

Gestión de Operaciones

Capítulo 14: Programación de Proyectos

Introducción

Supuesto:

 La programación de proyectos asume que los proyectos están divididos en etapas independientes con claras relaciones de precedencia.

Ejemplos:

- Construcción de un edificio.
- Instalación de un equipo.
- Construcción de una máquina.
- Proyecto del curso.

Introducción

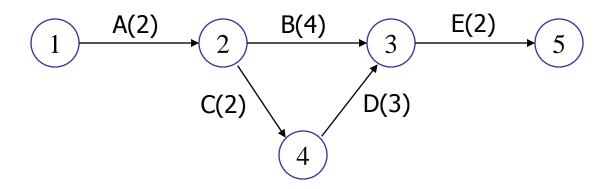
- Usos:
 - Planificación:
 - Recursos requeridos.
 - Plazos en forma global.
 - Programación de actividades:
 - Actividades específicas.
 - Plazos detallados.

Introducción

- Medidas de control:
 - Cumplimiento de plazos.
 - Costos.
 - Uso de recursos.

Ejemplo

Proyecto del Curso:


Actividad	Detalle	Duración
A	Análisis del Problema	2 semanas
В	Búsqueda de Datos	4 semanas
С	Desarrollo del Modelo	2 semanas
D	Programación	3 semanas
E	Correr Modelo y Elaborar Informe	2 semanas

Relaciones de Precedencia Directa:

Actividad	Predecesores	
Α	ВуС	
В	Е	
С	D	
D	Е	

Ejemplo

Malla de Actividades:

- Se definen actividades en el tiempo: cuando una actividad termina, la(s) actividad(es) que la sucede(n) puede(n) comenzar.
- En la malla los nodos corresponden a eventos y los arcos a actividades.

Ejemplo

- ¿Cuánto demora el proyecto?
 - El proyecto demora 9 semanas.
- ¿Cuál es la ruta crítica?
 - La ruta crítica es A-C-D-E.
 - En esta ruta cualquier actividad es cuello de botella.
- ¿Qué holguras existen?
 - Una actividad presenta holgura si se puede retrasar.
 - En el ejemplo la actividad B tiene una holgura de una semana.

4

Procedimiento

Para resolver este problema se definen:

t(x): tiempo que demora la actividad x.

TCmin(x): tiempo de comienzo mínimo de la actividad x.

TFmin(x): tiempo de fin mínimo de la actividad x.

TFmin(x) = TCmin(x) + t(x)

 $TCmin(x) = Max\{TFmin(y)\}, y \text{ predecesor inmediato de x.}$

4

Procedimiento

En el ejemplo:

$$TCmin(A) = 0$$
 $TFmin(A) = 0 + 2 = 2$ $TCmin(B) = TFmin(A) = 2$ $TFmin(B) = 2 + 4 = 6$ $TCmin(C) = TFmin(A) = 2$ $TFmin(C) = 2 + 2 = 4$ $TCmin(D) = 4$ $TFmin(D) = 4 + 3 = 7$

$$TCmin(E) = Max\{TFmin(B), TFmin(D)\} = Max\{6,7\} = 7$$

-

Procedimiento

Para determinar la ruta crítica y las holguras además hay que definir:

TCmax(x): tiempo de comienzo máximo de la actividad x sin atrasar el proyecto.

TFmax(x): tiempo de fin máximo de la actividad x sin atrasar el proyecto.

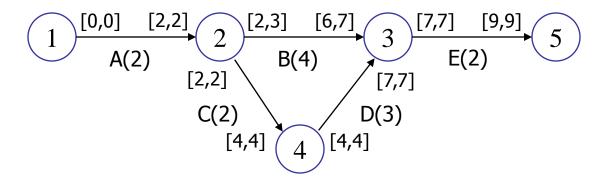
$$TCmax(x) = TFmax(x) - t(x)$$

 $TFmax(x) = Min\{TCmax(y)\}, y \text{ sucesor de } x.$

En el ejemplo:

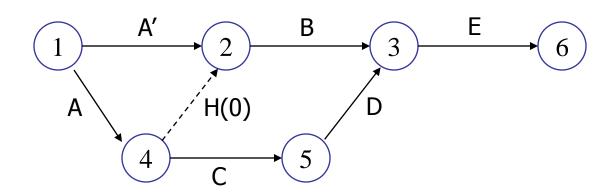
$$TFmax(E) = 9$$
 $TCmax(E) = 9 - 2 = 7$
 $TFmax(B) = 7$ $TCmax(B) = 7 - 4 = 3$
 $TFmax(D) = 7$ $TCmax(D) = 7 - 3 = 4$
 $TFmax(C) = 4$ $TCmax(C) = 4 - 2 = 2$

$$TFmax(A) = Min\{TCmax(B), TCmax(C)\} = Min\{3,2\} = 2$$

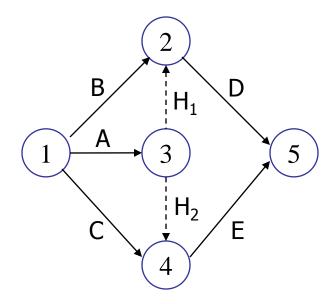

1

Procedimiento

- De esta manera:
 - La ruta crítica esta definida por las actividades en que TCmax(x) = TCmin(x):
 - A-C-D-E.
 - La holgura de la actividad x estará dada por TFmax(x) - TFmin(x) = TCmax(x) - TCmin(x).
 - Holgura de B = 1.

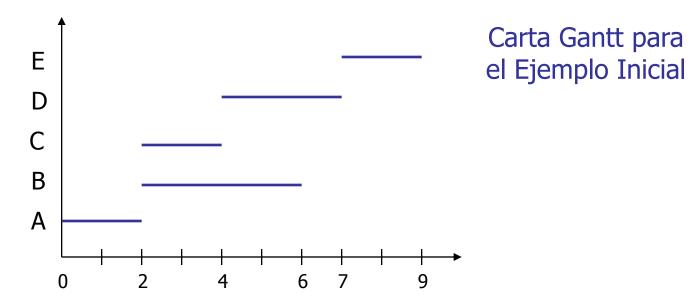


Se pueden hacer los cálculos directamente en la malla:


- Actividades artificiales:
 - ¿Qué pasa si agregamos una actividad A' que precede a B pero no a C?
 - Es necesario definir una actividad artificial con tiempo de duración igual a cero.

Ejemplo:

- A precede a D y E.
- B precede a D.
- C precede a E.



Carta Gantt

Características:

- Muestra cuánto tiempo se necesita para cada actividad y cuándo tendrá lugar la misma.
- Permite ver el uso de recursos en el tiempo.

Problema:

- ¿Qué pasa si los tiempos de las actividades no son determinísticos?
 - Si la actividad de programación puede demorar entre 3 y 5 semanas, el proyecto podría demorar de 9 a 11 semanas.
- ¿Cuáles son las actividades críticas?
 - ¿Cuál es el tiempo que demora cada actividad?

4

Método PERT

Procedimiento:

- Se supone una distribución beta para el tiempo que demoran las actividades.
- Se definen:
 - Τ_o: tiempo optimista.
 - T_D : tiempo pesimista.
 - T_m : tiempo medio.
 - T_e : Tiempo esperado para cada actividad.
 - Var_i: varianza de cada actividad.
 - 7: tiempo total de terminación del proyecto.
 - E(T): valor esperado para T.
 - Var(T): variación de T.

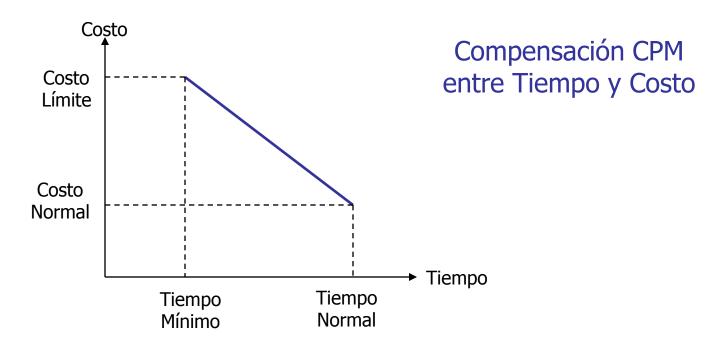
$$T_e = \frac{T_o + 4T_m + T_p}{6}$$

$$Var_i = \left(\frac{T_p - T_o}{6}\right)^2$$

 Se supone que los tiempos optimistas y pesimistas cubren seis desviaciones estándar en la distribución beta.

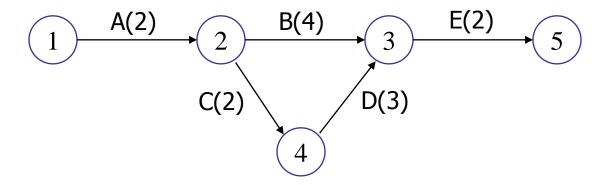
 De esta manera, considerando que T es el tiempo total de terminación del proyecto, se pueden calcular:

$$E(T) = \sum_{rutacrítica} T_e$$
 $Var(T) = \sum_{rutacrítica} Var_i$


Se asume independencia.

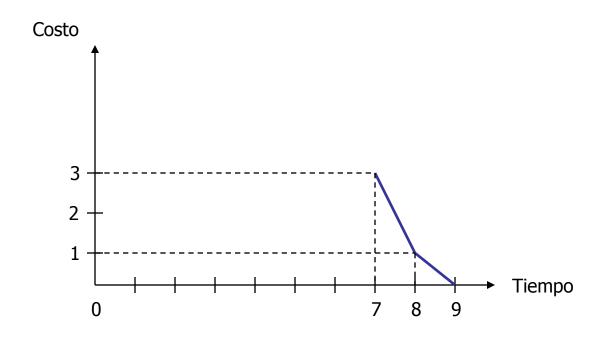
- Se busca la probabilidad de que T ≤ T_o.
 - Una solución exacta es compleja en redes no triviales.
 - Como alternativa se puede utilizar simulación. Si se hacen n experimentos:
 - 1.- Determinar T_x para la actividad x, al azar.
 - 2.- Determinar T y ruta crítica.
 - Si n = 1000 y en 800 experimentos T ≤ T_o, se puede decir que la probabilidad que el proyecto demore a lo más T_o es 0,8.
 - Si la actividad x aparece en la ruta crítica 600 veces, se puede decir que la probabilidad que x esté en la ruta crítica es 0,6.

Problema:


 Es posible incrementar o disminuir el tiempo de las actividades a un mayor costo.

Ejemplo:

Malla de Actividades


Tabla de Acortar Actividades

Actividad	Tiempo normal	Tiempo mínimo	Costo por reducir
			una semana
Α	2	1	1
В	4	2	2
С	2	1	2
D	3	2	3
E	2	1	5

Premio por terminar antes 4 por semana.

- ¿Qué conviene hacer?
 - Acortar A en una semana a costo 1
 - Acortar C en una semana a costo 2
 - Se generan dos rutas críticas A-B-E, A-C-D-E.
 - Acortar simultáneamente B y D aun costo 5 ¹
 - No vale la pena.

Costo y Tiempo para CPM