \\ &= (e^{\pm i\frac{2\pi}{3}})^{2n} + 1 + (e^{\pm i\frac{\pi}{3}})^{2n} \\ &= e^{\pm i\frac{4\pi}{3}n} + 1 + e^{\pm i\frac{2\pi}{3}n} \\ &= e^{\pm i\frac{4\pi}{3}(3k\pm 1)} + 1 + e^{\pm i\frac{2\pi}{3}(3k\pm 1)} \\ &= e^{\pm i4\pi k\pm i\frac{4\pi}{3}} + 1 + e^{\pm i2\pi k\pm i\frac{2\pi}{3}} \\ &= e^{\pm i4\pi k} e^{\pm i\frac{4\pi}{3}} + 1 + e^{\pm i2\pi k} e^{\pm i\frac{2\pi}{3}} \\ &= e^{\pm i\frac{4\pi}{3}} + 1 + e^{\pm i\frac{2\pi}{3}} \end{split}$$

Notemos que las anteriores son las raices-terceras de la unidad, por lo que al sumarlas da 0 $(e^{-i\frac{4\pi}{3}} = e^{i\frac{2\pi}{3}})$ y $e^{i\frac{4\pi}{3}} = e^{-i\frac{2\pi}{3}}$, por lo que las raices de q son raices de p (y entonces p es factorizable por q).

Problema 4 Sea $(\mathbb{Z}_2, +_2, \cdot_2)$ el cuerpo de dos elementos: $\{0, 1\}$. Consideremos $\mathbb{Z}_2[x]$ el conjunto de los polinomios a coeficientes en \mathbb{Z}_2 , con operaciones $+_2, \cdot_2$. Demostrar que $|\mathbb{Z}_2[x]| = |\mathbb{N}|$. Cuantas funciones existen de \mathbb{Z}_2 en \mathbb{Z}_2 ?.

Solucion

Primero, recordemos que el conjunto de todas las funciones de \mathbb{Z}_2 en \mathbb{Z}_2 es $\mathbb{Z}_2^{\mathbb{Z}_2}$, por lo que el cardinal de este conjunto es $|\mathbb{Z}_2^{\mathbb{Z}_2}| = |\mathbb{Z}_2|^{|\mathbb{Z}_2|} = 2^2 = 4$.

Ahora, los polinomios estan definidos POR SUS COEFICIENTES (son estos los que hay que analizar), no por sus evaluaciones (las funciones estan definidas por sus evaluaciones).

Primero, definimos $f: \mathbb{N} \to \mathbb{Z}_2[x]$ por $f(n)(x) = 1 \cdot x^n$. Vemos que esta funcion es inyectiva, pues si $n_1, n_2 \in \mathbb{N}$ son tales que $f(n_1) = f(n_2)$, son iguales coeficiente a coeficiente. Esto implica que el coeficiente que acompaa a x^{n_1} es igual al que acompaa a x^{n_2} , y ambos coeficientes son los unicos distintos de cero en ambos polinomios. Por lo tanto debe tenerse que $n_1 = n_2$. Entonces $|N| \leq |\mathbb{Z}_2|$

Ahora, consideremos $\mathbb{Z}_2[x]_n$ el subconjunto de $\mathbb{Z}_2[x]$ de polinomios de grado menor o igual a n. Entonces $\mathbb{Z}_2[x] = \bigcup_{n \geq 0} \mathbb{Z}_2[x]_n$. Ahora, notemos que $|\mathbb{Z}_2[x]_n| = 2^{n+1}$ (pues es el numero total de combinaciones de coeficientes 0 o 1 de largo n+1, donde importa el orden). Asi, $\mathbb{Z}_2[x]$ es union numerable de conjuntos finitos, por lo que $|\mathbb{Z}_2[x]| \leq |\mathbb{N}|$.