
Branch�and�Price�

Column Generation

for

Solving Huge Integer Programs ��y

Cynthia Barnhart �

Ellis L� Johnson

George L� Nemhauser

Martin W�P� Savelsbergh

Pamela H� Vance �

School of Industrial and Systems Engineering

Georgia Institute of Technology

Atlanta� GA ����������

Abstract

We discuss formulations of integer programs with a huge number of variables

and their solution by column generation methods� i�e�� implicit pricing of nonbasic

variables to generate new columns or to prove LP optimality at a node of the branch�

and�bound tree� We present classes of models for which this approach decomposes

the problem� provides tighter LP relaxations� and eliminates symmetry� We then

discuss computational issues and implementation of column generation� branch�and�

bound algorithms� including special branching rules and e�cient ways to solve the

LP relaxation�
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� Introduction

The successful solution of large�scale mixed integer programming �MIP� problems re�
quires formulations whose linear programming �LP� relaxations give a good approxima�
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tion to the convex hull of feasible solutions	 In the last decade
 a great deal of attention
has been given to the �branch�and�cut� approach to solving MIPs	 Homan and Padberg
������
 and Nemhauser and Wolsey ������ give general expositions of this methodology	

The basic idea of branch�and�cut is simple	 Classes of valid inequalities
 preferably
facets of the convex hull of feasible solutions
 are left out of the LP relaxation because
there are too many constraints to handle e�ciently and most of them will not be binding
in an optimal solution anyway	 Then
 if an optimal solution to an LP relaxation is infea�
sible
 a subproblem
 called the separation problem
 is solved to try to identify violated
inequalities in a class	 If one or more violated inequalities are found
 some are added to
the LP to cut o the infeasible solution	 Then the LP is reoptimized	 Branching occurs
when no violated inequalities are found to cut o an infeasible solution	 Branch�and�cut

which is a generalization of branch�and�bound with LP relaxations
 allows separation
and cutting to be applied throughout the branch�and�bound tree	

The philosophy of branch�and�price is similar to that of branch�and�cut except that
the procedure focuses on column generation rather than row generation	 In fact
 pricing
and cutting are complementary procedures for tightening an LP relaxation	 We will
describe algorithms that include both
 but we emphasize column generation	

In branch�and�price
 columns are left out of the LP relaxation because there are too
many columns to handle e�ciently and most of them will have their associated variable
equal to zero in an optimal solution anyway	 Then to check the optimality of an LP
solution
 a subproblem
 called the pricing problem
 which is a separation problem for
the dual LP
 is solved to try to identify columns to enter the basis	 If such columns are
found
 the LP is reoptimized	 Branching occurs when no columns price out to enter the
basis and the LP solution does not satisfy the integrality conditions	 Branch�and�price

which also is a generalization of branch�and�bound with LP relaxations
 allows column
generation to be applied throughout the branch�and�bound tree	

We have several reasons for considering formulations with a huge number of variables	

� A compact formulation of a MIP may have a weak LP relaxation	 Frequently the
relaxation can be tightened by a reformulation that involves a huge number of
variables	

� A compact formulation of a MIP may have a symmetric structure that causes
branch�and�bound to perform poorly because the problem barely changes after
branching	 A reformulation with a huge number of variables can eliminate this
symmetry	

� Column generation provides a decomposition of the problem into master and sub�
problems	 This decomposition may have a natural interpretation in the contextual
setting allowing for the incorporation of additional important constraints	
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� A formulation with a huge number of variables may be the only choice	

At �rst glance
 it may seem that branch�and�price involves nothing more than combin�
ing well�known ideas for solving linear programs by column generation with branch�and�
bound	 However
 as Appelgren ������ observed �� years ago
 it is not that straightfor�
ward	 There are fundamental di�culties in applying column generation techniques for
linear programming in integer programming solution methods �Johnson �����	 These
include�

� Conventional integer programming branching on variables may not be eective
because �xing variables can destroy the structure of the pricing problem	

� Solving these LPs and the subproblems to optimality may not be e�cient
 in which
case dierent rules will apply for managing the branch�and�price tree	

Recently
 several specialized branch�and�price algorithms have appeared in the liter�
ature	 Our paper attempts to unify this literature by presenting a general methodology
for branch�and�price	 It is by no means an inclusive survey
 but does develop some gen�
eral ideas that have only appeared in very special contexts	 Routing and scheduling has
been a particularly fruitful application area of branch�and�price
 see Desrosiers et al	
������ for a survey of these results	

Section � presents two examples that illustrate the general concepts of a branch�
and�price algorithm and
 at the same time
 point out some of the di�culties that may
be encountered when applying it	 Section � discusses the types of MIPs for which
branch�and�price can be advantageous	 Section � analyzes the similarities and dierences
between branch�and�price and Lagrangian duality	 Section � presents the special types of
branching that are required for branch�and�price to be eective	 Section � considers the
computational issues involved in the implementation of a branch�and�price algorithm	

� Two Illustrative Examples

To motivate the general ideas of branch�and�price
 we present two important practical
examples
 generalized assignment and crew scheduling
 before presenting the general
formulations and methodology	

��� Generalized Assignment

In the generalized assignment problem �GAP� the objective is to �nd a maximum pro�t
assignment of m tasks to n machines such that each task is assigned to precisely one
machine subject to capacity restrictions on the machines	 For reasons that will become
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apparent later
 we will consider separately the two cases of unrelated machines and
identical machines	

Unrelated Machines

The standard integer programming formulation of GAP is

max
X

��i�m

X

��j�n

pijzij

X

��j�n

zij � � i � �� ���� m� ���

X

��i�m

wijzij � dj j � �� ���� n�

zij � f�� �g i � �� ���� m� j � �� ���� n�

where pij is the pro�t associated with assigning task i to machine j
 wij is the amount
of the capacity of machine j used by task i
 dj is the capacity of machine j
 and zij is a
��� variable indicating whether task i is assigned to machine j	

Applying Dantzig�Wolfe decomposition to GAP with the assignment constraints
de�ning the master problem and the machine capacity constraints de�ning the sub�
problems yields the master problem

max
X

��j�n

X

��k�Kj

�
X

��i�m

pijy
j
ik��

j
k

X

��j�n

X

��k�Kj

y
j
ik�

j
k � � i � �� ���� m� ���

X

��k�Kj

�
j
k � � j � �� ���� n�

�
j
k � f�� �g j � �� ���� n� k � �� ���� Kj�

where the �rst m entries of a column
 given by y
j
k � �yj�k� y

j
�k� ���� y

j
mk�
 satisfy the

knapsack constraint
X

��i�m

wijxi � dj �

xi � f�� �g i � �� ���� m�

and where Kj denotes the number of feasible solutions to the above knapsack constraint	
In other words
 a column represents a feasible assignment of tasks to a machine	

The reason for reformulating the GAP by applying Dantzig�Wolfe decomposition
is that the linear programming relaxation of the master problem ��� is tighter than the
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linear programming relaxation of the standard formulation since fractional solutions that
are not convex combinations of ��� solutions to the knapsack constraints are not feasible
to ���	 Note that our motivation for applying decomposition is not to speed up the
solution of the LP relaxation
 in fact the LP relaxation of the master ��� may be harder
to solve than that of ���
 rather it is to improve the LP bound	

To solve the LP relaxation of ���
 pricing or column generation is done by solving
n knapsack problems	 Several computational or implementation issues arise in solving
these LPs including whether the knapsacks should be solved exactly or approximately

whether nonbasic columns should be kept or regenerated
 whether the master LP should
be solved to optimality
 etc	 These issues will be addressed in more detail in Section �	

The LP relaxation of the master problem solved by column generation may not have
an integral optimal solution and applying a standard branch�and�bound procedure to
the master problem over the existing columns is unlikely to �nd an optimal
 or even
good
 or even feasible
 solution to the original problem	 Therefore it may be necessary
to generate additional columns in order to solve the linear programming relaxations of
the master problem at non�root nodes of the search tree	

Standard branching on the ��variables creates a problem along a branch where a
variable has been set to zero	 Recall that yjk represents a particular solution to the jth

knapsack problem	 Thus �jk � � means that this solution is excluded	 However
 it is
possible �and quite likely� that the next time the jth knapsack problem is solved the
optimal knapsack solution is precisely the one represented by y

j
k	 In that case
 it would

be necessary to �nd the second best solution to the knapsack problem	 At depth l in the
branch�and�bound tree we may need to �nd the lth best solution	 Fortunately
 there is
a simple remedy to this di�culty	 Instead of branching on the ��s in the master prob�
lem
 we use a branching rule that corresponds to branching on the original variables zij 	
When zij � �
 all existing columns in the master that don�t assign task i to machine j
are deleted and task i is permanently assigned to machine j
 i	e	
 variable xi is �xed to
� in the jth knapsack	 When zij � �
 all existing columns in the master that assign job
i to machine j are deleted and task i cannot be assigned to machine j
 i	e	
 variable xi
is removed from the jth knapsack	 Note that each of the knapsack problems contains
one fewer variable after the branching has been done	 Observe that since we know how
to �x a single original variable zij to �
 we can also use branching rules based on �xing
sets of original variables to �	

Identical Machines

This is a special case of the problem with unrelated machines and therefore the method�
ology described above applies	 However
 we need only one subproblem since all of
the machines are identical
 which implies that the �

j

k
can be aggregated by de�ning
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�k �
P

j �
j
k and that the convexity constraints can be combined into a single constraintP

��k�K �k � n where �k is restricted to be integer	 In some cases the aggregated con�
straint will become redundant and can be deleted altogether	 An example of this is when
the objective is to minimize

P
�k
 i	e	
 the number of machines needed to process all the

tasks	 Note that this special case of GAP is equivalent to a ��� cutting stock problem	
A much more important issue here concerns symmetry
 which causes branching on

the original variables to perform very poorly	 With identical machines
 there are an
exponential number of solutions that dier only by the names of the machines
 i	e	 by
swapping the assignments of � machines we get � solutions that are the same but have
dierent values for the variables	 This statement is true for fractional as well as � � �
solutions	 The implication is that when a fractional solution is excluded at some node
of the tree
 it pops up again with dierent variable values somewhere else in the tree	
In addition
 the large number of alternate optima dispersed throughout the tree renders
pruning by bounds nearly useless	

The remedy here is a dierent branching scheme
 proposed by Ryan and Foster ������
for crew scheduling
 that works directly on the master problem but focuses on pairs of
tasks	 In particular
 we consider rows of the master with respect to tasks r and s	
Branching is done by dividing the solution space into one set in which r and s appear
together
 in which case they can be combined into one task when solving the knapsack

and into another set in which they must appear separately
 in which case a constraint
xr � xs � � is added to the knapsack	 Note that the structure of the subproblems is no
longer the same on the dierent branches	

��� Crew Scheduling

In a crew scheduling or pairing problem
 sequences of �ights
 called pairings
 are as�
signed to crews so that each �ight segment for a speci�c �eet of airplanes is assigned to
exactly one crew	 The �rst segment in a pairing must depart from the crew�s base
 each
subsequent segment departs from the station where the previous one arrived
 and the
last segment must return to the base	 A sequence can represent several days of �ying

typically � � � days for a domestic problem of a major U	S	 carrier	

Pairings are subject to a number of constraints resulting from safety regulations and
contract terms	 These constraints dictate restrictions such as the maximum number of
hours a pilot can �y in a day
 the maximum number of days before returning to the base
and minimum overnight rest times	 In addition
 the cost of a pairing is a messy function
of several attributes of the pairing	

For these reasons
 it is not desirable to formulate a crew scheduling problem with
variables zij where zij � � if crew i is assigned to segment j since the constraints on
zij and the cost are highly nonlinear and di�cult to express	 The alternative approach
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is to enumerate
 implicitly or explicitly
 feasible pairings and then to formulate a set
partitioning problem in which each column or variable corresponds to a pairing and the
objective is to partition all of the segments into a set of minimum cost pairings	

Although enumerating feasible pairings is complex because of all of the rules that
must be observed
 it can be accomplished by �rst enumerating all feasible possibilities for
one day of �ying and then combining the one�day schedules to form pairings	 The major
drawback is the total number of pairings
 which grows exponentially with the number of
�ights	 For example
 Vance ������ found more than � million pairings in a daily problem
with ��� �ights	 Problems with �
��� �ights are likely to have billions of pairings	

The last generation�s methodology for a �
��� �ight problem
 which is the typical
size for a U	S	 domestic carrier
 would have enumerated in advance about ���
��� low
cost pairings
 a very small fraction of the total	 Then
 with this �xed set of columns

attempted to solve
 or get a good feasible solution to
 the set partitioning problem ����
integer program� de�ned by these ���
��� pairings
 which itself is a very di�cult task
�Anbil et al	 �����	 Since only a tiny fraction of all of the pairings are available to
the integer program or its linear programming relaxation
 this methodology may not
produce a solution that is close to being optimal to the problem in which all the pairings
are considered	 There is considerable empirical evidence to support this fact
 see Marsten
������ and Krishna et al	 ������	

Branch�and�price can implicitly consider all of the pairings	 It is possible to rep�
resent pairings as suitably constrained paths in a network and then to evaluate their
costs
 i	e	
 price out nonbasic columns
 using a multilabel shortest path or multistate dy�
namic programming algorithm
 see Desrochers and Soumis ������
 Barnhart et al	 ������
and Vance ������	 However
 in practice
 the memory requirements of the full multil�
abel shortest path and multistate dynamic programming algorithms are prohibitive and
scaled�down versions have to be used	 It is essential to generate columns during the solu�
tion of LPs throughout the tree	 For example �Krishna et al	 �����
 in a small ��� �ight
crew pairing instance ���� pairings were generated to solve the initial LP relaxation	
The LP bound was ����	 The only IP solution that we could �nd using this small set
of candidate pairings had cost ��
���	 �We quit after � days of CPU time using OSL on
an RS����� model ����	 By generating columns in the tree
 we got an IP solution with
cost ���� This cost is less than the cost of the LP relaxation at the root node because
of approximations in the pricing algorithm that prevented fully optimizing the LP re�
laxation	 Another example of the importance of generating columns after the initial LP
has been solved can be found in the work of Marsten ������
 who sets a target value for
the IP and generates additional columns whenever the LP bound at a node exceeds that
target value	

It is very important to understand that it is not necessary to solve an LP to optimality
when processing a node	 The primary reason for solving the LP to optimality is the
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possibility of pruning the node by bounds	 By not solving the LP to optimality
 this
option may be precluded and pruning eliminated	 However
 pruning may still be possible
without solving the LP to optimality if we can compute a suitable bound on the value
of the LP	 See Section � for further discussion of this idea	

� Suitable Models for Column Generation

��� General Models

The general problem P we consider is of the form

max c�x�

Ax � b�

x � S� ���

x integer�

The function c�x� is not required to be linear although
 for computational reasons
 we
need that the relaxed problem with Ax � b omitted be relatively easy to solve	

The fundamental idea of column generation is that the set

S� � fx � S � x integerg

is represented by a �nite set of vectors	 Speci�cally
 if S is bounded then S� is just a
�nite set of points
 say S� � fy�� ���� ypg	 Moreover if x is binary
 then S� coincides with
the extreme points of its convex hull
 denoted by conv�S��	 Since representing a bounded
polyhedron by its extreme points is the basic construct of Dantzig�Wolfe decomposition
and generalized linear programming �Dantzig and Wolfe
 �����
 our column generation
approach to integer programming is closely related to Dantzig�Wolfe decomposition and
the earlier work on path �ows in networks of Ford and Fulkerson ������	

When S is unbounded
 classical results of Minkowski and Weyl
 see Nemhauser and
Wolsey ������
 state that conv�S�� is a polyhedron and is represented by a convex com�
bination of a �nite set of points and a linear combination of a �nite set of rays	 Thus
column generation for integer programming is still possible when S is unbounded	 How�
ever
 primarily for simplicity of exposition
 we will assume throughout this paper that S
is bounded	 Vanderbeck �����
 ����� gives more details on the unbounded case	

Given S� � fy�� ���� ypg
 any point y � S� can be represented as

y �
X

��k�p

yk�k�
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subject to the convexity constraint
X

��k�p

�k � ��

�k � f�� �g k � �� ���� p�

Let ck � c�yk� and let ak � Ayk 	 We obtain the column generation form of P given by

max
X

��k�p

ck�k

X

��k�p

ak�k � b� ���

X

��k�p

�k � ��

�k � f�� �g k � �� ���� p�

Note that the column generation form of P 
 which is called master problem �MP�

is an integer linear programming problem
 whereas the initial formulation can have a
nonlinear objective function	 Linearization in this manner is possible because in the
equation

y �
X

��k�p

yk�k�

we obtain y � yk for some k since
P

��k�p �k � � and �k � f�� �g	 This cannot be
done when S is unbounded so that in that case the initial formulation must have a linear
objective function or other devices must be used to achieve linearity
 see Vanderbeck and
Wolsey ������	

If S can be decomposed
 i	e	
 S � ���j�nSj 
 we can represent each set

S�j � fxj � Sj � xj integerg

as

S�j � fyj�� ���� y
j
pj
g�

Now let c�yjk� � c
j
k and Ay

j
k � a

j
k 	 This yields a column generation form of P with

separate convexity constraints for each Sj given by

max
X

��j�n

X

��k�pj

c
j
k�

j
k

X

��j�n

X

��k�pj

a
j
k�

j
k � b� ���
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X

��k�pj

�
j
k � � j � �� ���� n�

�
j
k � f�� �g j � �� ���� n� k � �� ���� pj�

If the subsets in the decomposition are identical
 i	e	
 Sj � S � fy�� � � � � ypg for

j � �� ���� n
 then they can be represented by one subset S with �k �
P

j �
j
k and the

convexity constraints replaced by an aggregated convexity constraint
X

��k�p

�k � n�

where �k � � and integer	 This results in the column generation form

max
X

��k�p

ck�k

X

��k�p

ak�k � b�

X

��k�p

�k � n� ���

�k � � and integer k � �� ���� p�

In the formulations ���
 ���
 and ���
 the convexity constraints are written as equali�
ties	 However
 in some formulations
 the convexity constraints are written as inequalities	
Frequently
 this is the case when y � � � S� and c��� � � so y � � is just left out of the
formulation	 In the case of identical subsets
 the aggregated convexity constraint may
be omitted altogether when n is not �xed as part of the input	

The essential dierence between P and its column generation form is that S� is
represented by a �nite set of points	 We see that any fractional solution to the linear
programming relaxation of P is a feasible solution to the linear programming relaxation
of its column generation form if and only if it can be represented by a convex combina�
tion of extreme points of conv�S��	 In particular
 Georion ������ has shown that if the
polyhedron conv�S� does not have all integral extreme points
 then the linear program�
ming relaxation of the column generation form of P will be tighter than that of P for
some objective functions	

��� Partitioning models

Many combinatorial optimization problems can be formulated as set partitioning prob�
lems
 see Balas and Padberg ������	 Since most of the branch�and�price algorithms we
are aware of have been developed for set partitioning based formulations
 they will be
emphasized	 In the general set partitioning problem
 we have a ground set of elements
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and rules for generating feasible subsets and their pro�ts
 and we wish to �nd the max�
imum pro�t partitioning of the ground set into feasible subsets	 Let zij � � if element
i is in subset j
 and � otherwise
 and let zj denote the characteristic vector of subset j

i	e	
 a vector with entries zij for each element i	 The general partitioning problem is of
the form

max
X

��j�n

c�zj�

X

��j�n

zij � � i � �� ���� m�

zj � S� ���

z binary�

where m is the number of elements in the ground set
 n is the number of subsets
 and S

is the set of feasible subsets and c�zj� is the pro�t of subset j	

����� Di�erent restrictions on subsets

First we assume that the feasible subsets have dierent requirements given by

Sj � fzj � Djzj � dj j � �� ���� n� zj binaryg� ���

Then problem P is

max
X

��j�n

cj�zj�

X

��j�n

zij � � i � �� ���� m� ���

Djzj � dj j � �� ���� n�

z binary�

and its column generation form is

max
X

��j�n

X

��k�pj

c
j
k�

j
k

X

��j�n

X

��k�pj

y
j
ik�

j
k � � i � �� ���� m� ����

X

��k�pj

�
j

k
� � j � �� ���� n�

�
j
k � f�� �g j � �� ���� n� k � �� ���� pj�
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where cjk � cj�y
j
k� and the fyjkg
 � � k � pj are the points of S

�
j with elements yjik for

i � �� ���� m	 We have chosen to write the convexity constraints as inequalities since
 in
many of these applications
 we may not assign any elements to a given subset	 This
structure occurs
 for example
 in the generalized assignment problem with unrelated
machines	

����� Identical restrictions on subsets

Now we assume that the feasible subsets have identical requirements	 Then ��� is replaced
by the single set of inequalities

S � fzj � Dzj � d j � �� ���� n� zj binaryg� ����

Problem P is

max
X

��j�n

c�zj�

X

��j�n

zij � � i � �� ���� m� ����

Dzj � d j � �� ���� n�

z binary�

and its column generation form is

max
X

��k�p

ck�k

X

��k�p

yik�k � � i � �� ���� m� ����

�k � f�� �g k � �� ���� p�

where ck � c�yk�	 Here we have chosen to omit the aggregated convexity constraint
because it is common in these applications for n not to be �xed	 This structure occurs

for example
 in the generalized assignment problem with identical machines and the ���
cutting stock problem	

A major advantage of the column generation form for these problems with identical
subset rules is that it eliminates some of the inherent symmetry of P that causes branch�
and�bound to perform very poorly	 By this we mean that any solution to P or its LP
relaxation has an exponential number of representations as a function of the number
of subsets	 Therefore branching on a variable zij to remove a fractional solution will
likely produce the same fractional solution with zik equal to the old value of zij and
vice�versa
 unless zij is fractional for all j	 Formulation MP eliminates this symmetry
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by representing each feasible subset only once and is therefore much more amenable to
branching rules in which meaningful progress in improving the LP bound can be made
as we go deeper in the tree	

��� Covering models

Although the discussion above has focused on set partitioning type master problems
 in
many applications the problem structure allows the master problem to be formulated
either as a set partitioning problem or as a set covering problem	 Consider
 for example

vehicle routing and scheduling problems
 where several vehicles are located at one or
more depots and must serve geographically dispersed customers	 Each vehicle has a given
capacity and is available in a speci�ed time interval	 Each customer has a given demand
and must be served within a speci�ed time window	 The objective is to minimize the
total cost of travel	 A solution to a vehicle routing and scheduling problem partitions
the set of customers into a set of routes for vehicles	 This naturally leads to a set
partitioning formulation in which the columns correspond to feasible routes and the rows
correspond to the requirement that each customer is visited precisely once	 Alternatively

the problem can be formulated as a set covering problem in which the columns correspond
to feasible routes and the rows correspond to the requirement that each customer is
visited at least once	 Since deleting a customer from a route
 i	e	
 not visiting that
customer
 results in another shorter less costly feasible route
 an optimal set covering
solution will be an optimal set partitioning	

In general
 if any subcolumn of a feasible column de�nes another feasible column
with lower cost
 an optimal solution to the set covering problem will be an optimal set
partitioning and we can work with either one of the formulations	 When there is a choice

the set covering formulation is preferred since

� Its linear programming relaxation is numerically far more stable and thus easier to
solve	

� It is trivial to construct a feasible integer solution from a solution to the linear
programming relaxation	

��� Nondecomposable models

Column generation is also used for very large nondecomposable models	 Here it may
be the only practical approach	 If a model contains so many variables that the storage
requirements are enormous
 then it is usually impossible to solve the LP relaxation
directly and a column generation approach may be the only alternative	
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This approach has been used to solve large instances of the traveling salesman prob�
lem
 for example see Junger
 Reinelt
 and Rinaldi ������	 To handle the enormous num�
ber of variables �for a thousand city instance there are a million variables� only variables
associated with a small subset of the edges
 the k shortest edges associated with each
vertex
 are maintained	 When the LP is solved for this reduced edge set
 it is necessary
to price out all the edges not in this set to verify that the true optimum has been found	
If edges with favorable reduced costs are identi�ed
 they are added to the reduced edge
set and the process is repeated	

A related approach
 called SPRINT
 has proven very successful for huge set parti�
tioning problems	 The SPRINT approach solves subproblems consisting of a subset of
the columns
 e	g	 ��
��� out of � million	 A new subproblem is formed by retaining the
columns in the optimal basis of the old subproblem and collecting a set of good columns
based on the reduced costs	 This is repeated until all columns have been considered and
then �nally
 and only once
 the full problem is optimized	 Using the SPRINT approach
a linear programming relaxation of a set partitioning problem with nearly � million vari�
ables was solved in less than an hour on an IBM ����E vector facility
 see Anbil
 Tanga

and Johnson ������
 and even more quickly using a combined interior point�simplex
sprint approach by Bixby et al	 ������	

Note that in both cases standard simplex pricing is used to price out the variables
that are initially left out of the formulation	 This can be done because the total number
of variables does not grow exponentially with the size of the input	

� Duality and Pricing

Since the column generation form frequently contains a huge number of columns
 it is
often necessary to work with restricted versions that contain only a subset of its columns

and to generate additional columns only as they are needed	 The restricted version of
the column generation form is called restricted master problem �RMP�	

Let ��� �� be an optimal dual solution to an RMP
 where � is the dual variable
associated with the convexity constraint and � is the dual vector associated with the
other constraints	 The pricing problem

max
x�S�

�c�x�� �Ax�� �

identi�es a column with maximum reduced cost	 If the maximum reduced cost is greater
than �
 we have identi�ed a column to enter the basis� if the maximum reduced cost is
less than or equal to �
 we have proven that the current solution to RMP is also optimal
for MP	
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Column generation is closely related to Lagrangean relaxation	 The pricing problem
can equivalently be stated as

g��� � max
x�S�

�c�x� � ��b� Ax��� ����

because we have only subtracted a constant � and added a constant �b	 Note that g���
is the Lagrangian relaxation of ��� and minimizing g over � yields the Lagrangean dual

g � minfg��� � � � �g� ����

Brooks and Georion ������ observed the connection between linear programming
decomposition and Lagrangian duality and Georion ������ proved that the maximum
value of the linear programming relaxation of ��� equals g	

Subgradient optimization is the traditional approach for solving the piecewise lin�
ear lagrangian dual
 see Held et al	 ������	 The subgradient algorithm is simple and
easy to code for special purpose applications	 However
 it can be slow and have trouble
with convergence for large problems	 Other recently developed methods for nondieren�
tiable optimization
 such as bundle methods
 see Lemarechal ������
 appear to be very
promising but have not been widely tested on integer and combinatorial optimization
problems	

Only extensive empirical tests may settle the issue of whether to use linear program�
ming
 as in the column generation approach
 or a nonlinear method
 e	g	 subgradient
optimization or a bundle method	 Over the past �� years subgradient optimization has
been used extensively	 We believe the reasons were the absence of e�cient simplex codes
with column generation capabilities and the lack of su�cient computer memory	 How�
ever
 the situation has changed dramatically with the modern simplex codes	 With these
capabilities in LP�based branch�and�bound codes
 it is now feasible to take advantage
of the global information used by the simplex codes to speed up the convergence	 One
can see this in comparing the results of Savelsbergh ������ and Guignard and Rosen�
wein ������ on the generalized assignment problem
 where a linear programming method
clearly outperforms a nonlinear method	 This is in contrast with the results obtained by
Held and Karp �����
 ����� on the traveling salesman problem more than twenty years
ago where the limitations of LP solving with column generation led to the conclusion
that the subgradient algorithm was preferred	 Nevertheless
 it still remains to be seen
whether the more advanced nonlinear methods may provide an even better alternative	

� Branching

An LP relaxation solved by column generation is not necessarily integral and applying a
standard branch�and�bound procedure to the restricted master problem with its existing
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columns will not guarantee an optimal �or feasible� solution	 After branching
 it may be
the case that there exists a column that would price out favorably
 but is not present in
the master problem	 Therefore
 to �nd an optimal solution we must generate columns
after branching	

��� Set partitioning master problems

Ryan and Foster ������ suggested a branching strategy for set partitioning problems
based on the following proposition	 Although they were not considering column genera�
tion
 it turns out that their branching rule is very useful in this context	

Proposition � If Y is a ��� matrix� and a basic solution to Y � � � is fractional� i�e��

at least one of the components of � is fractional� then there exist two rows r and s of the

master problem such that

� �
X

k�yrk���ysk��

�k � ��

Proof Consider fractional variable �k� 	 Let row r be any row with yrk� � �	 SinceP
��k�p yrk�k � � and �k� is fractional
 there must exist some other basic column k��

with � � �k�� � � and yrk�� � � as illustrated by the submatrix in Figure �	 Since there

k� k�

r � �
s � �

Figure �� Submatrix Present in Candidate Branching Pairs

are no duplicate columns in the basis
 there must exist a row s such that either ysk� � �
or ysk�� � � but not both	 This leads to the following sequence of relations�

� �
X

��k�p

yrk�k

�
X

k�yrk��

�k

�
X

k�yrk���ysk��

�k

where the inequality follows from the fact that the last summation includes either �k� or
�k�� but not both	 �
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The pair r� s gives the pair of branching constraints
X

k�yrk���ysk��

�k � � and
X

k�yrk���ysk��

�k � ��

i	e	
 the rows r and s have to be covered by the same column on the �rst �left� branch
and by dierent columns on the second �right� branch	

Proposition � implies that if no branching pair can be identi�ed
 then the solution
to the master problem must be integer	 The branch and bound algorithm must termi�
nate after a �nite number of branches since there are only a �nite number of pairs of
rows	 Note that each branching decision eliminates a large number of variables from
consideration	

A theoretical justi�cation for this branching rule is that the submatrix shown in
Figure � is precisely the excluded submatrix in the characterization of totally balanced
matrices
 see Homan
 Kolen
 and Sakarovitch ������	 Total balanceness of the coe�cient
matrix is a su�cient condition for the LP relaxation of a set partitioning problem to have
only integral extreme points and the branching rule eventually gives totally balanced
matrices	

����� Identical restrictions on subsets

The branching scheme suggested by Ryan and Foster requires that elements r and s

belong to the same subset on the left branch and to dierent subsets on the right branch	
Thus on the left branch
 all feasible columns must have yrk � ysk � � or yrk � ysk � �

while on the right branch all feasible columns must have yrk � ysk � � or yrk � �

ysk � � or yrk � �
 ysk � �	 Rather than adding the branching constraints to the master
problem explicitly
 the infeasible columns in the master problem can be eliminated	 On
the left branch
 this is identical to combining rows r and s in the master problem giving
a smaller set partitioning problem	 On the right branch
 rows r and s are restricted to be
disjoint
 which may yield an easier master problem since set partitioning problems with
disjoint rows �sets� are more likely to be integral	 Not adding the branching constraints
explicitly has the advantage of not introducing new dual variables that have to be dealt
with in the pricing problem	

Usually
 enforcing the branching constraints in the pricing problem
 i	e	
 forcing two
elements to be in the same subset on one branch and forcing two elements to be in
dierent subsets on the other branch
 is fairly easy to accomplish	 However
 the pricing
problem on one branch may be more complicated than on the other branch	

Applications of this branching rule can be found for urban transit crew scheduling in
Desrochers and Soumis ������� for airline crew scheduling in Anbil
 Tanga and Johnson
������
 and Vance ������� for vehicle routing in Dumas
 Desrosiers and Soumis ������
 for
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graph coloring in Mehrotra and Trick ������� and for the binary cutting stock problem
in Vance et al	 ������	

����� Di�erent restrictions on subsets

Now consider the situation where dierent subsets may have dierent requirements
 i	e	

the formulation for P has the block diagonal structure given by ��� and the associated
explicit column generation form
 with separate convexity constraints for each subset
 is
given by ����	

In this situation
 if we apply the branching scheme suggested by Ryan and Foster but
always select one partitioning row
 say row s
 and one convexity row
 say r
 we obtain
a special branching scheme that has a natural interpretation in the original formulation
and some nice computational properties	 Similar to Proposition �
 we can show that
there always exist such a selection with � �

P
k�yrk���ysk��

�k � �	 The pair of branching
constraints that results is given by

X

��k�ps�ysrk��

�sk � � and
X

��k�ps�ysrk��

�sk � �� ����

This branching rule corresponds to requiring element r to be in subset s on the left branch
and requiring element r to be in any subset but s on the right branch	 This branch�
ing strategy has a very natural interpretation	 It corresponds precisely to performing
standard branching in ���
 since

X

��k�ps�ysrk��

�sk � ��
X

��k�ps

ysrk�
s
k � �� zrs � �

and
X

��k�ps�ysrk��

�sk � ��
X

��k�ps

ysrk�
s
k � �� zrs � ��

We have already shown how to apply this branching rule in the generalized assignment
problem by adjusting the knapsack pricing problems	 Sol and Savelsbergh ������ show
how to apply this branching rule in more general settings without increasing the di�culty
of the pricing problem	 To be more precise
 they show that if this branching rule is
applied
 any algorithm for the pricing problem used in the root node can also be used in
subsequent nodes	

Applications of this branching strategy are presented for generalized assignment in
Savelsbergh ������� for multi�commodity �ow in Barnhart
 Hane
 and Vance ������ and
Parker and Ryan ������� for vehicle routing in Desrosiers
 Soumis and Desrochers ������
and Desrochers
 Desrosiers and Solomon ������� and for pickup and delivery problems in
Sol and Savelsbergh ������	
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��� General mixed integer master problems

So far
 we have discussed branching strategies for set partitioning master problems	 In
this section
 we discuss branching strategies for general mixed integer master problems	

����� Di�erent restrictions on subsets

A branching strategy for general mixed integer master problems with dierent restrictions
on subsets can be derived directly from the integrality requirements on the original
variables
 see Johnson ������	 The optimal solution to the linear programming relaxation
is infeasible if and only if

xj �
X

��k�pj

y
j
k�

j
k

has a fractional component r for some j
 say with value �	 This suggests the following
branching rule� on one branch we require

X

��k�pj

y
j
rk�

j
k � b�c

and on the other branch we require
X

��k�pj

y
j
rk�

j
k � d�e�

This branching rule amounts to branching on the original variable xj 	

����� Identical restrictions on subsets

Developing a branching strategy for general mixed integer master problems with identical
restrictions on subsets is more complex
 because we do not want to branch on original
variables for reasons of symmetry	 If the solution to ��� is fractional
 we may be able to
identify a single row r and an integer �r such that

X

k��ak�r��r

�k � �r

and �r is fractional	 We can then branch on the constraints
X

k��ak�r��r

�k � b�rc and
X

k��ak�r��r

�k � d�re�

These constraints place upper and lower bounds on the number of columns with �ak�r �
�r that can be present in the solution	 In general
 these constraints cannot be used to
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eliminate variables and have to be added to the formulation explicitly	 Each branching
constraint will contribute an additional dual variable to the reduced cost of any new
column with �ak�r � �r	 This may complicate the pricing problem	

It is easy to see that a single row may not be su�cient to de�ne a branching rule	
Consider a set partitioning master problem that has a fractional solution	 The only
possible value for �r is �	 However


P
k�ykr��

�k � � for every row	 Thus we may have
to branch on multiple rows	

Assume that
X

k��ak�r��r

�k � �r

and �r is integer for every row r and integer �r	 Pick an arbitrary row
 say r
 and search
for a row s and integer �s such that

X

k��ak�r��r��ak�s��s

�k � �s

and �s is fractional	 If such a row exists
 we branch on the constraints
X

k��ak�r��r��ak�s��s

�k � b�sc and
X

k��ak�r��r��ak�s��s

�k � d�se�

Otherwise we seek a third row	 We note that if the solution is fractional it is always
possible to �nd a set of rows to branch on	 This branching rule was developed by
Vanderbeck and Wolsey ������ �see also Vanderbeck �������	 A slightly dierent version
of this branching rule was developed independently by Barnhart et al	 ������	

The branching scheme just presented applied to set partitioning master problems
gives precisely the branching scheme of Ryan and Foster ������ discussed in Section �	�	
To see this
 note that by Proposition � we can always branch on two rows
 say r and s

and that the two branches are de�ned by

X

k�yrk���ysk��

�k � b�sc � � and
X

k�yrk���ysk��

�k � d�se � ��

� Computational issues

In the previous sections
 we have discussed the foundations of branch�and�price algo�
rithms	 In this section
 we discuss some important computational issues that need to be
considered when implementing a branch�and�price algorithm	
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��� Initial solution

To start the column generation scheme
 an initial restricted master problem has to be
provided	 This initial restricted master problem must have a feasible LP relaxation
to ensure that proper dual information is passed to the pricing problem	 Depending
on the application
 it is not always obvious how to construct such an initial restricted
master	 However
 if it exists
 such an initial restricted master can always be found using
a two�phase method similar in spirit to the two�phase method incorporated in simplex
algorithms to �nd an initial basic feasible solution� add a set of arti�cial variables with
large negative costs and associated columns that form an identity matrix	 The arti�cial
variables ensure that a feasible solution to the LP relaxation exists	 �In case of a set
partitioning master problem
 a single arti�cial variable with a large negative cost and
an associated column consisting of all ones su�ces	� Observe that an initial restricted
master problem with a feasible LP relaxation has to be provided at each node in the
branch�and�bound tree	 Therefore
 the arti�cial variables are usually kept at all nodes
of the branch�and�bound tree	

The primary goal in de�ning an initial restricted master problem is to ensure the
existence of a feasible LP relaxation	 However
 since the initial restricted master de�
termines the initial dual variables that will be passed to the pricing problem
 a �good�
initial restricted master problem can be important	

��� Column management

In a maximization linear program
 any column with positive reduced cost is a candidate
to enter the basis	 The pricing problem is to �nd a column with highest reduced cost	
Therefore
 if a column with positive reduced cost exists the pricing problem will always
identify it	 This guarantees that the optimal solution to the linear program will be found	

However
 it is not necessary to select the column with the highest reduced cost� any
column with a positive reduced cost will do	 Using this observation can improve the
overall e�ciency when the pricing problem is computationally intensive	

Various column generation schemes can be developed based on using approximation
algorithms to solve the pricing problem	 To guarantee optimality
 a two�phase approach
is applied	 As long as an approximation algorithm for the pricing problem produces a
column with positive reduced cost
 that column will be added to the restricted master	
If the approximation algorithm fails to produce a column with positive reduced cost
 an
optimization algorithm for the pricing problem is invoked to prove optimality or produce
a column with positive reduced cost	 Such a scheme reduces the computation time per
iteration	 However
 the number of iterations may increase
 and it is not certain that the
overall eect is positive	
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Depending on the pricing problem
 it may even be possible to generate more than one
column with positive reduced cost per iteration without a large increase in computation
time	 Such a scheme increases the time per iteration
 since a larger restricted master has
to be solved
 but it may decrease the number of iterations	

During the column generation process
 the restricted master problem keeps growing	
It may be advantageous to delete nonbasic columns with very negative reduced cost from
the restricted master problem in order to reduce the time per iteration	

These ideas can be combined into the following general column generation scheme�

�	 Determine an initial feasible restricted master problem	

�	 Initialize the column pool to be empty	

�	 Solve the current restricted master problem	

�	 Delete nonbasic columns with high negative reduced costs from the restricted mas�
ter problem	

�	 If the column pool still contains columns with positive reduced costs
 select a subset
of them
 add them to the restricted master
 and go to �	

�	 Empty the column pool	

�	 Invoke an approximation algorithm for the pricing problem to generate one or
more columns with positive reduced cost	 If columns are generated
 add them to
the column pool and go to �	

�	 Invoke an optimization algorithm for the pricing problem to prove optimality or
generate one or more columns with positive reduced costs	 If columns are gener�
ated
 add them to the column pool and go to �	

�	 Stop	

Vanderbeck ������ discusses many issues related to the selection of a subset of �good�
columns	 On the one hand we are trying to produce an integer solution to the master
problem� on the other hand we are trying to solve the linear relaxation of the restricted
master problem	

Sol and Savelsbergh ������ describe a fast heuristic approach for generating columns
with positive reduced costs
 which turns out to be very eective for their application	
They take existing columns with reduced cost equal to zero �at least all basic columns
satisfy this requirement� and employ fast local improvement algorithms to construct
columns with a positive reduced cost	
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Notice the similarity between the column management functions performed in branch�
and�price algorithms and the row management functions performed in branch�and�cut
algorithms	

��� LP termination

The branch�and�bound framework has some inherent �exibility that can be exploited in
branch�and�price algorithms	 Observe that branch�and�bound is essentially an enumer�
ation scheme that is enhanced by fathoming based on bound comparisons	 To control
the size of the branch�and�bound tree it is best to work with strong bounds
 however
the method will work with any bound	 Clearly
 there is a tradeo between the compu�
tational eorts associated with computing strong bounds and evaluating small trees and
computing weaker bounds and evaluating bigger trees	 In the case of linear programming
based branch�and�bound algorithms in which the linear programs are solved by column
generation
 there is a very natural way to explore this tradeo
 especially when the pric�
ing problem is hard to solve	 Instead of solving the linear program to optimality
 i	e	

generating columns as long as pro�table columns exist
 we can choose to prematurely
end the column generation process and work with bounds on the �nal LP value	 Lasdon
������
 Farley ������
 and Wolsey and Vanderbeck ������ describe simple and relatively
easy to compute bounds on the �nal LP value based on the LP value of the current
restricted master problem and the current reduced costs	 This is especially important in
view of the tailing�o eect that many column generation schemes exhibit
 i	e	
 requiring
a large number of iterations to prove LP optimality	

��� Dual solutions

Recall that the objective function of the pricing problem depends on the dual variables
of the solution to the linear relaxation of the restricted master problem	 Consequently

if there are alternative dual optimal solutions
 we may pick any point on the face de�ned
by these solutions	 Simplex algorithms will give a vertex of this face
 whereas interior
point algorithms give a point in the �center� of this face	 A central point appears to
have the advantage of giving a better representation of the face	 Although no extensive
computational tests have been done to investigate the dierences
 it seems that using
interior point methods works somewhat better �Marsten �����	

��� LP solution

The computationally most intensive component of a branch�and�price algorithm is the
solution of the linear programs
 which includes the solution of many pricing problems	
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Therefore
 we have to solve these linear programs e�ciently to obtain e�cient branch�
and�price algorithms	 We consider two alternatives to accomplish this	

� Employ specialized simplex procedures that exploit the problem structure	

� Alter the master problem formulation to reduce the number of columns	

Again consider the master problem given by ����
 but with equality convexity con�
straints	

max
X

��j�n

X

��k�pj

c
j
k�

j
k

X

��j�n

X

��k�pj

y
j
ik�

j
k � �� i � �� ���� m� ����

X

��k�pj

�
j
k � �� j � �� ���� n�

�
j
k � f�� �g� j � �� ���� n� k � �� ���� pj�

Since the column generation form of P has the Dantzig�Wolfe master program struc�
ture
 it can be solved using specialized solution procedures such as the generalized upper
bounding procedure of Dantzig and Van Slyke ������ or the partitioning procedure of
Rosen ������	 Both of these procedures exploit the block�diagonal convexity constraint
structure of ���� and perform all steps of the simplex method on a reduced working
basis of dimension m	 Both methods transform the MP problem formulation by se�
lecting key extreme point solutions de�ned by �

j
k�
j
� � j � �� ���� n and substituting

�
j

k�j
� ��

P
��k�pj �k ��k�j

�
j

k for each subproblem j	 With this substitution
 the key for�

mulation of ���� becomes

max
X

��j�n

X

��k�pj �k ��k�j

�c
j
k�

j
k �

X

��j�n

c
j
k�
j

X

��j�n

X

��k�pj �k ��k�j

�yjik � y
j
ik�

j
��jk � ��

X

��j�n

y
j
ik�

j
i � �� ���m� ����

X

��k�pj �k ��k�j

�
j
k � � j � �� � � � � n�

�
j
k � f�� �g j � �� � � � � n� k � �� � � � � pj�

where cjk�
j
is the cost of the key column and �c

j
k � c

j
k � c

j
k�
j
	

The variable �
j
k now indicates whether the key extreme point k�j of subproblem j

should be transformed into extreme point k of subproblem j ��j
k
� �� or not ��j

k
� ��	
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To enforce nonnegativity of �jk�j

 the key nonnegativity constraints

P
��k�pj �k ��k�j

�
j
k � �

are required	 They can be added explicitly
 but in both the Dantzig�Van Slyke and Rosen
procedures
 the key nonnegativity constraints are handled implicitly by changing the key
extreme point when they are violated or about to be violated	

To illustrate
 consider the multi�commodity network �ow problem	 In a column
generation formulation of the multi�commodity �ow problem
 the variables represent
origin�destination �ows of commodities	 In the associated key formulation
 a speci�c
origin�destination path p�j is selected for each commodity j to serve as a key path	 Any
other origin�destination path pj for commodity j will be represented by a column with

�� for each arc in pj and not in p�j �

�� for each arc in p�j and not in pj �

� for each arc in both or neither of pj and p�j � and

�� for the key path nonnegativity constraint for j	

The variables of the key formulation represent the symmetric dierence between the
key path for a commodity and some other origin�destination path for that commodity	
Since the symmetric dierence of two paths that share a common origin and destination
is a set of cycles
 we can think of these variables as representing �ow shifts around these
cycles
 i	e	
 �ow is removed from the key path and placed on an alternative path	

Although the Dantzig�Van Slyke and Rosen procedures may improve LP solution
times
 because of the smaller working basis
 they do not prevent tailing�o
 i	e	
 slow
convergence to LP optimality
 which is a major e�ciency issue for column generation
procedures	 To reduce the tailing�o eect
 an alternate key formulation having far fewer
columns may be used	 The idea behind the alternate key formulation is to allow columns
to be represented as a combination of simpler columns	

Consider the multi�commodity �ow problem again	 In the key formulation for the
multi�commodity �ow problem
 each column corresponds to sets of disjoint cycles	 Refer
to a column containing a single cycle as a simple cycle and to one containing multiple
cycles as a compound cycle	 Since every compound cycle can be represented as the sum
of simple cycles
 every possible multi�commodity �ow solution can be represented with
just simple cycles	 In the column generation framework
 each column generated by the
pricing problem has to be decomposed into simple cycles and only these simple cycles are
added to the restricted simple cycle master problem	 �A detailed description is provided
in Barnhart et al	 ������	�

Since several simple cycles can be chosen
 the key path nonnegativity constraints
have to be modi�ed	 The nonnegativity constraint for each key path p�j can be replaced
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by a set of constraints
 one for each key path arc
 ensuring that the �ow on the arc is
nonnegative	 As above
 these constraints can be handled implicitly	

The idea presented above for the multi�commodity �ow problem generalizes to any
problem with the master program structure of ����	 As before
 the key formulation is
obtained by selecting a key column k�j for subproblem j and substituting it out
 i	e	

replacing all other columns k of subproblem j by a column with

�� for each element in k and not in k�j �

�� for each element in k�j and not in k�

� for each element in both or neither of k and k�j � and

�� for the key column nonnegativity constraint for j	

These columns are referred to as exchanges since one or more elements in the key col�
umn k�j may be removed from the solution and replaced by new elements in column k	
Similar to the concept of simple cycles in the multi�commodity �ow context
 a column
in the key formulation that cannot be represented as the sum of other columns is called
an elementary exchange	 In solving the LP relaxation of ���� it su�ces to work with
elementary exchange columns
 which substantially reduces the number of columns	 See
Vance ������ for further details	

��� Primal heuristics

A branch�and�price algorithm can be easily turned into an eective approximation algo�
rithm when �nding a good feasible IP solution is the major concern and proving opti�
mality is of lesser or no importance	 This is accomplished by branching and searching
the tree in a greedy fashion	 For example
 in set partitioning problems where branching
is performed on a pair of rows
 there are generally many pairs that can be chosen to
eliminate the current fractional solution	 If the goal is to prove optimality
 it usually
makes sense to choose a branching decision that divides the solution space evenly
 i	e	

it is equally likely to �nd a good solution at either of the two nodes created	 If the goal
is to �nd a good feasible solution
 it makes sense to choose a branching decision that
divides the solution space in such a way that we are more likely to �nd a good solution
in one of the two nodes created and then choose this node for evaluation �rst	 For set
partitioning problems
 this would correspond to choosing a pair of rows r and s such
that

X

k�yrk�ysk��

�k
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has a value close to one	 When this is the case
 we are more likely to quickly �nd a good
integer solution on the

X

k�yrk�ysk��

�k � �

branch than on the
X

k�yrk�ysk��

�k � �

branch	 We then greedily search the tree always following the branch that is more likely to
yield a good feasible solution	 This approach has been applied to crew pairing problems
with good results
 see for instance Krishna et al	 ������	 In their implementation
 the
LP relaxation was not completely reoptimized at each node of the branch�and�bound
tree
 instead a maximum number of column generation iterations per node was set and
columns were generated only when the LP bound increased signi�cantly above the value
of the root LP	

A somewhat similar greedy search strategy for �nding good feasible solutions has
been developed based on the standard branching rule	 The approach is eective when
maintaining the ability to backtrack in the tree search is not important	 Each time
a variable with a high fractional value is chosen and its value is permanently �xed
to one	 In Marsten ������
 this strategy was successfully applied to the crew pairing
problem	 Pairings with high fractional value were �xed into the solution sequentially	
Whenever the value of the LP relaxation increased above a preset target
 new pairings
were generated	 The pairing generation subproblem remains tractable since each �xed
variable simply eliminates the �ights it covers from the pairing generation subproblem	

��� Combining column generation and row generation

Combining column and row generation can yield very strong LP relaxations	 However

synthesizing the two generation processes can be nontrivial	 The principle di�culty
is that the pricing problem can become much harder after additional rows are added

because the new rows can destroy the structure of the pricing problem	

Our �rst example of the successful combination of column generation and row gen�
eration is the work by Clarke and Gong ������	 They study a path�based formulation
for a capacitated network design problem	 The formulation has two types of variables�
integer variables representing the number of facilities of a given type to place on a link

and binary variables representing the decision to use a given path for a certain com�
modity or not	 The path variables are generated on�the��y using column generation	
To strengthen the LP relaxation
 they generate cuts involving only the integer topology

��



variables	 Since these cuts do not involve any path variables the pricing problem is not
aected	

For the remainder of this section
 it is bene�cial to distinguish two cases�

� Generating cuts from the original formulation in terms of x variables	

� Generating cuts from the column generation form in terms of � variables	

First consider the case where a cut dx � d� is derived from the original formulation	
In the column generation form this constraint is given by

X

��k�p

�dyk��k � d��

The associated pricing problem is given by

max
x�S�

��c� �A� 	d�x�� ��

where ��� 	� �� is the optimal dual solution to the LP relaxation of the extended RMP	
Observe that the new pricing problem diers from the original pricing problem only
in the objective function coe�cients	 Hence
 if we can solve the pricing problem for
arbitrary objective coe�cients
 then the addition of cuts does not complicate the pricing
problem	

This observation is presented and applied by Van den Akker
 Hurkens
 and Savels�
bergh ������ in their study of time�indexed formulations for single machine scheduling
problems	 Although time�indexed formulations provide strong bounds
 their size be�
comes prohibitive for instances with medium to large job processing times	 To handle
large instances
 Dantzig�Wolfe decomposition techniques are applied to solve the LP re�
laxations	 Van den Akker
 Hurkens
 and Savelsbergh demonstrate that several classes of
cuts for the original formulation can still be used eectively due to the above observation	

Secondly
 consider the case where a cut
P

��k�p gk�k � g� is derived from the column
generation form	 The pricing problem now becomes

max
x�S�

��c� �A�x� 	g�x��� ��

where the function g�x� for x � S� gives the coe�cient in the cut
P

��k�p gk�k � g�	
This means that the addition of the cut leads to an extra term 	g�x� in the cost of
each feasible solution x � S�	 As there may not exist an obvious way to transform the
term 	g�x� into costs on the variables xi
 the additional constraint can complicate the
structure of the pricing problem signi�cantly	

To illustrate
 consider the generalized assignment problem	 The column generation
form is a set partitioning problem and a well�known class of valid inequalities for the set

��



partitioning problem are clique inequalities �Padberg �����
 which simply say
 in linear
programming terms
 that the sum of the variables in the clique cannot exceed one	 Now
consider the pricing problem after the addition of a clique inequality to the column
generation form	 The reduced cost of a new column depends on whether it has a � or �
in the row associated with the clique inequality	 Therefore
 two cases for these columns
need to be considered
 and after k cliques have been added �k cases are required	

Despite these di�culties there have been some successful applications of combined
row and column generation when the cuts are derived from the column generation form	
For example
 when the objective is to partition the ground set into a minimum number of
feasible subsets
 such as minimizing the number of vehicles required to satisfy customer
demands in routing and scheduling problems
 an LP solution with fractional objective
function value v can be cut o by adding a constraint that bounds the LP solution from
below by dve	 Because every column has a coe�cient � in this additional constraint
 the
constraint does not complicate the pricing problem and can easily be handled	

Nemhauser and Park ������ combine column and row generation in an LP based algo�
rithm for the edge coloring problem	 The edge coloring problem requires a partitioning
of the edges of a graph into a minimum cardinality set of matchings	 Therefore
 it can
naturally be formulated as a set partitioning problem in which the columns correspond
to matchings of the graph	 Consequently
 the pricing problem is a weighted matching
problem	 However
 to strengthen the linear programming relaxation
 they add odd�
circuit constraints to the restricted master
 which destroys the pure matching structure
of the pricing problem	 The pricing problem now becomes a matching problem with
an additional variable for each odd circuit constraint
 and an additional constraint for
each odd circuit variable to relate the odd circuit variable to the edge variables in the
circuit	 This problem is solved by branch�and�cut	 The approach points out the need for
recursive calling of integer programming systems for the solution of complex problems	

��	 Implementation

Although implementing branch�and�price algorithms �or branch�and�cut algorithms� is
still a nontrivial activity
 the availability of �exible linear and integer programming
systems has made it a less formidable task than it would have been �ve years ago	

Modern simplex codes
 such as CPLEX �CPLEX Optimization
 ����� and OSL �IBM
Corporation
 ����� not only permit column generation while solving an LP but also
allow the embedding of column generation LP solving into a general branch�and�bound
structure for solving MIPs	

The use of MINTO �Nemhauser
 Savelsbergh
 and Sigismondi ����
 Savelsbergh and
Nemhauser ����� may reduce the implementation eorts even further	 MINTO �Mixed
INTeger Optimizer� is an eective general purpose mixed integer optimizer that can be

��



customized through the incorporation of application functions	 Its strength is that it
allows users to concentrate on problem speci�c aspects rather than data structures and
implementation details such as linear programming and branch�and�bound	
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