CHAPTER

Fundamentals of
Unconstrained
Optimization

In unconstrained optimization, we minimize an objective function that depends on real
variables, with no restrictions at all on the values of these variables. The mathematical
formulation is

min f(x), (2.1)

where x € R” isareal vector withn > 1 componentsand f : R — Risasmooth function.

Usually, we lack a global perspective on the function f. All we know are the values of f
and maybe some of its derivatives at a set of points xo, X1, X2, Fortunately, our algorithms
get to choose these points, and they try to do so in a way that identifies a solution reliably
and without using too much computer time or storage. Often, the information about f
does not come cheaply, so we usually prefer algorithms that do not call for this information
unnecessarily.

12 CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

y
y3 @
®
Yg eeeeermmees °
y1 °
t
| L | [[[
t, t, tg L,

Figure 2.1 Least squares data fitting problem.

3 ExAmpLE 2.1

Suppose that we are trying to find a curve that fits some experimental data. Figure 2.1
plots measurements y,, ya, - . ., Y Of a signal taken at times 1y, f,, . . . , t,. From the dataand
our knowledge of the application, we deduce that the signal has exponential and oscillatory
behavior of certain types, and we choose to model it by the function

d(t; x) =x; +)cze_("’_’)z/"4 + x5 cos(xgt).
The real numbers x;, i = 1,2,...,6, are the parameters of the model. We would like to
choose them to make the model values ¢(¢;; x) fit the observed data y; as closely as possible.

To state our objective as an optimization problem, we group the parameters x; into a vector
of unknowns x = (x, X2, . .., x¢)7, and define the residuals

ri(x) =y; — ¢(t;; x), j=1...,m, (2.2)

which measure the discrepancy between the model and the observed data. Our estimate of
x will be obtained by solving the problem

m;rﬁl @) =rix) + - +rix). (2.3)

2.1. WHAT IS A SOLUTION?

This is a nonlinear least-squares problem, a special case of unconstrained optimization.
Itillustrates that some objective functions can be expensive to evaluate even when the number
of variables is small. Here we have n = 6, but if the number of measurements m is large (10°%,
say), evaluation of f(x) for a given parameter vector x is a significant computation. O

Suppose that for the data given in Figure 2.1 the optimal solution of (2.3) is ap-
proximately x* = (1.1,0.01, 1.2, 1.5, 2.0, 1.5) and the corresponding function value is
f(x*) = 0.34. Because the optimal objective is nonzero, there must be discrepancies be-
tween the observed measurements y; and the model predictions ¢(r;, x*) for some (usually
most) values of j—the model has not reproduced all the data points exactly. How, then, can

we verify that x* is indeed a minimizer of f? To answer this question, we need to define the.
q

term “solution” and explain how to recognize solutions. Only then can we discuss algorithms
for unconstrained optimization problems.

2.1 WHAT IS A SOLUTION?

Generally, we would be happiest if we found a global minimizer of f, a point where the
function attains its least value. A formal definition is

A point x* is a global minimizer if f(x*) < f(x) for all x,

where x ranges over all of R"” (or at least over the domain of interest to the modeler). The
global minimizer can be difficult to find, because our knowledge of f is usually only local.
Since our algorithm does not visit many points (we hope!), we usually do not have a good
picture of the overall shape of f, and we can never be sure that the function does not take a
sharp dip in some region that has not been sampled by the algorithm. Most algorithms are
able to find only a local minimizer, which is a point that achieves the smallest value of f in
its neighborhood. Formally, we say:

A point x* is a local minimizer if there is a neighborhood N of x* such that f(x*) <

fx)forx e N.

(Recall that a neighborhood of x* is simply an open set that contains x*.) A point that satisfies
this definition is sometimes called a weak local minimizer. This terminology distinguishes it
from a strict local minimizer, which is the outright winner in its neighborhood. Formally,

A point x* is a strict local minimizer (also called a strong local minimizer) if there is a

neighborhood NV of x* such that f(x*) < f(x) forall x € A with x # x™.

13

14

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

For the constant function f(x) = 2, every point x is a weak local minimizer, while the
function f(x) = (x — 2)* has a strict local minimizer at x = 2.
A slightly more exotic type of local minimizer is defined as follows.

A point x* is an isolated local minimizer if there is a neighborhood N of x* such that
x* is the only local minimizer in NV.

Some strict local minimizers are not isolated, as illustrated by the function

F(x) = x*cos(1/x) + 2x*, f0)y=0,

which is twice continuously differentiable and has a strict local minimizer at x* = 0. How-
ever, there are strict local minimizers at many nearby points x,,, and we can label these points
so that x, — Oasn — oo.

While strict local minimizers are not always isolated, it is true that all isolated local
minimizers are strict.

Figure 2.2 illustrates a function with many local minimizers. It is usually difficult to
find the global minimizer for such functions, because algorithms tend to be “trapped” at the
local minimizers. This example is by no means pathological. In optimization problems
associated with the determination of molecular conformation, the potential function to be
minimized may have millions of local minima.

Sometimes we have additional “global” knowledge about f that may help in identifying
global minima. An important special case is that of convex functions, for which every local
minimizer is also a global minimizer.

Figure2.2 A difficult case for global minimization.

2.1. WHAT IS A SOLUTION?

RECOGNIZING A LOCAL MINIMUM

From the definitions given above, it might seem that the only way to find out whether
a point x* is a local minimum is to examine all the points in its immediate vicinity, to make
sure that none of them has a smaller function value. When the function f is smooth, however,
there are much more efficient and practical ways to identify local minima. In particular, if f
is twice continuously differentiable, we may be able to tell that x™ is a local minimizer (and
possibly a strict local minimizer) by examining just the gradient V f(x*) and the Hessian
V2 f(x*). _

The mathematical tool used to study minimizers of smooth functions is Taylor’s the-
orem. Because this theorem is central to our analysis throughout the book, we state it now.
Its proof can be found in any calculus textbook.

Theorem 2.1 (Taylor's Theorem).

Suppose that f : R" — R is continuously differentiable and that p € R". Then we have
that

fx+p)= fx)+Vflx+tp)p, (2.4)

forsomet € (0, 1). Moreover, if f is twice continuously differentiable, we have that

V(4 p) = VI + fo VGt pp e, 2.5)
and that
fx+p)=fO)+ V) p+LpTVf(x +1p)p, (2.6)
for somet € (0, 1).

Necessary conditions for optimality are derived by assuming that x* is a local minimizer
and then proving facts about V f(x*) and V2 f(x*).

Theorem 2.2 (First-Order Necessary Conditions).

Ifx* is a local minimizer and f is continuously differentiable in an open neighborhood
of x*, then V f(x*) = 0.

ProOF. Suppose for contradiction that V f(x*) % 0. Define the vector p = —V f(x*) and
note that p? Vf(x*) = —||[VF(x*)|I> < 0. Because V f is continuous near x*, there is a
scalar T > 0 such that

pTVf(x*+1p) <0, forallt € {0, T].

15

16

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

For any 7 € (0, T}, we have by Taylor’s theorem that

Fx*+1ip) = f(x*)+ipTVF(x* +1p), for somet € (0, 7).

Therefore, f(x* + ip) < f(x*) for all f € (0, T]. We have found a direction leading
away from x* along which f decreases, so x* is not a local minimizer, and we have a
contradiction. Od

We call x* a stationary point if V f(x*) = 0. According to Theorem 2.2, any local
minimizer must be a stationary point.

For the next result we recall that a matrix B is positive definite if p” Bp > 0 for all
p # 0, and positive semidefinite if p” Bp > 0 for all p (see the Appendix).

Theorem 2.3 (Second-Order Necessary Conditions).
If x* is a local minimizer of f and V*f is continuous in an open neighborhood of x*,
then V f (x*) = 0 and V2 f(x*) is positive semidefinite.

PROCF. We know from Theorem 2.2 that V f(x*) = 0. For contradiction, assume
that V2 f(x*) is not positive semidefinite. Then we can choose a vector p such that
pT V2 f(x*)p < 0,and because V2 f is continuous near x*, there is a scalar 7 > 0 such that
pTV2f(x* +1tp)p < Oforallt € [0, T].

By doing a Taylor series expansion around x*, we have for all # € (0, T] and some
t € (0, 1) that

O +ip) = M) +EpTVFG™) + 3P pT VA f(x* +1p)p < fF(X7).

As in Theorem 2.2, we have found a direction from x* along which f is decreasing, and so
again, x* is not a local minimizer. [}

We now describe sufficient conditions, which are conditions on the derivatives of f at
the point z* that guarantee that x* is a local minimizer.

Theorem 2.4 (Second-Order Sufficient Conditions).
Suppose that V2 f is continuous in an open neighborhood of x* and thatV f(x*) = 0
and V2 f (x*) is positive definite. Then x* is a strict local minimizer of f.

PROOF. Because the Hessian is continuous and positive definite at x*, we can choose aradius
r > 0so that V2 f(x) remains positive definite for all x in the open ball D = {zlllz—x*|l <
r}. Taking any nonzero vector p with || pll < r, we have x* 4+ p € D and so

fG*+p)= fx*)+p Vfx*) +1pTVf(2)p
= f(x") + 1p" V2 f(2)p,

2.1. WHAT Is A SOLUTION?

where z = x* +1p forsome € (0, 1). Since z € D, we have p” V? f(2) p > 0,and therefore
f{x*+ p) > f(x*), giving the result. . O

Note that the second-order sufficient conditions of Theorem 2.4 guarantee something
stronger than the necessary conditions discussed earlier; namely, that the minimizer is a strict
local minimizer. Note too that the second-order sufficient conditions are not necessary: A
point x* may be a strict local minimizer, and yet may fail to satisfy the sufficient conditions.
A simple example is given by the function f(x) = x*, for which the point x* = 0 is a strict
local minimizer at which the Hessian matrix vanishes (and is therefore not positive definite).

When the objective function is convex, local and global minimizers are simple to
characterize.

Theorem 2.5.

When f is convex, any local minimizer x* is a global minimizer of f. If in addition f is
differentiable, then any stationary point x* is a global minimizer of f.

PROOF. Suppose that x* is a local but not a global minimizer. Then we can find a point
z € R" with f(z) < f(x*). Consider the line segment that joins x* to z, that is,

x =iz + (1 — A)x*, for some A € (0, 1]. 2.7)
By the convexity property for f, we have
FE) =A@+ A =0)f") < f(x). (2.8)

Any neighborhood A/ of x* contains a piece of the line segment (2.7), so there will always
be points x € A at which (2.8) is satisfied. Hence, x* is not a local minimizer.

For the second part of the theorem, suppose that x* is not a global minimizer and
choose z as above. Then, from convexity, we have

Vi) (z—x*) = j—)\f(x* +A(z —x")) lx=0o (see the Appendix)
S+ Az —x") — fG7)

= lim
240 A

<lim M@+ Q-2 f") — f(x")
x40 A

= f(z) — f(x") <o0.
Therefore, V f(x*) 5 0, and so x™ is not a stationary point. O
These results, which are based on elementary calculus, provide the foundations for

unconstrained optimization algorithms. In one way or another, all algorithms seek a point
where V f(-) vanishes.

17

18

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

. NONSMOOTH PROBLEMS

This book focuses on smooth functions, by which we generally mean functions whose
second derivatives exist and are continuous. We note, however, that there are interesting
problems in which the functions involved may be nonsmooth and even discontinu?us.
it is not possible in general to identify a minimizer of a general discontinuous function.
If, however, the function consists of a few smooth pieces, with discontinuities between the
pieces, it may be possible to find the minimizer by minimizing each smooth piece ind.ividuall-y.

If the function is continuous everywhere but nondifferentiable at certain points, as in
Figure 2.3, we can identify a solution by examing the subgradient, or generalized gradient,
which is a generalization of the concept of gradient to the nonsmooth case. Nonsmooth
optimization is beyond the scope of this book; we refer instead to Hiriart-Urruty and
Lemaréchal [137] for an extensive discussion of theory. Here, we mention only that the
[minimization of a function such as the one illustrated in Figure 2.3 (which contains a jump
discontinuity in the first derivative f'(x) at the minimum) is difficult because the behav-
jor of f is not predictable near the point of nonsmoothness. That is, we cannot be sure
that information about f obtained at one point can be used to infer anything about f at
neighboring points, because points of nondifferentiability may intervene. However, certain
special nondifferentiable functions, such as functions of the form

FG)y = lr(x)ih, Fx) = lr(lleo
(where r(x) is the residual vector refined in (2.2)), can be solved with the help of special-
purpose algorithms; see, for example, Fletcher [83, Chapter 14].

Wi

x¥ X

Figure 2.3 Nonsmooth function with minimum at a kink.

2.92. OVERVIEW OF ALGORITHMS

2.2 OVERVIEW OF ALGORITHMS

The last thirty years has seen the development of a powerful collection of algorithms for
unconstrained optimization of smooth functions. We now give a broad description of their
main properties, and we describe them in more detail in Chapters 3, 4, 5, 6, 8, and 9. All
algorithms for unconstrained minimization require the user to supply a starting point, which
we usually denote by xo. The user with knowledge about the application and the data set may
be in a good position to choose x; to be a reasonable estimate of the solution. Otherwise,
the starting point must be chosen in some arbitrary manner.

Beginning at xo, optimization algorithms generate a sequence of iterates {x;}72,, that
terminate when either no more progress can be made or when it seems that a solution
point has been approximated with sufficient accuracy. In deciding how to move from one
iterate x; to the next, the algorithms use information about the function f at xi, and
possibly also information from earlier iterates xo, xi, ..., Xx—;. They use this information
to find a new iterate x4, with a lower function value than x;. (There exist nonmonotone
algorithms that do not insist on a decrease in f at every step, but even these algorithms
require f to be decreased after some prescribed number m of iterations. That is, they enforce
f(xk) < f(xk——m)~)

There are two fundamental strategies for moving from the current point x to a new
iterate xp4+;. Most of the algorithms described in this book follow one of these approaches.

TWO STRATEGIES: LINE SEARCH AND TRUST REGION

In the line search strategy, the algorithm chooses a direction py and searches along this
direction from the current iterate x for a newiterate with a lower function value. The distance
to move along py can be found by approximately solving the following one-dimensional
minimization problem to find a step length o:

min SO+ apg). (2.9)

By solving (2.9) exactly, we would derive the maximum benefit from the direction py, but
an exact minimization is expensive and unnecessary. Instead, the line search algorithm
generates a limited number of trial step lengths until it finds one that loosely approximates
the minimum of (2.9). At the new point a new search direction and step length are computed,
and the process is repeated.

In the second algorithmic strategy, known as trust region, the information gathered
about f is used to construct a model function m; whose behavior near the current point
X is similar to that of the actual objective function f. Because the model m; may not be a
good approximation of f when x is far from x;, we restrict the search for a minimizer of m
to some region around x;. In other words, we find the candidate step p by approximately

19

20

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

solving the following subproblem:

min mg(xx + p), where x; + p lies inside the trust region. (2.10)
P

If the candidate solution does not produce a sufficient decrease in f, we conclude that the
trust region is too large, and we shrink it and re-solve (2.10). Usually, the trust region is a
ball defined by || pll2 < A, where the scalar A > 0 is called the trust-region radius. Elliptical
and box-shaped trust regions may also be used.

The model my in (2.10) is usually defined to be a quadratic function of the form

m(xi + pY = fe + p"V fi + 1 p" Bep, (2.1

where fi, V fi, and By are a scalar, vector, and matrix, respectively. As the notation indicates,
fx and V f;, are chosen to be the function and gradient values at the point x;, so that my
and f are in agreement to first order at the current iterate x;. The matrix By is either the
Hessian V? f; or some approximation to it.

Suppose that the objective function is given by f(x) = 10(x; — x2)? + (1 — x;)* At
the point x; = (0, 1) its gradient and Hessian are

o] 2 gir | -3 0
T o220 | fe=l g 0 |

The contour lines of the quadratic model (2.11) with By, = V2 f; are depicted in Figure 2.4,
which also illustrates the contours of the objective function f and the trust region. We have
indicated contour lines where the model m; has values 1 and 12. Note from Figure 2.4 that
each time we decrease the size of the trust region after failure of a candidate iterate, the step
from x; to the new candidate will be shorter, and it usually points in a different direction
from the previous candidate. The trust-region strategy differs in this respect from line search,
which stays with a single search direction. -

In a sense, the line search and trust-region approaches differ in the order in which they
choose the direction and distance of the move to the next iterate. Line search starts by fixing
the direction p; and then identifying an appropriate distance, namely the step length .. In
trust region, we first choose a maximum distance—the trust-region radius; Ay—and then
seek a direction and step that attain the best improvement possible subject to this distance
constraint. If this step proves to be unsatisfactory, we reduce the distance measure A; and
try again.

The line search approach is discussed in more detail in Chapter 3. Chapter 4 discusses
the trust-region strategy, including techniques for choosing and adjusting the size of the
region and for computing approximate solutions to the trust-region problems (2.10). We
now preview two major issues: choice of the search direction py in line search methods, and
choice of the Hessian By, in trust-region methods. These issues are closely related, as we now
observe.

2.2. OVERVIEW OF ALGORITHMS

contours

of f

unconstrained
minimizer

contours
of model

Figure2.4 Two possible trust regions (circles) and their corresponding steps py. The
solid lines are contours of the model function .

SEARCH DIRECTIONS FOR LINE SEARCH METHODS

The steepest-descent direction —V fy is the most obvious choice for search direction
for a line search method. It is intuitive; among all the directions we could move from x,
it is the one along which f decreases most rapidly. To verify this claim, we appeal again to
Taylor’s theorem (Theorem 2.1), which tells us that for any search direction p and step-length
parameter ¢, we have

Flou+ap) = fou)+ap” Vi + %aszVZf(xk +tp)p, forsomet € (0, a)

(see (2.6)). The rate of change in f along the direction p at x; is simply the coefficient of
«, namely, p7 V ;. Hence, the unit direction p of most rapid decrease is the solution to the
problem

min pTV £, subject to || p|| = 1. (2.12)
P

Since pTV fi = |lpll |V fill cos @, where 6 is the angle between p and V f, we have from
ipll = 1that p7V fi = ||V fi]l cos 8, so the objective in (2.12) is minimized when cos 6

21

22 CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

Figure 2.5 Steepest descent direction for a function of two variables.

takes on its minimum value of —1 at & = 7 radians. In other words, the solution to (2.12) is

P ==VA/JIVLl,

as claimed. As we show in Figure 2.5, this direction is orthogonal to the contours of the
function.

The steepest descent method is a line search method that moves along py = —V f} at
every step. It can choose the step length o in a variety of ways, as we discuss in Chapter 3. One
advantage of the steepest descent direction is that it requires calculation of the gradient V f
but not of second derivatives. However, it can be excruciatingly slow on difficult problems.

Line search methods may use search directions other than the steepest descent direc-
tion. In general, any descent direction—one that makes an angle of strictly less than 7 /2
radians with —V f;—is guaranteed to produce a decrease in f, provided that the step length
is sufficiently small (see Figure 2.6). We can verify this claim by using Taylor’s theorem. From
(2.6), we have that

Flx +epi) = flx) +epl V fi + O(h).
When py is a downhill direction, the angle 6, between p; and V f; has cos 6 < 0, so that
PV fe = 1Pl IV fill cos 6 < 0.
It follows that f(x; 4+ epi) < f(x;) for all positive but sufficiently small values of €.

Another important search direction—perhaps the most important one of all—
is the Newton direction. This direction is derived from the second-order Taylor series

2.2. OVERVIEW OF ALGORITHMS

Figure 2.6 A downhill direction p;

approximation to f(x; + p), which is

Foe+p)~ fi + pTV fi + 1pTV2 fip (). (2.13)

Assuming for the moment that V2 f; is positive definite, we obtain the Newton direction
by finding the vector p that minimizes m;(p). By simply setting the derivative of m;(p) to
zero, we obtain the following explicit formula:

pi=-Vf 'V fi. (2.14)

The Newton direction is reliable when the difference between the true function f (x; +
p) and its quadratic model m(p) is not too large. By comparing (2.13) with (2.6), we see
that the only difference between these functions is that the matrix V2 f(x; + tp) in the
third term of the expansion has been replaced by V2 f; = V2 f(x;). If V2 £ (-) is sufficiently
smooth, this difference introduces a perturbation of only O(}|p|I®) into the expansion, so
that when || p|| is small, the approximation f(x; + p) = m;(p) is very accurate indeed.

The Newton direction can be used in a line search method when V2§ is positive
definite, for in this case we have

VP = —pTV bl < ol i1
for some oy > 0. Unless the gradient V f; (and therefore the step p}) is zero, we have that

VI pi < 0, so the Newton direction is a descent direction. Unlike the steepest descent
direction, there is a “natural” step length of 1 associated with the Newton direction. Most

23

24

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

line search implementations of Newton’s method use the unit step @ = 1 where possible and
adjust this step length only when it does not produce a satisfactory reduction in the value
of f.

When V2 f; is not positive definite, the Newton direction may not even be defined,
since V2 f;”! may not exist. Even when it is defined, it may not satisfy the descent property
V £ py < 0, in which case it is unsuitable as a search direction. In these situations, line
search methods modify the definition of p, to make it satisfy the downhill condition while
retaining the benefit of the second-order information contained in V2 f;. We will describe
these modifications in Chapter 6.

Methods that use the Newton direction have a fast rate of local convergence, typically
quadratic. When a neighborhood of the solution is reached, convergence to high accuracy
often occurs in just a few iterations. The main drawback of the Newton direction is the
need for the Hessian V? f(x). Explicit computation of this matrix of second derivatives is
sometimes, though not always, a cumbersome, error-prone, and expensive process.

Quasi-Newton search directions provide an attractive alternative in that they do not
require computation of the Hessian and yet still attain a superlinear rate of convergence.
In place of the true Hessian V? f;, they use an approximation By, which is updated after
each step to take account of the additional knowledge gained during the step. The updates
make use of the fact that changes in the gradient g provide information about the second
derivative of f along the search direction. By using the expression (2.5) from our statement
of Taylor’s theorem, we have by adding and subtracting the term V2 f(x) p that

1
VG +p)=VFx)+Viflx)p +/ [V2f(x +1p) — V2 f(x)] pdr.
4]

Because V f(-) is continuous, the size of the final integral term is o(|| p||). By setting x = x;
and p = Xp41 — Xk, We obtain

V fert =V fi + V2 firr (s — x6) + olxess —)

When x; and x4 lie in a region near the solution x*, within which V f is positive definite,
the final term in this expansion is eventually dominated by the V2 fi (x4 — xi) term, and
we can write

V2 fert(Zisr — xi) =V fegr = V fir. (2.15)

We choose the new Hessian approximation By, so that it mimics this property (2.15) of
the true Hessian, that is, we require it to satisfy the following condition, known as the secant
equation:

Bri15e = Yi, (2.16)

2.9. OVERVIEW OF ALGORITHMS

where

Sk = Xip1 — X, Ye =V frp1 — V.
Typically, we impose additional requirements on By, such as symmetry (motivated by
symmetry of the exact Hessian), and a restriction that the difference between successive
approximation By to By have low rank. The initial approximation By must be chosen by
the user.

Two of the most popular formulae for updating the Hessian approximation By, are the
symmetric-rank-one (SR1) formula, defined by

(¥« — Bisi)(vx — Bise)T

By = B, +
A k (yx — Bysi)Tsk

, (2.17)

and the BFGS formula, named after its inventors, Broyden, Fletcher, Goldfarb, and Shanno,
which is defined by

Bises{ Be | eyl

Byy1 = By — (2.18)

s,? By ykT Sk
Note that the difference between the matrices B, and By, is a rank-one matrix in the
case of (2.17), and a rank-two matrix in the case of (2.18). Both updates satisfy the secant
equation and both maintain symmetry. One can show that BFGS update (2.18) generates
positive definite approximations whenever the initial approximation By is positive definite
and s yx > 0. We discuss these issues further in Chapter 8.

The quasi-Newton search direction is given by using B, in place of the exact Hessian
in the formula (2.14), that is,

pe=~B'V fi. (2.19)

Some practical implementations of quasi-Newton methods avoid the need to factorize By
at each iteration by updating the inverse of By, instead of By itself. In fact, the equivalent

formula for (2.17) and (2.18), applied to the inverse approximation H) o Bl is

1

-
Vi Sk

Hipr = (I — peseyi) He (I = pryiesy) + psisy Pk = (2.20)

Calculation of py can then be performed by using the formula p; = —H;V f;. This can
be implemented as a matrix—vector multiplication, which is typically simpler than the
factorization/back-substitution procedure that is needed to implement the formula (2.19).

Two variants of quasi-Newton methods designed to solve large problems—partially
separable and limited-memory updating—are described in Chapter 9.

25

26

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

The last class of search directions we preview here is that generated by nonlinear
conjugate gradient methods. They have the form

pr ==V f(x) + Bepr-1.

where By is a scalar that ensures that p; and py_, are conjugate—an important concept in the
minimization of quadratic functions that will be defined in Chapter 5. Conjugate gradient
methods were originally designed to solve systems of linear equations Ax = b, where the
coefficient matrix A is symmetric and positive definite. The problem of solving this linear
system is equivalent to the problem of minimizing the convex quadratic function defined by

#(x) = 3x"Ax + b7 x,

so it was natural to investigate extensions of these algorithms to more general types of
unconstrained minimization problems. In general, nonlinear conjugate gradient directions
are much more effective than the steepest descent direction and are almost as simple to
compute. These methods do not attain the fast convergence rates of Newton or quasi-
Newton methods, but they have the advantage of not requiring storage of matrices. An
extensive discussion of nonlinear conjugate gradient methods is given in Chapter 5.

All of the search directions discussed so far can be used directly in a line search
framework. They give rise to the steepest descent, Newton, quasi-Newton, and conjugate
gradient line search methods. All except conjugate gradients have an analogue in the trust-
region framework, as we now discuss.

MODELS FOR TRUST-REGION METHODS

If we set B, = 0 in (2.11) and define the trust region using the Eug]idean norm, the
trust-region subproblem (2.10) becomes

min fi+p"Vfi subjectto ||pll2 < Ay.

We can write the solution to this problem in closed form as

AV

PV A

This is simply a steepest descent step in which the step length is determined by the trust-
region radius; the trust-region and line search approaches are essentially the same in this
case.

A more interesting trust-region algorithm is obtained by choosing B to be the exact
Hessian V? f in the quadratic model (2.11). Because of the trust-region restriction || p|j> <
Ay, there is no need to do anything special when V2 f; is not positive definite, since the

2.92. OVERVIEW OF ALGORITHMS

subproblem (2.10) is guaranteed to havea solution py,asweseein Figure 2.4. The trust-region
Newton method has proved to be highly effective in practice, as we discuss in Chapter 6.

If the matrix By in the quadratic model function my of (2.11) is defined by means of
a quasi-Newton approximation, we obtain a trust-region quasi-Newton method.

SCALING

The performance of an algorithm may depend crucially on how the problem is formu-
lated. One important issue in problem formulation is scaling. In unconstrained optimization,
a problem is said to be poorly scaled if changes to x in a certain direction produce much larger
variations in the value of f than do changes to x in another direction. A simple example is
provided by the function f(x) = 10°x] + x, which is very sensitive to small changes in x;
but not so sensitive to perturbations in x,.

Poorly scaled functions arise, for example, in simulations of physical and chemical
systems where different processes are taking place at very different rates. To be more specific,
consider a chemical system in which four reactions occur. Associated with each reaction is
a rate constant that describes the speed at which the reaction takes place. The optimization
problem is to find values for these rate constants by observing the concentrations of each
chemical in the system at different times. The four constants differ greatly in magnitude,
since the reactions take place at vastly different speeds. Suppose we have the following
rough estimates for the final values of the constants, each correct to within, say, an order of
magnitude:

X =1070 xymasal, xg & 10°.

Before solving this problem we could introduce a new variable z defined by

X 107 0 o0 o Z1
X 0 1 0 0 2
s | | o o1 o |
X4 0 0 0 10° Z4

and then define and solve the optimization problem in terms of the new variable z. The
optimal values of z will be within about an order of magnitude of 1, making the solution
more balanced. This kind of scaling of the variables is known as diagonal scaling.

Scaling is performed (sometimes unintentionally) when the units used to represent
variables are changed. During the modeling process, we may decide to change the units of
some variables, say from meters to millimeters. If we do, the range of those variables and
their size relative to the other variables will both change.

Some optimization algorithms, such as steepest descent, are sensitive to poor scaling,
while others, such as Newton’s method, are unaffected by it. Figure 2.7 shows the contours

27

28 CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

Figure 2.7 Poorly scaled and well-scaled problems, and performance of the steepest
descent direction.

of two convex nearly quadratic functions, the first of which is poorly scaled, while the second
is well scaled. For the poorly scaled problem, the one with highly elongated contours, the
steepest descent direction (also shown on the graph) does not yield much reduction in the
function, while for the well-scaled problem it performs much better. In both cases, Newton’s
method will produce a much better step, since the second-order quadratic model (my in
(2.13)) happens to be a good approximation of f.

Algorithms that are not sensitive to scaling are preferable to those that are not, because
they can handle poor problem formulations in a more robust fashion. In designing_compl.ete-
algorithms, we try to incorporate scale invarianceinto all aspects of the algorithm, mclud1‘ng
the line search or trust-region strategies and convergence tests. Generally speaking, it is easier
to preserve scale invariance for line search algorithms than for trust-region algorithms.

RATES OF CONYERGENCE

One of the key measures of performance of an algorithm is its rate of convergence. We
now define the terminology associated with different types of convergence, for. reference in
later chapters. .

Let {x;} be a sequence in R” that converges to x*. We say that the convergence is
Q-linear if there is a constant r € (0, 1) such that

Nxeer — x*|l

<r, forall k sufficiently large. (2.21)
loxx — x*|f

2.2. OVERVIEW OF ALGORITHMS

This means that the distance to the solution x* decreases at each iteration by at least a
constant factor. For example, the sequence 1 + (0.5)% converges Q-linearly to 1. The prefix
“Q” stands for “quotient,” because this type of convergence is defined in terms of the quotient
of successive errors.

The convergence is said to be Q-superlinear if

fxger = x*
koo |lxp — x*||

For example, the sequence 1 + k% converges superlinearly to 1. (Prove this statement!)
Q-quadratic convergence, an even more rapid convergence rate, is obtained if

eeer = ™l _ .
5 = M, forall k sufficiently large,
lxe — x*||

where M is a positive constant, not necessarily less than 1. An example is the sequence
1+ (0.5)%.

The speed of convergence depends on r and (more weakly) on M, whose values depend
not only on the algorithm but also on the properties of the particular problem. Regardless of
these values, however, a quadratically convergent sequence will always eventually converge
faster than a linearly convergent sequence.

Obviously, any sequence that converges Q-quadratically also converges Q-super-
linearly, and any sequence that converges Q-superlinearly also converges Q-linearly. We
can also define higher rates of convergence (cubic, quartic, and so on), but these are less
interesting in practical terms. In general, we say that the Q-order of convergence is p (with
p > 1) if there is a positive constant M such that

lxXeer — X"l .
———— — < M, forall k sufficiently large.
flg — x*|?

Quasi-Newton methods typically converge Q-superlinearly, whereas Newton’s method
converges Q-quadratically. In contrast, steepest descent algorithms converge only at a Q-
linear rate, and when the problem is ill-conditioned the convergence constant r in (2.21) is
close to 1.

Throughout the book we will normally omit the letter O and simply talk about
superlinear convergence, quadratic convergence, etc.

R-RATES OF CONVERGENCE

A slightly weaker form of convergence, characterized by the prefix “R” (for “root”),
is concerned with the overall rate of decrease in the error, rather than the decrease over a
single step of the algorithm. We say that convergence is R-linear if there is a sequence of

29

30

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

nonpegative scalars {v;.} such that
[lxx — x*|| < v for all k, and {v;} converges Q-linearly to zero.

The sequence {|lxx — x*||} is said to be dominated by {v;}. For instance, the sequence

1+ (0.5)%, k .
Xk — { +() even (222)

1, k odd,

(the first few iterates are 2, 1, 1.25, 1, 1.03125, 1, .. .) converges R-linearly to 1, because it is
dominated by the sequence 1 + (0.5)%, which converges Q-linearly. Likewise, we say that {x;}
converges R-superlinearly to x* if {||x; —x*||} is dominated by a Q-superlinear sequence, and
{x} converges R-quadratically to x* if {||x; — x*||} is dominated by a Q-quadratic sequence.

Note that in the R-linear sequence (2.22), the error actually increases at every second
iteration! Such behavior occurs even in sequences whose R-rate of convergence is arbitrarily
high, but it cannot occur for Q-linear sequences, which insist on a decrease at every step k,
for k sufficiently large.

Most convergence analyses of optimization algorithms are concerned with Q-
convergence.

NOTES AND REFERENCES

For an extensive discussion of convergence rates see Ortega and Rheinboldt [185].

& EXERCISES

& 2.1 Compute the gradient V f(x) and Hessian V? f(x) of the Rosenbrock function
F(x) = 1000, — x7)* + (1 — x1)%. (2.23)

Show that x* = (1, 1)7 is the only local minimizer of this function, and that the Hessian

matrix at that point is positive definite.

& 2.2 Show that the function f(x) = 8x; + 12x; + x? — 2x} has only one stationary

point, and that it is neither a maximum or minimum, but a saddle point. Sketch the contour
lines of f.

& 2.3 Letabeagiven n-vector, and A be a given n x n symmetric matrix. Compute the
gradient and Hessian of fi(x) = a”x and f,(x) = xT Ax.

& 2.4 Write the second-order Taylor expansion (2.6) for the function cos(1/x) around
a nonzero point x, and the third-order Taylor expansion of cos(x) around any point x.
Evaluate the second expansion for the specific case of x = 1.

2.9. OVERVIEW OF ALGORITHMS

& 2.5 Consider the function f : R?> — R defined by f(x) = | x||>. Show that the
sequence of iterates {x;} defined by

(l—l— 1) cosk
X = —
, 2k sink

satisfies f(xp41) < f(xx) for k = 0,1, 2,.... Show that every point on the unit circle
{x|]x)|* = 1} is a limit point for {x;}. Hint: Every value 6 € [0, 27} is a limit point of the
subsequence {&} defined by

& =k(mod2r) =k — 27 LiJ s
2

where the operator | -] denotes rounding down to the next integer.

& 2.6 Prove that all isolated local minimizers are strict. (Hint: Take an isolated local
minimizer x* and a neighborhood N. Show that for any x € A, x # x* we must have

fx) > f(x9).)

& 2.7 Suppose that f is a convex function. Show that the set of global minimizers of f
is a convex set.

& 2.8 Consider the function f(xi,x2) = (x; +x§)2. At the point xT = (1,0) we
consider the search direction p” = (—1, 1). Show that p is a descent direction and find all
minimizers of the problem (2.9).

& 2.9 Suppose that f(z) = f(x), where x = Sz + s for some S € R"* and s € R".
Show that
Vi@ =5"Vix), Vf@)=STVf(x)S.

(Hint: Use the chain rule to express d f/dz; in terms of df /dx; and dx; /dz, for all i, j =
1,2,...,n)

& 2.10 Show that the symmetric rank-one update (2.17) and the BFGS update (2.18)
are scale-invariant if the initial Hessian approximations By are chosen appropriately. That is,
using the notation of the previous exercise, show that if these methods are applied to f(x)
starting from xo = Szo + s with initial Hessian By, and to f(z) starting from zo with initial
Hessian S7 By S, then all iterates are related by x; = Sz -+ 5. (Assume for simplicity that the
methods take unit step lengths.)

& 2.11 Suppose that a function f of two variables is poorly scaled at the solution x*.
Write two Taylor expansions of f around x*—one along each coordinate direction—and
use them to show that the Hessian V2 f (x*) is ill-conditioned.

31

32

CHAPTER 2. FUNDAMENTALS OF UNCONSTRAINED OPTIMIZATION

& 2.12 Show that the sequence x; = 1/k is not Q-linearly convergent, though it does
converge to zero. (This is called sublinear convergence.)

& 2.13 Show that the sequence x; = 1 + (O.S)Zk is O—quadratically convergent to 1.
& 2.14 Does the sequence 1/(k!) converge Q-superlinearly? Q-quadratically?
& * 2.15 Consider the sequence {x;} defined by

ZK
=). k even,
(xg—1)/k, kodd.

Is this sequence Q-superlinearly convergent? Q-quadratically convergent? R-quadratically
convergent?

CHAPTER

—

Line Search
Methods

Each iteration of a line search method computes a search direction pi and then decides how
far to move along that direction. The iteration is given by

Xk+1 = Xk + Ok Py (3.1)

where the positive scalar oy is called the step length. The success of a line search method
depends on effective choices of both the direction py and the step length o.

Most line search algorithms require py to be a descent direction—one for which
PV fi < 0—because this property guarantees that the function f can be reduced along
this direction, as discussed in the previous chapter. Moreover, the search direction often has
the form

pe=—B; 'V fi, (3.2)

where By is a symmetric and nonsingular matrix. In the steepest descent method By is
simply the identity matrix I, while in Newton’s method By is the exact Hessian V2 f (xx).
In quasi-Newton methods, By is an approximation to the Hessian that is updated at every

36 CHAPTER 3. LiNE SEARCH METHODS

o (o)

first local
minimizer

first :
stationary

oint .
P global minimizer

Figure3.1 The ideal step length is the global minimizer.

iteration by means of a low-rank formula. When py is defined by (3.2) and By is positive
definite, we have

PAVfi=—-VfIB'Vf <0,

and therefore py is a descent direction.
In the next chapters we study how to choose the matrix By, or more generally, how

to compute the search direction. We now give careful consideration to the choice of the
step-length parameter .

3.1 STEP LENGTH

In computing the step length ., we face a tradeoff. We would like to choose &y to
give a substantial reduction of £, but at the same time, we do not want to spend too much
time making the choice. The ideal choice would be the global minimizer of the univariate
function ¢(-) defined by

¢la) = fxx +apr), «>0, (3.3)

but in general, it is too expensive to identify this value (see Figure 3.1). To find even a local
minimizer of ¢ to moderate precision generally requires too many evaluations of the objec-

3.1. STEP LENGTH
J(x)
| .
Xy 5%

Figure 3.2 Insufficient reduction in f.

tive function f and possibly the gradient V f. More practical strategies perform an inexact
line search to identify a step length that achieves adequate reductions in f at minimal cost.

Typical line search algorithms try out a sequence of candidate values for «, stopping to
accept one of these values when certain conditions are satisfied. The line search is done in two
stages: A bracketing phase finds an interval containing desirable step lengths, and a bisection
or interpolation phase computes a good step length within this interval. Sophisticated line
search algorithms can be quite complicated, so we defer a full description until the end of
this chapter. We now discuss various termination conditions for the line search algorithm
and show that effective step lengths need not lie near minimizers of the univariate function
¢(a) defined in (3.3).

A simple condition we could impose on ¢ is that it provide a reduction in f, i.e,
f(xk + appr) < f(xi). That this is not appropriate is illustrated in Figure 3.2, where the
minimum is f* = —1, but the sequence of function values {5/k}, k = 0, 1, ..., converges
to zero. The difficulty is that we do not have sufficient reduction in f, a concept we discuss
next.

THE WOLFE CONDITIONS

A popular inexactline search condition stipulates that o, should first of all give sufficient
decrease in the objective function f, as measured by the following inequality:

Fl+ap) < flx) + aaV £ pe, (3.4)

37

38 CHAPTER 3. LINE SEARCH METHODS

0 () =f(x, +op,)

\ Y

acceptable

acceptable

Figure 3.3 * Sufficient decrease condition.

for some constant ¢; € (0, 1). In other words, the reduction in f should be proportional to
both the step length oy and the directional derivative V f7 p;. Inequality (3.4) is sometimes
called the Armijo condition.

The sufficient decrease condition is illustrated in Figure 3.3. The right-hand-side of
(3.4), which is a linear function, can be denoted by /(). The function /(-) has negative slope
C]kaTpk, but because ¢; € (0, 1), it lies above the graph of ¢ for small positive values of
a. The sufficient decrease condition states that « is acceptable only if ¢(a) < I(ar). The
intervals on which this condition is satisfied are shown in Figure 3.3. In practice, ¢; is chosen
to be quite small, say ¢; = 107,

The sufficient decrease condition is not enough by itself to ensure that the algorithm
makes reasonable progress, because as we see from Figure 3.3, it is satisfied for all sufficiently
small values of . To rule out unacceptably short steps we introduce a second requirement,
called the curvature condition, which requires ¢, to satisfy :

V(x4 o pe) pe = 2V £ prs (3.5)

for some constant ¢; € (¢, 1), where ¢ is the constant from (3.4). Note that the left-hand-
side is simply the derivative ¢'(ay), so the curvature condition ensures that the slope of
¢ (cy.) is greater than ¢, times the gradient ¢'(0). This makes sense because if the slope ¢’ ()
is strongly negative, we have an indication that we can reduce f significantly by moving
further along the chosen direction. On the other hand, if the slope is only slightly negative
or even positive, it is a sign that we cannot expect much more decrease in f in this direction,

39

3.1. STEP LENGTH
(o) =f(xk+(XPk)
Ak_/ desired
. slope :
tangent :
|7\ o
acceptable acceptable
= |
L

Figure 3.4 The curvature condition.

so it might make sense to terminate the line search. The curvature condition is illustrated in
Figure 3.4. Typical values of ¢, are 0.9 when the search direction py is chosen by a Newton
or quasi-Newton method, and 0.1 when py is obtained from a nonlinear conjugate gradient
method.

The sufficient decrease and curvature conditions are known collectively as the Wolfe
conditions. We illustrate them in Figure 3.5 and restate them here for future reference:

A

F +ape) < Flx) + iV f] pro (3.6a)
Ve 4+ ap) pi > 2V L prs (3.6b)

with0 <c¢; < ¢ < 1.

A step length may satisfy the Wolfe conditions without being particularly close to a
minimizer of ¢, as we show in Figure 3.5. We can, however, modify the curvature condition
to force a to lie in at least a broad neighborhood of a local minimizer or stationary point
of ¢. The strong Wolfe conditions require oy, to satisfy

Sl +arpe) < flxe) + aaV £ pr, (3.7a)
IV f (e + o)T pel < cal VL pels (3.7b)

40 CHAPTER 3. LINE SEARCH METHODS

o () =flx,+op,)

line of sufficient
decrease

)

acceptable | acceptable |
-~

Figure 3.5 Step lengths satisfying the Wolfe conditions.

with0 < ¢, < ¢; < 1. The only difference with the Wolfe conditions is that we no longer
allow the derivative ¢'(ct) to be too positive. Hence, we exclude points that are far from
stationary points of ¢.

It is not difficult to prove that there exist step lengths that satisfy the Wolfe conditions
for every function f that is smooth and bounded below.

Lemma 3.1.

Suppose that f : R" — R is continuously differentiable. Let py be a descent direction at
Xk, and assume that f is bounded below along the ray {x; + apila > 0}. Then if0 < ¢; <

€2 < 1, there exist intervals of step lengths satisfying the Wolfe conditions (3.6) and the strong
Wolfe conditions (3.7).

ProOOF. Since ¢p(ar) = f(xx + apy) is bounded below for all ¢ > 0 and since:0 < ¢; < 1,

the line [(a) = f(x;) + acy kaTpk must intersect the graph of ¢ at least once. Let &' > 0
be the smallest intersecting value of &, that is,

Fle+a'p) = flx) + o'V £ py. (3.8)

The sufficient decrease condition (3.6a) clearly holds for all step lengths less than o'.
By the mean value theorem, there exists o € (0, ¢’) such that

T+ o' pi) = fx) = &'V f (xi + o p)T pa. (3.9)

3.1. STEP LENGTH

By combining (3.8) and (3.9), we obtain
Vi +a" p) o =V pe > oVl pe (3.10)

since ¢; < ¢ and kaT pr < 0. Therefore, " satisfies the Wolfe conditions (3.6), and the
inequalities hold strictly in both (3.6a) and (3.6b). Hence, by our smoothness assumption
on f, there is an interval around «” for which the Wolfe conditions hold. Moreover, since
the term in the left-hand side of (3.10) is negative, the strong Wolfe conditions (3.7) hold in
the same interval. O

The Wolfe conditions are scale-invariant in a broad sense: Multiplying the objective
function by a constant or making an affine change of variables does not alter them. They can
be used in most line search methods, and are particularly important in the implementation
of quasi-Newton methods, as we see in Chapter 8.

THE GOLDSTEIN CONDITIONS

Like the Wolfe conditions, the Goldstein conditions also ensure that the step length
o achieves sufficient decrease while preventing « from being too small. The Goldstein
conditions can also be stated as a pair of inequalities, in the following way:

F) + (1 =)V pr < flx +oup) < flx) + eV T pr, (3.11)

with0 < ¢ < % The second inequality is the sufficient decrease condition (3.4), whereas
the first inequality is introduced to control the step length from below; see Figure 3.6

A disadvantage of the Goldstein conditions vis-a-vis the Wolfe conditions is that the
first inequality in (3.11) may exclude all minimizers of ¢. However, the Goldstein and Wolfe
conditions have much in common, and their convergence theories are quite similar. The
Goldstein conditions are often used in Newton-type methods but are not well suited for
quasi-Newton methods that maintain a positive definite Hessian approximation.

SUFFICIENT DECREASE AND BACKTRACKING

We have mentioned that the sufficient decrease condition (3.6a) alone is not sufficient
to ensure that the algorithm makes reasonable progress along the given search direction.
However, if the line search algorithm chooses its candidate step lengths appropriately, by
using a so-called backtracking approach, we can dispense with the extra condition (3.6b) and
use just the sufficient decrease condition to terminate the line search procedure. In its most
basic form, backtracking proceeds as follows.

Procedure 3.1 (Backtracking Line Search).
Choose@ > 0, p,c € (0, 1); set < &;
repeat until f(x; +api) < f(xi) +caV il pe

41

42 CHAPTER 3.

LINE SEARCH METHODS

¢ (o) =flx;+op)

U

acceptable steplengths

Figure 3.6 The Goldstein conditions.

o <« pa;
end (repeat)
Terminate with oy = o.

In this procedure, the initial step length & is chosen to be 1 in Newton and quasi-Newton
methods, but can have different values in other algorithms such as steepest descent or conju-
gate gradient. An acceptable step length will be found after a finite number of trials because
ay will eventually become small enough that the sufficient decrease condition holds (see Fig-
ure 3.3). In practice, the contraction factor p is often allowed to vary at each iteration of the
line search. For example, it can be chosen by safeguarded interpolation, as we describe later.
We need ensure only that at each iteration we have p € [y, oy, for some fixed constants
0 < po < pni < L.

The backtracking approach ensures either that the selected step length ay is some
fixed value (the initial choice @), or else that it is short enough to satisfy the sufficient
decrease condition but not too short. The latter claim holds because the accepted value oy
is within striking distance of the previous trial value, oy / o, which was rejected for violating
the sufficient decrease condition, that is, for being too long.

3.92. CONVERGENCE OF LINE SEARCH METHODS

This simple and popular strategy for terminating a line search is well suited for Newton
methods (see Chapter 6) but is less appropriate for quasi-Newton and conjugate gradient
methods.

3.2 CONVERGENCE OF LINE SEARCH METHODS

To obtain global convergence, we must not only have well-chosen step lengths but also well-
chosen search directions py. We discuss requirements on the search direction in this section,
focusing on one key property: the angle 6; between p; and the steepest descent direction
—V fx, defined by

—kaTPk

cosby = ————.
IV fill el

(3.12)

The following theorem, due to Zoutendijk, has far-reaching consequences. It shows,
for example, that the steepest descent method is globally convergent. For other algorithms
it describes how far p; can deviate from the steepest descent direction and still give rise to
a globally convergent iteration. Various line search termination conditions can be used to
establish this result, but for concreteness we will consider only the Wolfe conditions (3.6).
Though Zoutendijk’s result appears, at first, to be technical and obscure, its power will soon
become evident.

Theorem 3.2.
Consider any iteration of the form (3.1), where py is a descent direction and oy, satisfies
the Wolfe conditions (3.6). Suppose that f is bounded below in R" and that f is continuously

differentiable in an open set N containing the level set L &f {x: f(x) < f(x0)}, wherexy is

the starting point of the iteration. Assume also that the gradient V f is Lipschitz continuous on

N, that is, there exists a constant L > 0 such that
IVFfxX)=VFE < Llix — %], forallx,xeN. (3.13)

Then

D cos? O |V fell* < o0. (3.14)
k>0

Proor. From (3.6b) and (3.1) we have that

(V firr = VI i = (¢ = DV pr,

43

44 CHAPTER 3.

LINE SEARCH METHODS

while the Lipschitz condition (3.13) implies that

(Vw1 = Vi) pr < e Ll prell®.

By combining these two relations, we obtain

S -1V
L lpell®”

By substituting this inequality into the first Wolfe condition (3.6a), we obtain

1—0c (kaTPk)z
L | pict?

From the definition (3.12), we can write this relation as

Jer1 = fi —

Sir1 < fi — ccos? G|V i |2,

where ¢ = ¢1(1 — ¢;)/L. By summing this expression over all indices less than or equal to
k, we obtain

k
fer1 < fo—c Y cos? 0,V ;. (3.15)

j=0

Since f is bounded below, we have that fy — fi, is less than some positive constant, for all
k. Hence by taking limits in (3.15), we obtain

o0
D 05”0V fill < oo,
k=0
which concludes the proof. D

Similar results to this theorem hold when the Goldstein conditions (3.11) or strong
Wolfe conditions (3.7) are used in place of the Wolfe conditions. .

Note that the assumptions of Theorem 3.2 are not too restrictive. If the function f were
not bounded below, the optimization problem would not be well-defined. The smoothness
assumption—Lipschitz continuity of the gradient—is implied by many of the smoothness
conditions that are used in local convergence theorems (see Chapters 6 and 8) and are often
satisfied in practice.

Inequality (3.14), which we call the Zoutendijk condition, implies that

cos? G|V fill2 — 0. (3.16)

3.2. CONVERGENCE OF LINE SEARCH METHODS

This limit can be used in turn to derive global convergence results for line search algorithms.

If our method for choosing the search direction py in the iteration (3.1) ensures that
the angle 6; defined by (3.12) is bounded away from 90°, there is a positive constant § such
that

cosf >8>0, forallk. (3.17)
It follows immediately from (3.16) that
k->o0 :

In other words, we can be sure that the gradient norms ||V fi || converge to zero, provided that
the search directions are never too close to orthogonality with the gradient. In particular, the
method of steepest descent (for which the search direction py makes an angle of zero degrees
with the negative gradient) produces a gradient sequence that converges to zero, provided
that it uses a line search satisfying the Wolfe or Goldstein conditions.

We use the term globally convergent to refer to algorithms for which the property
(3.18) is satisfied, but note that this term is sometimes used in other contexts to mean
different things. For line search methods of the general form (3.1), the limit (3.18) is the
strongest global convergence result that can be obtained: We cannot guarantee that the
method converges to a minimizer, but only that it is attracted by stationary points. Only
by making additional requirements on the search direction p;—by introducing negative
curvature information from the Hessian V2 f(x;), for example—can we strengthen these
results to include convergence to a local minimum. See the Notes and References at the end
of this chapter for further discussion of this point.

Consider now the Newton-like method (3.1), (3.2) and assume that the matrices By
are positive definite with a uniformly bounded condition number. That is, there is a constant
M such that

1B B < M, forallk.
It is easy to show from the definition (3.12) that
cost = 1/M (3.19)

(see Exercise 5). By combining this bound with (3.16) we find that

k]im IV fill = 0. (3.20)

Therefore, we have shown that Newton and quasi-Newton methods are globally convergent
if the matrices By have a bounded condition number and are positive definite (which is

45

46 CHAPTER 3.

LINE SEARCH METHODS

needed to ensure that py is a descent direction), and if the step lengths satisfy the Wolfe
conditions.

For some algorithms, such as conjugate gradient methods, we will not be able to prove
the limit (3.18), but only the weaker result

liminf ||V fi | = 0. (3.21)
k->00

In other words, just a subsequence of the gradient norms IV fi, |l converges to zero, rather
than the whole sequence (see Appendix A). This result, too, can be proved by using
Zoutendijk’s condition (3.14), but instead of a constructive proof, we outline a proof by
contradiction. Suppose that (3.21) does not hold, so that the gradients remain bounded
away from zero, that is, there exists y > 0 such that

IVl =y, forallk sufficiently large.

(3.22)

Then from (3.16) we conclude that

cos O — 0, (3.23)
that is, the entire sequence {cos f;} converges to 0. To establish (3.21), therefore, it is enough
to show that a subsequence {cos 6, } is bounded away from zero. We will use this strategy in
Chapter 5 to study the convergence of nonlinear conjugate gradient methods.

By applying this proof technique, we can prove global convergence in the sense of
(3.20) or (3.21) for a general class of algorithms. Consider any algorithm for which (i) every
iteration produces a decrease in the objective function, and (ii) every mth iteration is a
steepest descent step, with step length chosen to satisfy the Wolfe or Goldstein conditions.
Then since cos8; = 1 for the steepest descent steps, the result (3.20) holds. Of course, we
would design the algorithm so that it does something “better” than steepest descent at the
other m — 1 iterates; the occasional steepest descent steps may not make much progress, but
they at least guarantee overall global convergence.

Note that throughout this section we have used only the fact that Zoutendijk’s condition
implies the limit (3.16). In later chapters we will make use of the bounded sum condition

(3.14), which forces the sequence {cos? 8, ||V 7;|%} to converge to zero at a sufficiently rapid
rate. :

3.3 RATE OF CONVERGENCE

It would seem that designing optimization algorithms with good convergence properties is
easy, since all we need to ensure is that the search direction p; does not tend to become
orthogonal to the gradient V f;, or that steepest descent steps are taken regularly. We could

3.3. RATE OF CONVERGENCE

simply compute cos 6y at every iteration and turn p; toward the steepest descent direction
if cos @y is smaller than some preselected constant § > 0. Angle tests of this type ensure
global convergence, but they are undesirable for two reasons. First, they may impede a
fast rate of convergence, because for problems with an ill-conditioned Hessian, it may be
necessary to produce search directions that are almost orthogonal to the gradient, and an
inappropriate choice of the parameter § may prevent this. Second, angle tests destroy the
invariance properties of quasi-Newton methods.

Algorithmic strategies that achieve rapid convergence can sometimes conflict with
the requirements of global convergence, and vice versa. For example, the steepest descent
method is the quintessential globally convergent algorithm, but it is quite slow in practice,
as we shall see below. On the other hand, the pure Newton iteration converges rapidly when
started close enough to a solution, but its steps may not even be descent directions away
from the solution. The challenge is to design algorithms that incorporate both properties:
good global convergence guarantees and a rapid rate of convergence.

We begin our study of convergence rates of line search methods by considering the
most basic approach of all: the steepest descent method.

CONVYERGENCE RATE OF STEEPEST DESCENT

We can learn much about the steepest descent method by considering the ideal case,
in which the objective function is quadratic and the line searches are exact. Let us suppose
that

fx)= %xTQx —bTx, (3.24)
where Q is symmetric and positive definite. The gradient is given by V- f(x) = Ox — b, and

the minimizer x* is the unique solution of the linear system Qx = b.
Let us compute the step length o, that minimizes f(xx — «V fi). By differentiating

1 .
Flo —ag) = - (x —ag)" QG — agr) — b (xx — agr)

with respect to «, we obtain

VIV fi
ap = # (3.25)
Vi OV fi
If we use this exact minimizer oy, the steepest descent iteration for (3.24) is given by
VIV fi
Xl = Xf — (#) ka. (3.26)
vfk Qvfk

47

48 CHAPTER 3.

LINE SEARCH METHODS

Figure 3.7 Steepest descent steps.

Since V fi = Quxx — b, this equation yields a closed-form expression for x4 in terms of xy.
In Figure 3.7 we plot a typical sequence of iterates generated by the steepest descent method
on a two-dimensional quadratic objective function. The contours of f are ellipsoids whose
axes lie along the orthogonal eigenvectors of Q. Note that the iterates zigzag toward the
solution.

To quantify the rate of convergence we introduce the weighted norm ||x an =x7Qx.
By using the relation Qx* = b, we can show easily that

lx —x*ly = f(x) = (=), (3.27)
so that this norm measures the difference between the current objective value and the optimal
value. By using the equality (3.26) and noting that V f = Q(xx — x*), we can derive the

equality

(VIIVL)
VITOV) (VA 07V i)

lxers — x*13, = {1 - (llxe — x*11% (3.28)

(see Exercise 7). This expression describes the exact decrease in f at each iteration, but since
the term inside the brackets is difficult to interpret, it is more useful to bound it in terms of
the condition number of the problem.

Theorem 3.3.

When the steepest descent method with exact line searches (3.26) is applied to the strongly
convex quadratic function (3.24), the error norm (3.27) satisfies

An — A
)\'n+A«1

2
e — 212 5() o — x*1%, (3.29)

3.3. RATE OF CONVERGENCE

where0 < Ay < --- < A, are the eigenvalues of Q.

The proof of this result is given by Luenberger [152]. The inequalities (3.29) and (3.27)
show that the function values f; converge to the minimum f; at a linear rate. As a special
case of this result, we see that convergence is achieved in one iteration if all the eigenvalues
are equal. In this case, Q is a multiple of the identity matrix, so the contours in Figure 3.7
are circles and the steepest descent direction always points at the solution. In general, as the
condition number «(Q) = A,/ increases, the contours of the quadratic become more
elongated, the zigzagging in Figure 3.7 becomes more pronounced, and (3.29) implies that
the convergence degrades. Even though (3.29) is a worst-case bound, it gives an accurate
indication of the behavior of the algorithm when n > 2.

The rate-of-convergence behavior of the steepest descent method is essentially the
same on general nonlinear objective functions. In the following result we assume that the
step length is the global minimizer along the search direction.

Theorem 3.4.

Suppose that f : R* — R is twice continuously differentiable, and that the iterates
generated by the steepest descent method with exact line searches converge to a point x* where
the Hessian matrix V2 f (x*) is positive definite. Then

)‘-n - A'1
An + Ay

2
f o) — f(x%) < (> (fGa) = £,

where X, < --- < A, are the eigenvalues oszf(x*).

In general, we cannot expect the rate of convergence to improve if an inexact line
search is used. Therefore, Theorem 3.4 shows that the steepest descent method can have an
unacceptably slow rate of convergence, even when the Hessian is reasonably well conditioned.
For example, if k(Q) = 800, f(x;) = 1 and f(x*) = 0, Theorem 3.4 suggests that the
function value will still be about 0.08 after one thousand iterations of the steepest descent
method.

QUASI-NEWTON METHODS

Let us now suppose that the search direction has the form
pe = —B 'V f, (3.30)

where the symmetric and positive definite matrix By, is updated at every iteration by a quasi-
Newton updating formula. We already encountered one quasi-Newton formula, the BFGS
formula, in Chapter 2; others will be discussed in Chapter 8. We assume here that the step
length oy, will be computed by an inexact line search that satisfies the Wolfe or strong Wolfe

49

50

CHAPTER 3. LINE SEARCH METHODS

conditions, with one important proviso: The line search algorithm will always try the step
length o« = 1 first, and will accept this value if it satisfies the Wolfe conditions. (We could
enforce this condition by setting & = 1 in Procedure 3.1, for example.) This implementation
detail turns out to be crucial in obtaining a fast rate of convergence.

The following result, due to Dennis and Moré, shows that if the search direction of a
quasi-Newton method approximates the Newton direction well enough, then the unit step
length will satisfy the Wolfe conditions as the iterates converge to the solution. It also specifies
a condition that the search direction must satisfy in order to give rise to a superlinearly
convergent iteration. To bring out the full generality of this result, we state it first in terms
of a general descent iteration, and then examine its consequences for quasi-Newton and
Newton methods.

Theorem 3.5.

Suppose that f : R" — R is three times continuously differentiable. Consider the
iteration Xy = Xi + oy pr, where py is a descent direction and o, satisfies the Wolfe conditions
(3.6) with ¢, < % If the sequence {x;} converges to a point x* such that V f(x*) = 0 and
V2 f(x*) is positive definite, and if the search direction satisfies

lim M =0, (3_31)
ko0 F23

then

(1) the step length oy = 1 is admissible for all k greater than a certain index ky; and

(i) ifax =1 forallk > ko, {xx} converges to x* superlinearly.

It is easy to see that if ¢; > %, then the line search would exclude the minimizer of a
quadratic, and unit step lengths may not be admissible.

If p; is a quasi-Newton search direction of the form (3.30), then (3.31) is equivalent
to

lim 1Bk = V2 () pell —o0 (3.32)
k00 ol

Hence, we have the surprising (and delightful) result that a superlinear convergence rate can
be attained even if the sequence of quasi-Newton matrices By does not converge to V2 f (x*);
it suffices that the By become increasingly accurate approximations to V2 f(x*) along the
search directions py.

An important remark is that condition (3.32) is both necessary and sufficient for the
superlinear convergence of quasi-Newton methods.

3.3. RATE OF CONVERGENCE

Theorem 3.6.

Suppose that f : R" — R is three times continuously differentiable. Consider the
iteration xg41 = Xk + pi (that is, the step length oy is uniformly 1) and that py is given by
(3.30). Let us also assume that {x} converges to a pointx* such thatV f(x*) = 0 and V* f (x*)
is positive definite. Then {x} converges superlinearly if and only if (3.32) holds.

PROOF. W first show that (3.32) is equivalent to

pe — pi = ol pell), (3.33)

where p} = —szk“l V fi is the Newton step. Assuming that (3.32) holds, we have that

pe— pi = VTV fipi + V)

=V ;7' (V? fi — Bi) pi

= O(I(V* fi — BIpil)

= o(lipel),
where we have used the fact that || V? fk'l |l is bounded above for x; sufficiently close to x*,
since the limiting Hessian V* f(x*) is positive definite. The converse follows readily if we
multiply both sides of (3.33) by V2 f; and recall (3.30).

For the remainder of the proof we need to look ahead to the proof of quadratic con-

vergence of Newton’s method and, in particular, the estimate (3.37). By using this inequality
together with (3.33), we obtain that

llxi + pe — x™|| < lloex + pi — 2™ + lipe — PEI
= O(llxx = x*[1*) + ol pelD)-

A simple manipulation of this inequality reveals that || px || = O(|lxx — x*|1), so we obtain
e + pe — x* I < ollixe — x™|1),
giving the superlinear convergence result. 0

We will see in Chapter 8 that quasi-Newton methods normally satisfy condition (3.32)
and are superlinearly convergent.

NEWTON’S METHOD

Let us now consider the Newton iteration where the search direction is given by

P =—Vf\Vfi. (3.34)

51

52 CHAPTER 3. LINE SEARCH METHODS

Since the Hessian matrix V2 f; may not always be positive definite, p} may not always be
a descent direction, and many of the ideas discussed so far in this chapter no longer apply.
In Chapter 6 we will describe two approaches for obtaining a globally convergent iteration
based on the Newton step: a line search approach, in which the Hessian V2 f;, is modified, if
necessary, to make it positive definite and thereby yield descent, and a trust region approach,
in which V2 f; is used to form a quadratic model that is minimized in a ball.

Here we discuss just the local rate-of-convergence properties of Newton’s method. We
know that for all x in the vicinity of a solution point x* such that V2 f (x*) is positive definite,
the Hessian V? f(x) will also be positive definite. Newton’s method will be well-defined in
this region and will converge quadratically, provided that the step lengths ;. are eventually
always 1.

Theorem 3.7.

Supposethat f is twice differentiable and that the Hessian V? f (x) is Lipschitz continuous
(see (A.8)) in a neighborhood of a solution x* at which the sufficient conditions (Theorem 2.4)
are satisfied. Consider the iteration x4\ = x + pi, where p; is given by (3.34). Then

L. if the starting point xq is sufficiently close to x*, the sequence of iterates converges to x*;
2. the rate of convergence of {x;} is quadratic; and

3. the sequence of gradient norms {||V fi||} converges quadratically to zero.

PrOOF. From the definition of the Newton step and the optimality condition V f, = 0 we
have that

X P =X = -t = VIV
= VIV il = x*) = (Vi = V)] (3.35)

Since
1
T
0
we have

V2 £ () (e — x*) = (V fi = V£ ()|

1
fo [V2f () = V2 £ (e + 1 (x* — x))] O — x*) dt

1
< fo V2 £ i) = V2 £ G+ 1 —)| llxe = x| e

1
<l =l [Ledr =t -, (3.36)
0

3.3. RATE OfF CONVERGENCE

where L is the Lipschitz constant for V2 f(x) for x near x*. Since V2 f(x*) is nonsingular,
and since V2 fi — V2 f(x*), we have that [V2 £7'|| < 2||V2f(x*)7"| for all k sufficiently
large. By substituting in (3.35) and (3.36), we obtain

I + pf = x*Il < LIV) e — x*1° = Ll — x*)1%, (3.37)

where L = L||V2f(x*)~'}. Using this inequality inductively we deduce that if the starting
point is sufficiently near x*, then the sequence converges to x*, and the rate of convergence
is quadratic.

By using the relations xx41 — x; = p} and V f + V2 fy p} = 0, we obtain that

IV F (D)l = 1Y f Oon) = Vi = V2 f () pEl

1
= “/ V2 f (xx + £ p) (xpgr — x¢) dt — V2 f(xi) p
0

1A

i
/ 192 £ Ca +2pp) — V2 £ | Py N e
0
< iLIp}I
< LIV £ O T PNV £l

< 2LIVE £ TPV £l
proving that the gradient norms converge to zero quadratically. 0

When the search direction is given by Newton’s method, the limit (3.31) is satisfied (the
ratio is zero for all k!), and Theorem 3.5 shows that the Wolfe conditions will accept the step
length ¢, for all large k. The same is true of the Goldstein conditions. Thus implementations
of Newton’s method using these conditions, and in which the line search always tries the unit
step length first, will set oy = 1 for all large k and attain a local quadratic rate of convergence.

COORDINATE DESCENT METHODS

An approach that is frequently used in practice is to cycle through the n coordinate
directions ey, 3, . . ., €,, using each in turn as a search direction. At the first iteration, we fix
all except the first variable, and find a new value of this variable that minimizes (or at least
reduces) the objective function. On the next iteration, we repeat the process with the second
variable, and so on. After n iterations, we return to the first variable and repeat the cycle. The
method is referred to as the method of alternating variables or the coordinate descent method.
Though simple and somewhat intuitive, it can be quite inefficient in practice, as we illustrate
in Figure 3.8 for a quadratic function in two variables. Note that after a few iterations, neither
the vertical nor the horizontal move makes much progress toward the solution.

53

54 CHAPTER 3. LINE SEARCH METHODS

S
]

1 Figure 3.8
Coordinate descent.

In fact, the coordinate descent method with exact line searches can iterate infinitely
without ever approaching a point where the gradient of the objective function vanishes. (By
contrast, the steepest descent method produces a sequence for which ||V f¢|| — 0, as we
showed earlier.) This observation can be generalized to show that a cyclic search along any
set of linearly independent directions does not guarantee global convergence (Powell [198]).
The difficulty that arises is that the gradient V f; may become more and more perpendicular
to the coordinate search direction, so that cos 6 approaches zero sufficiently rapidly that the
Zoutendijk condition (3.14) is satisfied even when V f; does not approach zero.

Ifthe coordinate descent method converges to a solution, then its rate of convergence is
often much slower than that of the steepest descent method, and the difference between them
increases with the number of variables. However, the method may still be useful because

it does not require calculation of the gradient V f;, and

the speed of convergence can be quite acceptable if the variables are loosely coupled.

Many variants of the coordinate descent method have been proposed, some of which
are globally convergent. One simple variant is a “back-and-forth” approach in which we

3.4.. STEP-LENGTH SELECTION ALGORITHMS

search along the sequence of directions
€1,€2, -1 €n l, CnyCuml,-..,€2,€, €, ... (repeats).
Another approach, suggested by Figure 3.8, is first to perform a sequence of coordinate

descent steps and then search along the line joining the first and last points in the cycle.
Several algorithms, such as that of Hooke and Jeeves, are based on these ideas; see {104, 83].

3.4 STEP-LENGTH SELECTION ALGORITHMS

We now consider techniques for finding a minimum of the one-dimensional function
¢la) = flx +ape), (3.38)

or for simply finding a step length oy satisfying one of the termination conditions described
in Section 3.1. We assume that py is a descent direction—that is, ¢'(0) < 0—so that our
search can be confined to positive values of o.

If f is a convex quadratic, f(x) = 7x” Ox +b" x + ¢, its one-dimensional minimizer
along the ray x; + ap; can be computed analytically and is given by

_ Vi P
pi Op:

o = (339)

For general nonlinear functions, it is necessary to use an iterative procedure. Much attention
must be given to this line search because it has a major impact on the robustness and efficiency
of all nonlinear optimization methods.

Line search procedures can be classified according to the type of derivative information
they use. Algorithms that use only function values can be inefficient, since to be theoretically
sound, they need to continue iterating until the search for the minimizer is narrowed down
to a small interval. In contrast, knowledge of gradient information allows us to determine
whether a suitable step length has been located, as stipulated, for example, by the Wolfe
conditions (3.6) or Goldstein conditions (3.11). Often, particularly when the iterates are
close to the solution, the very first step satisfies these conditions, so the line search need not
be invoked at all. In the rest of this section we will discuss only algorithms that make use
of derivative information. More information on derivative-free procedures is given in the
notes at the end of this chapter.

All line search procedures require an initial estimate g and generate a sequence {o; }
that either terminates with a step length satisfying the conditions specified by the user (for
example, the Wolfe conditions) or determines that such a step length does not exist. Typical
procedures consist of two phases: a bracketing phase that finds an interval [a, b] containing

55

56

CHAPTER 3. LINE SEARCH METHODS

acceptable step lengths, and a selection phase that zooms in to locate the final step length.
The selection phase usually reduces the bracketing interval during its search for the desired
step length and interpolates some of the function and derivative information gathered on
earlier steps to guess the location of the minimizer. We will first discuss how to perform this
interpolation.

In the following discussion we let o, and o —; denote the step lengths used at iterations
k and k — 1 of the optimization algorithm, respectively. On the other hand, we denote the
trial step lengths generated during the line search by «; and «;_; and also ;. We use ap to
denote the initial guess.

INTERPOLATION

We begin by describing a line search procedure based on interpolation of known func-
tion and derivative values of the function ¢. This procedure can be viewed as an enhancement
of Procedure 3.1. The aim is to find a value of « that satisfies the sufficient decrease condition
(3.6a), without being “too small” Accordingly, the procedures here generate a decreasing
sequence of values «; such that each value o is not too much smaller than its predecessor
oy,

Note that we can write the sufficient decrease condition in the notation of (3.38) as

¢lor) < ¢(0) + crax’ (0), (3.40)

and that since the constant ¢, is usually chosen to be small in practice (c; = 107%, say), this
condition asks for little more than descent in f. We design the procedure to be “efficient”
in the sense that it computes the derivative V £ (x) as few times as possible.

Suppose that the initial guess c is given. If we have

(o) < @(0) + c1o09’ (0),

this step length satisfies the condition, and we terminate the search. Otherwise, we know that
the interval [0, o] contains acceptable step lengths (see Figure 3.3). We form a quadratic
approximation ¢, (e) to ¢ by interpolating the three pieces of information available—g(0),
¢'(0), and ¢(ag)—to obtain

(ag) — ¢(0) — /(0 ;
Ggla) = (¢ o) ¢(az) ood'()) a? + ¢’ (0)a + ¢(0). (3.41)
0
(Note that this function s constructed so that it satisfies the interpolation conditions ¢, (0) =
¢(0), gb,'] (0) = ¢'(0),and ¢, (ap) = ¢(cg).) The new trial value oy is defined as the minimizer
of this quadratic, that is, we obtain

_ ¢'(0)e3
2[4(@) — $(0) — ¢'(O)aro]”

oy =

(3.42)

3.4. STEP-LENGTH SELECTION ALGORITHMS 57

Ifthe sufficient decrease condition (3.40) is satisfied at o, we terminate the search. Otherwise,
we construct a cubic function that interpolates the four pieces of information ¢(0), ¢'(0),
¢(co)s and ¢ («;), obtaining
$clo) = ac® + bo* + ag’(0) + ¢(0),

where

a | 1 af —af $loy) — ¢(0) — ¢'(0)ery

b agai(ey —a) | —ad o plag) — p(0) —¢'(O)ety |
By differentiating ¢.(x), we see that the minimizer «; of ¢, lies in the interval [0, oy} and is
given by

_ —b+ /b7 —3a¢/(0)
= — .

a

If necessary, this process is repeated, using a cubic interpolant of ¢(0), ¢'(0) and the two
most recent values of ¢, until an « that satisfies (3.40) is located. If any ¢; is either too close to
its predecessor a;_; or else too much smaller than &;_,, we reset o; = o;_;/2. This safeguard
procedure ensures that we make reasonable progress on each iteration and that the final &
is not too small.

The strategy just described assumes that derivative values are significantly more expen-
sive to compute than function values. It is often possible, however, to compute the directional
derivative simultaneously with the function, at little additional cost; see Chapter 7. Accord-
ingly, we can design an alternative strategy based on cubic interpolation of the values of ¢
and ¢’ at the two most recent values of «.

Cubic interpolation provides a good model for functions with significant changes of
curvature. Suppose we have an interval [a, b] known to contain desirable step lengths, and
two previous step length estimates «;—; and ¢; in this interval. We use a cubic function to
interpolate ¢(a;—1), ¢'(ai—1), ¢(a;), and ¢’ (er;). (This cubic function always exists and is
unique; see, for example, Bulirsch and Stoer [29, p. 52].) The minimizer of this cubic in
[a, b] is either at one of the endpoints or else in the interior, in which case it is given by

o'(a;) +d; — d,] ’ (3.43)

o = o — (0 — oy) [‘ﬁ/(ai) — ¢’ (ai—1) + 2d,

with

Qi — &

dy = [d? — ¢/ (i)' (@)] .

dy = ¢ (ai—1) + ¢'(e) —

58

CHAPTER 3. LINE SEARCH METHODS

The interpolation process can be repeated by discarding the data at one of the step
lengths «;_; or ¢; and replacing it by ¢(ct;41) and ¢'(c; ;). The decision on which of &;_;
and «; should be kept and which discarded depends on the specific conditions used to
terminate the line search; we discuss this issue further below in the context of the Wolfe
conditions. Cubic interpolation is a powerful strategy, since it can produce a quadratic rate
of convergence of the iteration (3.43) to the minimizing value of «.

THE INITIAL STEP LENGTH

For Newton and quasi-Newton methods the step ap = 1 should always be used as the
initial trial step length. This choice ensures that unit step lengths are taken whenever they
satisfy the termination conditions and allows the rapid rate-of-convergence properties of
these methods to take effect.

For methods that do not produce well-scaled search directions, such as the steepest
descentand conjugate gradient methods, it is important to use current information about the
problem and the algorithm to make the initial guess. A popular strategy is to assume that the
first-order change in the function at iterate x; will be the same as that obtained at the previous
step. In other words, we choose the initial guess g so that gV f7 pr = e V fL | pi—1. We
therefore have

vfkT_IPk~l

Qp = gy Vprk
" Pk

Another useful strategy is to interpolate a quadratic to the data f(xx_,), f(x«), and
P'(0)=V fkT Pr and to define « to be its minimizer. This strategy yields

_ A= fir)

710 (3.44)

It can be shown that if x; — x* superlinearly, then the ratio in this expression converges to
1. If we adjust the choice (3.44) by setting

®y < min(l, 1.01eyg),

we find that the unit step length ep = 1 will eventually always be tried and accepted, and the
superlinear convergence properties of Newton and quasi-Newton methods will be observed.

A LINE SEARCH ALGORITHM FOR THE WOLFE CONDITIONS

The Wolfe (or strong Wolfe) conditions are among the most widely applicable and
useful termination conditions. We now describe in some detail a one-dimensional search
procedure that is guaranteed to find a step length satisfying the strong Wolfe conditions (3.7)

3.4. STEP-LENGTH SELECTION ALGORITHMS

for any parameters c; and c; satisfying 0 < ¢; < ¢; < 1. As before, we assume that p is a
descent direction and that f is bounded below along the direction p.

The algorithm has two stages. This first stage begins with a trial estimate «,, and keeps
increasing it until it finds either an acceptable step length or an interval that brackets the
desired step lengths. In the latter case, the second stage is invoked by calling a function called
zoom (Algorithm 3.3 below), which successively decreases the size of the interval until an
acceptable step length is identified.

A formal specification of the line search algorithm follows. We refer to (3.7a) as the
sufficient decrease condition and to (3.7b) as the curvature condition. The parameter ¢max
is a user-supplied bound on the maximum step length allowed. The line search algorithm
terminates with a, set to a step length that satisfies the strong Wolfe conditions.

Algorithm 3.2 (Line Search Algorithm).
Set g < 0, choose) > 0 and oy
i< 1;
repeat
Evaluate ¢ («;);
if ¢(a;) > ¢(0) + c1;¢’(0) or [@(e;) > p(e;—1) and i > 1]
a, <zoom(x;_;, ;) and stop;
Evaluate ¢'(«;);
if |¢(a;)] < —c29'(0)
set o, < «; and stop;
if¢'(e;) = 0
set o, <zoom(q;, &;—) and stop;
Choose a;4; € (@, Cmax)
i< i+1;
end (repeat)

Note that the sequence of trial step lengths {«; } is monotonically increasing, but that the order
of the arguments supplied to the zoom function may vary. The procedure uses the knowledge
that the interval (¢;_1, @;) contains step lengths satisfying the strong Wolfe conditions if one
of the following three conditions is satisfied:

(i) «; violates the sufficient decrease condition;
(i) @) = Plai—1)s
(iii) ¢'(ei) = 0.
The last step of the algorithm performs extrapolation to find the next trial value o; ;. To

implement this step we can use approaches like the interpolation procedures above, or we can
simply set o; 4 to some constant multiple of ;. Whichever strategy we use, it is important

59

60

CHAPTER 3. LINE SEARCH METHODS

that the successive steps increase quickly enough to reach the upper limit ¢mq in a finite
number of iterations.

We now specify the function zoom, which requires a little explanation. The order of
its input arguments is such that each call has the form zoom(«),, oy,), where

(a) the interval bounded by «j, and ay; contains step lengths that satisfy the strong Wolfe
conditions;

(b) «y, is, among all step lengths generated so far and satisfying the sufficient decrease
condition, the one giving the smallest function value; and

(c) oy is chosen so that ¢/ (a),) (an — @) < 0.

Each iteration of zoom generates an iterate r; between aj, and ory;, and then replaces one of
these endpoints by or; in such a way that the properties (a), (b), and (c) continue to hold.

Algorithm 3.3 (zoom).
repeat
Interpolate (using quadratic, cubic, or bisection) to find
a trial step length «; between o), and ay;;
Evaluate ¢(«;);
ifp(aj) > ¢(0) + c1a;¢'(0) or p(arj) > Pleno)
Ohi <= O3
else
Evaluate ¢'(;);
if [¢'(erj)| < —c20'(0)
Set oz, < oz; and stop;
if ¢ (o) (omi — o1e) > 0
Ohj < Ulo;
Qo < A
end (repeat)

If the new estimate «; happens to satisfy the strong Wolfe conditions, then zoom has served
its purpose of identifying such a point, so it terminates with o, = «;. Otherwise, if «;
satisfies the sufficient decrease condition and has a lower function value tha_n X10, then we
set o <— «; to maintain condition (b). If this results in a violation of condition (c), we
remedy the situation by setting ay; to the old value of ay,. The reader should sketch some
graphs to illustrate the workings of zoom!

As mentioned earlier, the interpolation step that determines «; should be safeguarded
to ensure that the new step length is not too close to the endpoints of the interval. Practical
line search algorithms also make use of the properties of the interpolating polynomials to
make educated guesses of where the next step length should lie; see [27, 172]. A problem
that can arise in the implementation is that as the optimization algorithm approaches the

3.4. STEP-LENGTH SELECTION ALGORITHMS

solution, two consecutive function values f(x;) and f(x;—;) may be indistinguishable in
finite-precision arithmetic. Therefore, the line search must include a stopping test if it cannot
attain a lower function value after a certain number (typically, ten) of trial step lengths.
Some procedures also stop if the relative change in x is close to machine accuracy, or to some
user-specified threshold.

A line search algorithm that incorporates all these features is difficult to code. We
advocate the use of one of the several good software implementations available in the public
domain. See Dennis and Schnabel [69], Lemaréchal [149], Fletcher [83], and in particular
Moré and Thuente [172].

~ One may ask how much more expensive it is to require the strong Wolfe conditions
instead of the regular Wolfe conditions. Our experience suggests that for a “loose” line search
(with parameters such as ¢; = 107* and ¢, = 0.9), both strategies require a similar amount
of work. The strong Wolfe conditions have the advantage that by decreasing ¢, we can directly
control the quality of the search by forcing the accepted value of « to lie closer to a local
minimum. This feature is important in steepest descent or nonlinear conjugate gradient
methods, and therefore a step selection routine that enforces the strong Wolfe conditions is
of wider applicability.

NOTES AND REFERENCES

For an extensive discussion of line search termination conditions see Ortega and
Rheinboldt [185]. Akaike [2] presents a probabilistic analysis of the steepest descent method
with exact line searches on quadratic functions. He shows that when n > 2, the worst-case
bound (3.28) can be expected to hold for most starting points. The case where n = 2 can be
studied in closed form; see Bazaraa, Sherali, and Shetty [7].

Some line search methods (see Goldfarb [113] and Moré and Sorensen [169]) compute
a direction of negative curvature, whenever it exists, to prevent the iteration from converging
to nonminimizing stationary points. A direction of negative curvature p_ is one that satisfies
pIV2 f(x;) p_ < 0. These algorithms generate a search direction by combining p_ with the
steepest descent direction —V f, and often perform a curvilinear backtracking line search.
1t is difficult to determine the relative contributions of the steepest descent and negative
curvature directions, and due to this, this approach fell out of favor after the introduction
of trust-region methods.

For a discussion on the rate of convergence of the coordinate descent method and for
more references about this method see Luenberger [152].

Derivative-free line search algorithms include golden section and Fibonacci search.
They share some of the features with the line search method given in this chapter. They
typically store three trial points that determine an interval containing a one-dimensional
minimizer. Golden section and Fibonacci differ in the way in which the trial step lengths are
generated; see, for example, [58, 27].

Our discussion of interpolation follows Dennis and Schnabel [69], and the algorithm
for finding a step length satisfying the strong Wolfe conditions can be found in Fletcher [83].

61

62 CHAPTER 3.

LiNE SEARCH METHODS

& EXERCISES

& 3.1 Program the steepest descent and Newton algorithms using the backtracking line
search, Procedure 3.1. Use them to minimize the Rosenbrock function (2.23). Set the initial
step length g = 1 and print the step length used by each method at each iteration. First try
the initial point xg = (1.2, 1.2) and then the more difficult point x; = (—1.2, 1).

& 3.2 Show thatif 0 < ¢; < ¢; < 1, then there may be no step lengths that satisfy the
Wolfe conditions.

& 3.3 Show thatthe one-dimensional minimizer of a strongly convex quadratic function
is given by (3.39).

& 3.4 Show thatif ¢ < %, then the one-dimensional minimizer of a strongly convex
quadratic function always satisfies the Goldstein conditions (3.11).

& 3.5 Provethat||Bx|| > |lx||/||B~!} for any nonsingular matrix B. Use this to establish
(3.19).

& 3.6 Consider the steepest descent method with exact line searches applied to the
convex quadratic function (3.24). Using the properties given in this chapter, show that if the
initial point is such that x, — x* is parallel to an eigenvector of Q, then the steepest descent
method will find the solution in one step.

& 3.7 Prove the result (3.28) by working through the following steps. First, use (3.26)
to show that

lxx — x*”zQ — lIxk41 — X*HZ =20V I QO — x*) — &}V L QV £,

where || - || is defined by (3.27). Second, use the fact that V f; = Q(x; — x*) to obtain

T 2 T 2
"xk . X*HZQ _ "xk-}-l __x*"%? — 2(§k gk) _ (g; gk)
(gr Qgi) (gr Qgi)

and
Ilxe —x* G = VI Q7' fi.

& 3.8 Let O be a positive definite symmetric matrix. Prove that for any vector x,

(xTx)Z 4)\'11;\'1
GTQX)xTO~'x) T (A + 1)

where A, and A; are, respectively, the largest and smallest eigenvalues of Q. (This relation,
which is known as the Kantorovich inequality, can be used to deduce (3.29) from (3.28).

3.4. STEP-LENGTH SELECTION ALGORITHMS

& 3.9 Program the BFGS algorithm using the line search algorithm described in this
chapter that implements the strong Wolfe conditions. Have the code verify that y/ sy is
always positive. Use it to minimize the Rosenbrock function using the starting points given
in Exercise 1.

& 3.10 Show that the quadratic function that interpolates ¢(0), ¢'(0), and ¢(ao) is
given by (3.41). Then, make use of the fact that the sufficient decrease condition (3.6a) is
not satisfied at oy to show that this quadratic has positive curvature and that the minimizer
satisfies

1

o < ——.
T 21 =)

Since ¢, is chosen to be quite small in practice, this indicates that o} cannot be much greater
than % (and may be smaller), which gives us an idea of the new step length.

& 3.11 If ¢(ap) is large, (3.42) shows that) can be quite small. Give an example of a
function and a step length o for which this situation arises. (Drastic changes to the estimate
of the step length are not desirable, since they indicate that the current interpolant does not
provide a good approximation to the function and that it should be modified before being
trusted to produce a good step length estimate. In practice, one imposes a lower bound—
typically, p = 0.1—and defines the new step length as o; = max(pe;_1, &), where &; is the
minimizer of the interpolant.)

& 3.12 Suppose that the sufficient decrease condition (3.6a) is not satisfied at the step
lengths a, and «y, and consider the cubic interpolating ¢(0), ¢'(0), ¢(ap) and ¢(a;). By
drawing graphs illustrating the two situations that can arise, show that the minimizer of the
cubic lies in [0, ;]. Then show that if ¢(0) < ¢(a,), the minimizer is less than %al.

CHAPTER

Conjugate
Gradient Methods

Our interest in the conjugate gradient method is twofold. It is one of the most useful tech-
niques for solving large linear systems of equations, and it can also be adapted to solve
nonlinear optimization problems. These two variants of the fundamental approach, which we
refer to as the linear and nonlinear conjugate gradient methods, respectively, have remarkable
properties that will be described in this chapter.

The linear conjugate gradient method was proposed by Hestenes and Stiefel in the
1950s as an iterative method for solving linear systems with positive definite coefficient
matrices. It is an alternative to Gaussian elimination that is very well suited for solving large
problems. The performance of the linear conjugate gradient method is tied to the distribution
of the eigenvalues of the coefficient matrix. By transforming, or preconditioning, the linear
system, we can make this distribution more favorable and improve the convergence of the
method significantly. Preconditioning plays a crucial role in the design of practical conjugate
gradient strategies. Our treatment of the linear conjugate gradient method will highlight
those properties of the method that are important in optimization.

The first nonlinear conjugate gradient method was introduced by Fletcher and Reeves
in the 1960s. It is one of the earliest known techniques for solving large-scale nonlinear
optimization problems. Over the years, many variants of this original scheme have been

102

CHAPTER 5. CONJUGATE GRADIENT METHODS

proposed, and some are widely used in practice. The key features of these algorithms are
that they require no matrix storage and are faster than the steepest descent method.

5.1 THE LINEAR CONJUGATE GRADIENT METHOD

In this section we derive the linear conjugate gradient method and discuss its essential
convergence properties. For simplicity, we drop the qualifier “linear” throughout.

The conjugate gradient method is an iterative method for solving a linear system of
equations

Ax == b, (5.1)

where A is an n X n matrix that is symmetric and positive definite. The problem (5.1) can
be stated equivalently as the following minimization problem:

¢(x) = %xTAx —bTx, (5.2)

that is, both (5.1) and (5.2) have the same unique solution. This equivalence will allow us
to interpret the conjugate gradient method either as an algorithm for solving linear systems
or as a technique for minimization of convex quadratic functions. For future reference we
note that the gradient of ¢ equals the residual of the linear system,

Vo(x) = Ax — b % r(x). (5.3)

CONJUGATE DIRECTION METHODS

One of the remarkable properties of the conjugate gradient method is its ability to
generate, in a very economical fashion, a set of vectors with a property known as conjugacy.
A set of nonzero vectors { po, p1, ..., pi}issaid to be conjugate with respect to the symmetric
positive definite matrix A if

pfAp; =0, foralli # j. (5.4)
It is easy to show that any set of vectors satisfying this property is also linearly independent.

The importance of conjugacy lies in the fact that we can minimize ¢(-) in n steps
by successively minimizing it along the individual directions in a conjugate set. To verify
this claim, we consider the following conjugate direction method. (The distinction between
the conjugate gradient method and the conjugate direction method will become clear as we
proceed). Given astarting pointxo € R" and aset of conjugate directions {pg, pi, - - -, Pa—1}>

5.1. THe LINEAR CONJUGATE GRADIENT METHOD 103

let us generate the sequence {x;} by setting
X1 = Xg + O Pr, (5.5)

where a is the one-dimensional minimizer of the quadratic function ¢(-) along x; + apy,
given explicitly by

er

k Pk

o = — (5.6)
Pl Ap:

see (3.38). We have the following result.
Theorem 5.1.
For any xy € R" the sequence {x;} generated by the conjugate direction algorithm (5.5),

(5.6) converges to the solution x* of the linear system (5.1) in at most n steps.

PrOOF. Since the directions { p;} are linearly independent, they must span the whole space
R". Hence, we can write the difference between x; and the solution x* in the following way:

x*—xp=0opo+opL+ -+ 0n 1 Pn-1s

for some choice of scalars o;. By premultiplying this expression by pf A and using the
conjugacy property (5.4), we obtain

_ PEAG* —x)

O = (5-7)
pi Aps

We now establish the result by showing that these coefficients oy coincide with the step
lengths generated by the formula (5.6).
If x; is generated by algorithm (5.5), (5.6), then we have
Xk =Xo +@potoyprt -+ Q1 Pr-t-
By premultiplying this expression by p! A and using the conjugacy property, we have that
P AGx — x0) = 0,
and therefore
PrAG® —x0) = pl A(x* — xi) = pl (b — Axy) = —p{ re.

By comparing this relation with (5.6) and (5.7), we find that o = o, giving the result.]

104 CHAPTER 5. CONJUGATE GRADIENT METHODS

Figure 5.1 Successive minimizations along the coordinate directions find the
minimizer of a quadratic with a diagonal Hessian in n iterations.

There is a simple interpretation of the properties of conjugate directions. If the matrix
A in (5.2) is diagonal, the contours of the function ¢(-) are ellipses whose axes are aligned
with the coordinate directions, as illustrated in Figure 5.1. We can find the minimizer of this
function by performing one-dimensional minimizations along the coordinate directions
ey, ey, ...,e, inturn.
_ ‘When A is not diagonal, its contours are still elliptical, but they are usually no longer
aligned with the coordinate directions. The strategy of successive minimization along these
directions in turn no longer leads to the solution in n iterations (or even in a finite number
of iterations). This phenomenon is illustrated in the two-dimensional example of Figure 5.2

We can recover the nice behavior of Figure 5.1 if we transform the problem to make
A diagonal and then minimize along the coordinate directions. Suppose we transform the
problem by defining new variables X as

£=S8"x, (5.8)
where S is the n X n matrix defined by

S=[pop1 - Pnl,

5.17. THE LINEAR CONJUGATE GRADIENT METHOD

Figure5.2 Successive minimization along coordinate axes does not find the solution
in n iterations, for a general convex quadratic.

where {po, P2, ..., pn—1} is the set of conjugate directions with respect to A. The quadratic
¢ defined by (5.2) now becomes

$(%) L p(52) = LiT(STAS)E — (STh) 2.

By the conjugacy property (5.4), the matrix ST AS is diagonal, so we can find the minimizing
value of ¢ by performing n one-dimensional minimizations along the coordinate directions
of X. Because of the relation (5.8), however, each coordinate direction in x -space corresponds
to the direction p; in x-space. Hence, the coordinate search strategy applied to ¢ is equivalent
to the conjugate direction algorithm (5.5), (5.6). We conclude, as in Theorem 5.1 that the
conjugate direction algorithm terminates in at most n steps.

Returning to Figure 5.1, we note another interesting property: When the Hessian ma-
trix is diagonal, each coordinate minimization correctly determines one of the components
of the solution x*. In other words, after k one-dimensional minimizations, the quadratic has
been minimized on the subspace spanned by ey, e, . . ., ;. The following theorem proves
this important result for the general case in which the Hessian of the quadratic is not neces-
sarily diagonal. (Here and later, we use the notation span{py, p, ..., pi} to denote the set
of all linear combinations of py, pi, - - ., pi.) In proving the result we will make use of the

105

106

CHAPTER 5. CONJUGATE GRADIENT METHODS

following expression, which is easily verified from the relations (5.3) and (5.5):
Tyl = e + o Apyg. (5.9)

Theorem 5.2 (Expanding Subspace Minimization).
Letxo € R" be any starting point and suppose that the sequence {x;} is generated by the
conjugate direction algorithm (5.5), (5.6). Then

ripi =0, fori =0,...,k—1, (5.10)

and xi is the minimizer of $(x) = 1xT Ax — b7 x over the set
P

{x1x = xo + span{po, pi. - .., pe-}}. (5.11)

PROOF. We begin by showing that a point X minimizes ¢ over the set (5.11) if and only
ifr(®)T p; = 0, foreachi = 0,1,...,k — 1. Let us define h(c) = ¢(xo + oopo + -+~ +
Ok—1Pk—1), where 0 = (0y, 01, - .., 0xk—)7. Since h(c) is a strictly convex quadratic, it has
a unique minimizer o* that satisfies

3h(c*)
60',' - 0’

By the chain rule, this implies that
Vé(xo+ 05 po+---+0f_) pi =0, i=01,.... k=1
By recalling the definition (5.3), we obtain the desired result.
We now use induction to show that x; satisfies (5.10). Since ¢ is always the one-
dimensional minimizer, we have immediately that r] py = 0. Let us now make the induction

hypothesis, namely, that rl_ p; = 0fori =0,...,k — 2. By (5.9),

Tk = I + Q1 APr—1,

we have

P]Z._lrk - P1<T_1rk—l +Otk~kaT_1APk—1 =0,
by the definition (5.6) of atx—;. Meanwhile, for the other vectors p;,i =0, 1, ...,k — 2, we
have

plre=plrici +ou_1p] Apioy =0

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

by the induction hypothesis and the conjugacy of the p;. We conclude that rf p; = 0, for
i =0,1,..., k — 1, so that the proof is complete. O

The fact that the current residual ry is orthogonal to all previous search directions, as
expressed in (5.10), is a property that will be used extensively in this chapter.

The discussion so far has been general, in that it applies to a conjugate direction
method (5.5), (5.6) based on any choice of the conjugate direction set {pg, pi1, ..., pn—1}.
There are many ways to choose the set of conjugate directions. For instance, the eigenvectors
V1, V2, - - - » Un Of A are mutually orthogonal as well as conjugate with respect to A, so these
could be used as the vectors {po, pi, ..., pn—1}. For large-scale applications, however, it is
not practical to compute the complete set of eigenvectors, for this requires a large amount
of computation. An alternative is to modify the Gram-Schmidt orthogonalization process
to produce a set of conjugate directions rather than a set of orthogonal directions. (This
modification is easy to produce, since the properties of conjugacy and orthogonality are
closely related in spirit.) This approach is also expensive, since it requires us to store the
entire direction set.

BASIC PROPERTIES OF THE CONJUGATE GRADIENT METHOD

The conjugate gradient method is a conjugate direction method with a very special
property: In generating its set of conjugate vectors, it can compute a new vector p; by
using only the previous vector p;_;. It does not need to know all the previous elements
Do, P1s - - - » Pk—2 Of the conjugate set; py is automatically conjugate to these vectors. This
remarkable property implies that the method requires little storage and computation.

Now for the details of the conjugate gradient method. Each direction py is chosen to
be a linear combination of the steepest descent direction —V¢(x) (which is the same as the
negative residual —ry, by (5.3)) and the previous direction py_;. We write

Pr = —Tk + BrPr-1, (5.12)

where the scalar g; is to be determined by the requirement that p,_, and p; must be
conjugate with respect to A. By premultiplying (5.12) by p/_, A and imposing the condition

. PI_,Apy =0, we find that

B = rf Api-i
Pi_1 APk

It makes intuitive sense to choose the first search direction pg to be the steepest descent
direction at the initial point xo. As in the general conjugate direction method, we perform
successive one-dimensional minimizations along each of the search directions. We have thus
specified a complete algorithm, which we express formally as follows:

107

108

CHAPTER 5. CONJUGATE GRADIENT METHODS

Algorithm 5.1 (CG-Preliminary Version).

Given xg;
Setry <— Axg — b, pg < —rg, k < 0;
while r, # 0
T
oy - — kL (5.13a)
Pi. APk
Xk+1 = Xp + o pi; (5.13b)
Te41 <— AX]H.[—b; (513C)
T
r, Apk
Brn «— S (5.13d)
i P AD:
P+t <= —Tkyy + Bry1pi; (5.13¢)
k «—k+1; (5.13f)
end (while)

Later, we will present a more efficient version of the conjugate gradient method; the
version above is useful for studying the essential properties of the method. We show first
that the directions py, pi, ..., p,_, are indeed conjugate, which by Theorem 5.1 implies
termination in n steps. The theorem below establishes this property and two other important
properties. First, the residuals r; are mutually orthogonal. Second, each search direction Pk
and residual r is contained in the Krylov subspace of degree k for ro, defined as

K(re; k) & span(ro, Ary, ..., Afr). (5.14)

Theorem 5.3.
Suppose that the k th iterate generated by the conjugate gradient method is not the solution
point x*. The following four properties hold: ‘

riri=0, fori=0,... k-1, (5.15)

span {ro, 1, ..., ry} = span {ro, Arg, ..., A*ro}, (5.16)
span {po, pi, ..., px} = span {ro, Arg, ..., Akrg), (5.17)
pLAp; =0, fori=0,1,... k—1. (5.18)

Therefore, the sequence {x;} converges to x* in at most n steps.

ProoF. The proofis by induction. The expressions (5. 16) and (5.17) hold trivially for k = 0,
while (5.18) holds by construction for k = 1. Assuming now that these three expressions are
true for some k (the induction hypothesis), we show that they continue to hold for k& + 1.

5.1. THe LineaAR CONJUGATE GRADIENT METHOD

To prove (5.16), we show first that the set on the left-hand side is contained in the set
on the right-hand side. Because of the induction hypothesis, we have from (5.16) and (5.17)

that
re € span {ry, Arg, ..., Akro}, Pr € span {ry, Aro, ..., Akro},
while by multiplying the second of these expressions by A, we obtain
Api € span {Ary, ..., A). (5.19)
By applying (5.9), we find that
res1 € span {rg, Arg, ..., Al
By combining this expression with the induction hypothesis for (5.16), we conclude that

. k+1
span {ro, 1, - . ., 'k, ret1} € span {ro, Aro, ..., A" ry).

To prove that the reverse inclusion holds as well, we use the induction hypothesis on (5.17)
to deduce that

A*Tlrg = A(AFry) € span {Ape, Ap1, ..., Api).
Since by (5.9) we have Ap; = (rip1 — ri)/oy fori = 0,1, ..., k, it follows that
AkHro € span {ro, Iy, ..., Tkl)
By combining this expression with the induction hypothesis for (5.16), we find that

span {ro, Aro, ..., A*Flr) span {ro, 11, ..., Iy Prl }-

Therefore, the relation (5.16) continues to hold when & is replaced by k + 1, as claimed.
We show that (5.17) continues to hold when & is replaced by k + 1 by the following

argument:

span{po, p1. - - -, Pk» Pe+1}
= span{po, P1, - - -+ Pk> k+1} by (5.13e)
= spanf{ro, Aro, ..., Afrg, Fe+1) by induction hypothesis for (5.17)
= span{ro, 1, - .., Fie» Tk1} by (5.16)
= span(ro, Aro, ..., A g} by (5.16) for k + 1.

109

110

CHAPTER 5. CONJUGATE GRADIENT METHODS

Next, we prove the conjugacy condition (5.18) with k replaced by k + 1. By multiplying
(5.13e) by Api,i =0, 1, ..., k, we obtain

1”/<T+1A1’f = _rkT+1Api + Besi Pl Api. (5.20)

By the definition (5.13d) of B, the right-hand-side of (5.20) vanishes when i = k. For
i < k — 1 we need to collect a number of observations. Note first that our induction
hypothesis for (5.18) implies that the directions Po, Pl - -
apply Theorem 5.2 to deduce that

., Pk are conjugate, so we can

rlopi =0, fori =0,1,..., k. (5.21)

Second, by repeatedly applying (5.17), we find that fori = 0, 1,..., k — 1, the following
inclusion holds:

Api € Aspan{rg, Arg, ..., A'ro} = span{Ary, A’r, ..., Atlrg}
C span{pg, p1,---» Pit+1)- (5.22)

By combining (5.21) and (5.22), we deduce that

o Api =0, fori =0,1,...,k—1,
so the first term in the right-hand-side of (5.20) vanishes fori = 0, 1, ..., k — 1. Because of
the induction hypothesis for (5.18), the second term vanishes as well, and we conclude that
PrApi =0,i =0,1,..., k. Hence, the induction argument holds for (5.18) also.

It follows that the direction set generated by the conjugate gradient method is indeed
a conjugate direction set, so Theorem 5.1 tells us that the algorithm terminates in at most n
iterations.

Finally, we prove (5.15) by a noninductive argument. Because the direction set is
conjugate, we have from (5.10) that r/ p; = O foralli = 0,1,...,k — 1 and any k =
1,2,...,n — L. By rearranging (5.13¢), we find that

pi = —ri + Bipi-1,

so that r; € span({p;, pi—i} foralli = 1,...,k — 1. We conclude that r7r; = 0 for all
i=1,...,k—1,as claimed. [}

The proof of this theorem relies on the fact that the first direction Po is the steepest
descent direction —rp; in fact, the result does not hold for other choices of Po- Since the
gradients r; are mutually orthogonal, the term “conjugate gradient method” is actually a
misnomer. It is the search directions, not the gradients, that are conjugate with respect to A.

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

A PRACTICAL FORM OF THE CONJUGATE GRADIENT METHOD

We can derive a slightly more economical form of the conjugate gradient method by
using the results of Theorems 5.2 and 5.3. First, we can use (5.13e) and (5.10) to replace the
formula (5.13a) for o by

T..
Y I

Pi APk

o =
Second, we have from (5.9) that ¢y Apy = ryy1 — i, so by applying (5.13e) and (5.10) once

again we can simplify the formula for B4, to

T

Besi i1 Tk+1

+1 — T . .
Y Tk

By using these formulae together with (5.9), we obtain the following standard form of the
conjugate gradient method.

Algorithm 5.2 (CG).

Given xo;
Setrg < Axg — b, po < —ro, k < 0;
while r, 50
T
Ok < er s (5.23a)
Pi Apx
Xp41 < X + Qg P (5.23b)
reg1 < I+ o Apg; (5.23¢)
rkT+1"k+l
Br+1 < —F—: (5.23d)
rk 143
Pt < —Tegr + By Pes (5.23¢)
k<—k+1; (5.23f)
end (while)

At any given point in Algorithm 5.2 we never need to know the vectors x, r, and
p for more than the last two iterations. Accordingly, implementations of this algorithm
overwrite old values of these vectors to save on storage. The major computational tasks to be
performed at each step are computation of the matrix—vector product Apy, calculation of
the inner products p[(Apk) and rkTHrk“, and calculation of three vector sums. The inner
product and vector sum operations can be performed in a small multiple of n floating-point

111

CHAPTER 5. CONJUGATE GRADIENT METHODS

operations, while the cost of the matrix—vector product is, of course, dependent on the
problem. The CG method is recommended only for large problems; otherwise, Gaussian
elimination or other factorization algorithms such as the singular value decomposition are
to be preferred, since they are less sensitive to rounding errors. For large problems, the CG
method has the advantage that it does not aiter the coefficient matrix, and unlike factorization
techniques, cannot produce fill in the arrays holding the matrix. The other key property is
that the CG method sometimes approaches the solution very quickly, as we discuss next.

RATE OF CONYERGENCE

‘We have seen that in exact arithmetic the conjugate gradient method will terminate at
the solution in at most n iterations. What is more remarkable is that when the distribution
of the eigenvalues of A has certain favorable features, the algorithm will identify the solution
in many fewer than n iterations. To show this we begin by viewing the expanding subspace
minimization property proved in Theorem 5.2 in a slightly different way, using it to show
that Algorithm 5.2 is optimal in a certain important sense.

From (5.23b) and (5.17), we have that

Xk1 = Xo + QoPo + -+ - + o P
=xo + yoro + ViAro + -+ + v Afro, (5.24)

for some constants y;. We now define P(-) to be a polynomial of degree k with coefficients

Y0, Y1 - - -» Yk- Like any polynomial, P can take either a scalar or a square matrix as its
argument; for a matrix argument A, we have

PHA) =yl + A+ -+ p AL
We can now write (5.24) as
Xipr = Xo + PP (A)ro. (5.25)
We will now see that among all possible methods whose first & steps are restricted to
the Krylov subspace K(ro; k) given by (5.14), Algorithm 5.2 does the best job of minimizing

the distance to the solution after k steps, when this distance is measured by the weighted
norm measure || - || 4 defined by

lzI3 =z" Az. (5.26)

(Recall that this norm was used in the analysis of the steepest descent method of Chapter 3.)
Using this norm and the definition of ¢ (5.2), it is easy to show that

e =1 = § 0 = x)TAlx — x*) = ¢(x) — d(x™). (5.27)

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

Theorem 5.2 states that x;,; minimizes ¢, and hence |x — x*||4, over the set xo +
span{po, P1, - - -» Pr}. It follows from (5.25) that the polynomial Pf solves the following
problem in which the minimum is taken over the space of all possible polynomials of degree
k:

n}’in flxo + Pr(A)ro — x*|l4- (5.28)
k

We exploit this optimality property repeatedly in the remainder of the section.
Since

ro = Axg — b = Axg — Ax* = A(xo — x*),
we have that
Xpp1 — x* =x0 + P (A)ro —x* = [I + P (A)A](xo — x7). (5.29)
Let 0 < A; < Ay < --- < A, be the eigenvalues of A, and let v;, v, ..., v, be the

corresponding orthonormal eigenvectors. Since these eigenvectors span the whole space R”,
we can write

xo—x* = Z&Uh (5.30)
i=1

for some coefficients &;. It is easy to show that any eigenvector of A is also an eigenvector
of Pi(A) for any polynomial Py. For our particular matrix A and its eigenvalues A; and
eigenvectors v;, we have

P (A = Pe(Ai)v;, i=1,2,...,n.

By substituting (5.30) into (5.29) we have

X1 —X* = (142 PF (A&,

n

i=1

and hence

n
s — x* 1% = D All+ A PE AL (5.31)

i=1

113

114

CHAPTER 5. CONJUGATE GRADIENT METHODS

Since the polynomial P generated by the CG method is optimal with respect to this norm,
we have

2 . * 2
ks = 713 = gin D 2al1+ 2 P IEF
By extracting the largest of the terms {1 + A; P();)]? from this expression, we obtain that

n
eier = **I% = min max {14+ 4 Pe(A))° (}: m,?)

=1
= min max [1 + A; P(A)] [lxo — x* 113, (5.32)
P i<i<n
where we have used the fact that |lxo — x*||% = 3"}, A&},

The expression (5.32) allows us to quantify the convergence rate of the CG method by
estimating the nonnegative scalar quantity

min max [1 + A; Pe(X;)]% (5.33)
P, i<i<n
In other words, we search for a polynomial P, that makes this expression as small as possible.
In some practical cases, we can find this polynomial explicitly and draw some interesting
conclusions about the properties of the CG method. The following result is an example.

Theorem 5.4.

If A has only r distinct eigenvalues, then the CG iteration will terminate at the solution
in at most r iterations.

PrROOF. Suppose that the eigenvalues A, A,, ..., A, take on the r distinct values 7y < 15 <
- < T,. We define a polynomial Q. (1) by

(=1

0r() = " (=)~ 1) - (k=),

and note that Q,(%;) =0fori = 1,2,...,n and Q,(0) = 1. From the latter observation,
we deduce that Q,(A) — 1 is a polynomial of degree with a root at A = 0, so by polynomial
division, the function P,_, defined by

Pi(0) = (Q,(0) — /A
is a polynomial of degree r — 1. By setting k = r — 1 in (5.33), we have

0 < min max [1+ & Py (M) < lrnax[l + AP () = max Or(A) =0.
=i=n <i<n

Py 1<i<n

5.1. THE LiNEAR CONJUGATE GRADIENT METHOD

Hence the constant in (5.33) is zero for the value k = r — 1, so we have by substituting into
(5.32) that [Ix, — x*[|4 = 0, and therefore x, = x*, as claimed. O

By using similar reasoning, Luenberger [152] establishes the following estimate, which
gives a useful characterization of the behavior of the CG method.

Theorem 5.5.
If A has eigenvalues Ay < Ay < --- < A, we have that
)\n—k - }‘l

2
2220 flxo — XA 5.34
k,,_k+h) flxo IIa (5.34)

lxpsr — x™1% < (

Without giving details of the proof, we describe how this result is obtained from (5.32). One
selects a polynomial P, of degree k such that the polynomial Q41 (A) = 1 + APy(X) has
roots at the k largest eigenvalues A, A1, .., An—gy1, as well as at the midpoint between
Ay and Ap_g. It can be shown that the maximum value attained by Q4+, on the remaining
eigenvalues 11, A2, ..., Apg is precisely (An—g — A1) /(An—r + A1)-

We now illustrate how Theorem 5.5 can be used to predict the behavior of the CG
method on specific problems. Suppose we have the situation plotted in Figure 5.3, where
the eigenvalues of A consist of m large values, with the remaining n — m smaller eigenvalues
clustered around 1.

If wedefine € = A,_,, — A1, Theorem 5.5 tells us that after m + 1 steps of the conjugate
gradient algorithm, we have

IXma1 — x*[= €llxo — x™ |-

For a small value of €, we conclude that the CG iterates will provide a good estimate of the
solution after only m + 1 steps.

Figure 5.4 shows the behavior of CG on a problem of this type, which has five large
eigenvalues with all the smaller eigenvalues clustered between 0.95 and 1.05, and compares
this behavior with that of CG on a problem in which the eigenvalues satisfy some random
distribution. In both cases, we plot the log of ¢ after each iteration.

7\'1)‘n-m 7“n-m +1)"n

Ceeed i 1 [R |

0 1

Figure5.3 Two clusters of eigenvalues.

115

116 CHAPTER 5. CONJUGATE GRADIENT METHODS

A log(lx-x*ii3)

clustered eigenvalues

uniformly distributed
eigenvalues
-5

iteration

Figure5.4 Performance of the conjugate gradient method on (a) a problem in which
five of the eigenvalues are large and the remainder are clustered near 1, and (b) a matrix
with uniformly distributed eigenvalues.

For the problem with clustered eigenvalues, Theorem 5.5 predicts a sharp decrease in
the error measure at iteration 6. Note, however, that this decrease was achieved one iteration
earlier, illustrating the fact that Theorem 5.5 gives only an upper bound, and that the rate
of convergence can be faster. By contrast, we observe in Figure 5.4 that for the problem with
randomly distributed eigenvalues the convergence rate is slower and more uniform.

Figure 5.4 illustrates another interesting feature: After one more iteration (a total
of seven) on the problem with clustered eigenvalues, the error measure drops sharply. An
extension of the arguments leading to Theorem 5.4 explains this behavior. It is almost true to
say that the matrix A has just six distinct eigenvalues: the five large eigenvalues and 1. Then
we would expect the error measure to be zero after six iterations. Because the eigenvalues
near 1 are slightly spread out, however, the error does not become very small until the next
iteration, i.e. iteration 7.

To state this more precisely, it is generally true that if the eigenvalues occur in r distinct
clusters, the CG iterates will approximately solve the problem after r steps (see [115]).
This result can be proved by constructing a polynomial P,_; such that (1 + AP,_;(A))
has zeros inside each of the clusters. This polynomial may not vanish at the eigenvalues
Ai, i =1,2,...,n, but its value will be small at these points, so the constant defined in
(5.33) will be tiny for k > r — 1. We illustrate this behavior in Figure 5.5, which shows the

5.1. THE LINEAR CONJUGATE GRADIENT METHOD

b log(lx-x*112)

iteration

Figure5.5 Performance of the conjugate gradient method on a matrix in which the
eigenvalues occur in four distinct clusters.

performance of CG on a matrix of dimension n = 14 that has four clusters of eigenvalues:
single eigenvalues at 140 and 120, a cluster of 10 eigenvalues very close to 10, with the
remaining eigenvalues clustered between 0.95 and 1.05. After four iterations, the error norm
is quite small. After six iterations, the solution is identified to good accuracy.

Another, more approximate, convergence expression for CG is based on the Euclidean
condition number of A, which is defined by

k(AY = |AILIA 2 = A /A
It can be shown that

Ve(A) -1 >2"'

Xp— x4 < | ——— Xo — x*|[4- 5.35
[lxx ||A_(m+l lxo — x™|la (5.35)
This bound often gives a large overestimate of the error, but it can be useful in those cases
where the only information we have about A is estimates of the extreme eigenvalues A; and
Ay. This bound should be compared with that of the steepest descent method given by (3.28),
which is identical in form but which depends on the condition number «(A), and not on

its square root </ (4).

117

118

CHAPTER 5. CONJUGATE GRADIENT METHODS

PRECONDITIONING

We can accelerate the conjugate gradient method by transforming the linear system
to improve the eigenvalue distribution of A. The key to this process, which is known as
preconditioning, is a change of variables from x to X via a nonsingular matrix C, that is,

X=Cx. (5.36)
The quadratic ¢ defined by (5.2) is transformed accordingly to
$(2) = LT (CTAC™)% — (CTH)T 4. (5.37)
If we use Algorithm 5.2 to minimize ¢ or, equivalently, to solve the linear system
(cTAC™Hi =T,

then the convergence rate will depend on the eigenvalues of the matrix C~7 AC™! rather
than those of A. Therefore, we aim to choose C such that the eigenvalues of C™T AC~! are
more favorable for the convergence theory discussed above. We can try to choose C such that
the condition number of C™T AC™! is much smaller than the original condition number
of A, for instance, so that the constant in (5.35) is smaller. We could also try to choose C
such that the eigenvalues of C~T AC~! are clustered, which by the discussion of the previous
section ensures that the number of iterates needed to find a good approximate solution is
not much larger than the number of clusters.

It is not necessary to carry out the transformation (5.36) explicitly. Rather, we can
apply Algorithm 5.2 to the problem (5.37), in terms of the variables %, and then invert the
transformations to reexpress all the equations in terms of x. This process of derivation results
in Algorithm 5.3 (preconditioned conjugate gradient), which we now define. It happens that
Algorithm 5.3 does not make use of C explicitly, but rather the matrix M = C7 C, which is
symmetric and positive definite by construction.

Algorithm 5.3 (Preconditioned CG).
Given xg, preconditioner M;
Setry < Axg — b;
Solve My, = rg for yg;
Set pg = —rg, k < 0;
while r, £ 0

T
ARSI L (5.382)
Pi APk
Xi+1 < X + o pr; (5.38b)

5.1. THE LINEAR CONJUGATE GRADIENT METHOD
Frg1 < rp o Apg; (5.38¢c)
Myeyr <= rigy; (5.38d)

re. Y41
Brt1 <+ —-H'——;-*—-* (5.38¢)

T Yk

P41 < —Yigt + Bet1Pics (5.38f)
k«—k+1; (5.38g)

end (while)

Ifweset M = [in Algorithm 5.3, we recover the standard CG method, Algorithm 5.2.
The properties of Algorithm 5.2 generalize to this case in interesting ways. In particular, the
orthogonality property (5.15) of the successive residuals becomes

WM™ =0 foralli # ;. (5.39)

In terms of computational effort, the main difference between the preconditioned and
unpreconditioned CG methods is the need to solve systems of the form My = r.

PRACTICAL PRECONDITIONERS

No single preconditioning strategy is “best” for all conceivable types of matrices:
The tradeoff between various objectives—effectiveness of M, inexpensive computation and
storage of M, inexpensive solution of My = r—varies from problem to problem.

Good preconditioning strategies have been devised for specific types of matrices, in
particular, those arising from discretizations of partial differential equations (PDEs). Often,
the preconditioner is defined in such a way that the system My = r amounts to a simplified
version of the original system Ax = b. Inthe case ofa PDE, My = r could represent a coarser
discretization of the underlying continuous problem than Ax = b. As in many other areas of
optimization and numerical analysis, knowledge about the structure and origin of a problem
(in this case, knowledge that the system Ax = b is a finite-dimensional representation of a
PDE) is the key to devising effective techniques for solving the problem.

General-purpose preconditioners have also been proposed, but their success varies
greatly from problem to problem. The most important strategies of this type include sym-
metric successive overrelaxation (SSOR), incomplete Cholesky, and banded preconditioners.
(See {220], [115], and [53] for discussions of these techniques.) Incomplete Cholesky is prob-
ably the most effective in general; we discussed it briefly in Chapter 6. The basic idea is
simple: We follow the Cholesky procedure, but instead of computing the exact Cholesky
factor L that satisfies A = LL7, we compute an approximate factor L that is sparser than
L. (Usually, we require L to be no denser, or not much denser, than the lower triangle of the
original matrix A.) We thenhave A ~ LL7, and by choosing C = L7, weobtain M = LL”

119

120 CHAPTER 5. CONJUGATE GRADIENT METHODS

and
CTAC ' = [YAL T~ 1,

so the eigenvalue distribution of C~T AC ! is favorable. We do not compute M explicitly,
but rather store the factor L and solve the system My = r by performing two triangular
substitutions with L. Because the sparsity of L is similar to that of A, the cost of solving
My = r is similar to the cost of computing the matrix—vector product Ap.

There are several possible pitfalls in the incomplete Cholesky approach. One is that
the resulting matrix may not be (sufficiently) positive definite, and in this case one may need
to increase the values of the diagonal elements to ensure that a value for L can be found.
Numerical instability or breakdown can occur during the incomplete factorization because
of the sparsity conditions we impose on the factor L. This difficulty can be remedied by
allowing additional fill-in in L, but the denser factor will be more expensive to compute and
to apply at each iteration.

5.2 NONLINEAR CONJUGATE GRADIENT METHODS

We have noted that the CG method, Algorithm 5.2, can be viewed as a minimization algo-
rithm for the convex quadratic function ¢ defined by (5.2). It is natural to ask whether we

can adapt the approach to minimize general convex functions, or even general nonlinear
functions f.

THE FLETCHER-REEVES METHOD

Fletcher and Reeves [88] showed that an extension of this kind is possible by making
two simple changes in Algorithm 5.2. First, in place of the choice (5.23a) for the step length
o (which minimizes ¢ along the search direction py), we need to perform a line search
that identifies an approximate minimum of the nonlinear function f along p;. Second,
the residual r, which is simply the gradient of ¢ in Algorithm 5.2, must be replaced by the

gradient of the nonlinear objective f. These changes give rise to the following algorithm for
nonlinear optimization.

Algorithm 5.4 (FR-CG).
Given xg;
Evaluate fo = f(x0), V fo = V f(x0);
Set po = —V fo, k < 0;
while Vf;, £ 0
Compute o and set xgq = Xx + g pys
Evaluate V fi, 3 o

5.2. NONLINEAR CONJUGATE GRADIENT METHODS
vV
o ———f“'T fi, (5.402)
Ve Vi
Pirt < =V fegr + B P (5.40b)
k< k+1; (5.40c¢)

end (while)

If we choose f to be a strongly convex quadratic and ¢ to be the exact minimizer, this
algorithm reduces to the linear conjugate gradient method, Algorithm 5.2. Algorithm 5.4
is appealing for large nonlinear optimization problems because each iteration requires only
evaluation of the objective function and its gradient. No matrix operations are performed,
and just a few vectors of storage are required.

To make the specification of Algorithm 5.4 complete, we need to be more precise about
the choice of line search parameter ay. Because of the second term in (5.40b), the search
direction pj may fail to be a descent direction unless o satisfies certain conditions. By taking
the inner product of (5.40b) (with k replacing k + 1) with the gradient vector V f, we obtain

VL pe = =1Vl + BV AL pear- (5.41)

If the line search is exact, so that cz;_; is a local minimizer of f along the direction py_i,
we have that V £,7 pr_ = 0. In this case we have from (5.41) that VT pr < 0, so that py
is indeed a descent direction. But if the line search is not exact, the second term in (5.41)
may dominate the first term, and we may have V f7 p; > 0, implying that p; is actually a
direction of ascent. Fortunately, we can avoid this situation by requiring the step length o
to satisfy the strong Wolfe conditions, which we restate here:

e +aepr) < f) + cionV il pe (5~42_3)
IV (r + e p) T pel < IV T pel, (5.42b)

where 0 < ¢; < ¢; < % (Note that we impose ¢; < % here, in place of the looser condition
¢; < 1 that was used in the earlier statement (3.7).) By applying Lemma 5.6 below, we can
show that condition (5.42b) implies that (5.41) is negative, and we conclude that any line
search procedure that yields an oy satisfying (5.42) will ensure that all directions py are
descent directions for the function f.

THE POLAK-RIBIERE METHOD

There are many variants of the Fletcher—Reeves method that differ from each other
mainly in the choice of the parameter B. The most important of these variants, proposed

121

122 CHAPTER 5. CONJUGATE GRADIENT METHODS

by Polak and Ribiére, defines this parameter as follows:

VA ferr — Vi)
19 felli2

We refer to the algorithm in which (5.43) replaces (5.40a) as Algorithm PR-CG, and refer to
Algorithm 5.4 as Algorithm FR-CG. They are identical when f isa strongly convex quadratic
function and the line search is exact, since by (5.15) the gradients are mutually orthogonal,
andso B}, = B |. When applied to general nonlinear functions with inexact line searches,
however, the behavior of the two algorithms differs markedly. Numerical experience indicates
that Algorithm PR-CG tends to be the more robust and efficient of the two.

A surprising fact about Algorithm PR-CG is that the strong Wolfe conditions (5.42)
do not guarantee that py is always a descent direction. If we define the 8 parameter as

B, = (5.43)

By = max{Bf, 0}, (5.44)

giving rise to an algorithm we call Algorithm PR+, then a simple adaptation of the strong
Wolfe conditions ensures that the descent property holds.
There are many other choices for B, that coincide with the Fletcher—Reeves formula

By in the case where the objective is quadratic and the line search is exact. The Hestenes—
Stiefel formula, which defines

w _ Vi (Ve — V£
T (Vi = VA e

gives rise to an algorithm that is similar to Algorithm PR-CG, both in terms of its theoretical
convergence properties and in its practical performance. Formula (5.45) can be derived
by demanding that consecutive search directions be conjugate with respect to the average
Hessian over the line segment [x;, x4,], which is defined as

(5.45)

_ 1
Gy = / (V2 f(xe + tagd,)]dr.
0

Recalling from Taylor’s theorem (2.5) that V Serr = Vi + oGy pr, we see that for any

direction of the form pry) = ~V iy + Bi+1px the condition pf, G pi = 0 requires
Br+1 to be given by (5.45).

None of the other proposed definitions of 8 has proved to be significantly more
efficient than the Polak~Ribiére choice (5.43).

QUADRATIC TERMINATION AND RESTARTS

Implementations of nonlinear conjugate gradient methods usually preserve their close
connections with the linear conjugate gradient method. Usually, a quadratic (or cubic)

5.9. NONLINEAR CONJUGATE GRADIENT METHODS

interpolation along the search direction py is incorporated into the line search procedure; see
Chapter 3. This feature guarantees that when f is a strictly convex quadratic, the step length
oy is chosen to be the exact one-dimensional minimizer, so that the nonlinear conjugate
gradient method reduces to the linear method, Algorithm 5.2.

Another modification that is often used in nonlinear conjugate gradient procedures
is to restart the iteration at every n steps by setting B = 0 in (5.40a), that is, by taking
a steepest descent step. Restarting serves to periodically refresh the algorithm, erasing old
information that may not be beneficial. We can even prove a strong theoretical result about
restarting: It leads to n-step quadratic convergence, that is,

‘1xk+11 - x“ =0 (”xk - X*HZ) . (546)

With a little thought, we can see that this result is not so surprising. Consider a function
f that is strongly convex quadratic in a neighborhood of the solution, but is nonquadratic
everywhere else. Assuming that the algorithm is converging to the solution in question,
the iterates will eventually enter the quadratic region. At some point, the algorithm will be
restarted in that region, and from that point onward, its behavior will simply be that of
the linear conjugate gradient method, Algorithm 5.2. In particular, finite termination will
occur within n steps of the restart. The restart is important, because the finite-termination
property (and other appealing properties) of Algorithm 5.2 holds only when its initial search
direction py is equal to the negative gradient.

Even if the function f is not exactly quadratic in the region of a solution, Taylor’s
theorem (2.6) implies that it can still be approximated quite closely by a quadratic, provided
that it is smooth. Therefore, while we would not expect termination in n steps after the
restart, it is not surprising that substantial progress is made toward the solution, as indicated
by the expression (5.46).

Though the result (5.46) is interesting from a theoretical viewpoint, it may not be
relevant in a practical context, because nonlinear conjugate gradient methods can be rec-
ommended only for solving problems with large n. In such problems restarts may never
occur, since an approximate solution is often located in fewer than n steps. Hence, nonlinear
CG method are sometimes implemented without restarts, or else they include strategies for
restarting that are based on considerations other than iteration counts. The most popular
restart strategy makes use of the observation (5.15), which is that the gradients are mutually
orthogonal when f isa quadratic function. A restart is performed whenever two consecutive
gradients are far from orthogonal, as measured by the test

T
VAV fierl

Y] 5.47
VAR G4

where a typical value for the parameter v is 0.1.
Another modification to the restart strategy is to use a direction other than steepest
descent as the restart direction. The Harwell subroutine VA14 [133], for instance, defines

123

124

CHAPTER 5. CONJUGATE GRADIENT METHODS

Di+1 by using a three-term recurrence based on V fi4 1, pr and a third direction that contains
earlier information about the behavior of the objective function. An algorithm that takes
this idea one step further is CONMIN, which is discussed in Chapter 9.

We could also think of formula (5.44) as a restarting strategy, because pr4, will revert
to the steepest descent direction whenever 8" is negative. In contrast to (5.47), however,
these restarts are rather infrequent because B;* is positive most of the time.

NUMERICAL PERFORMANCE

Table 5.1 illustrates the performance of Algorithms FR-CG, PR-CG, and PR+ without
restarts. For these tests, the parameters in the strong Wolfe conditions (5.42) were chosen to
be ¢; = 107 and ¢, = 0.1. The iterations were terminated when

IV filloo < 107°(1 4| £il),

or after 10,000 iterations (the latter is denoted by a *).

The final column, headed “mod,” indicates the number of iterations of Algorithm
PR+ for which the adjustment (5.44) was needed to ensure that 8;° > 0. An examination
of the results of Algorithm FR-CG on problem GENROS shows that the method takes very
short steps far from the solution that lead to tiny improvements in the objective function.

The Polak—Ribiére algorithm, or its variation PR+, are not always more efficient than
Algorithm FR-CG, and it has the slight disadvantage of requiring one more vector of storage.
Nevertheless, we recommend that users choose Algorithm PR-CG or PR+ whenever possible.

BEHAVIOR OF THE FLETCHER-REEVES METHOD

We now investigate the Fletcher—Reeves algorithm, Algorithm 5.4, a little more closely,
proving that it is globally convergent and explaining some of its observed inefficiencies.

The following result gives conditions on the line search that guarantee that all search
directions are descent directions. It assumes that the level set £ = {x : f(x) < f(xo)} is

Table 5.1 Iterations and function/gradient evaluations required by three
nonlinear conjugate gradient methods on a set of test problems.

Alg FR Alg PR Alg PR+
Problem n it/f-g it/f-g it/f-g mod
CALCVAR3 200 2808/5617 | 2631/5263 | 2631/5263 0
GENROS 500 * 1068/2151 1067/2149 1
XPOWSING 1000 533/1102 212/473 97/229 3
TRIDIA1 1000 264/531 262/527 262/527 0
MSQRT1 1000 422/849 113/231 113/231 0
XPOWELL 1000 568/1175 212/473 97/229 3
TRIGON 1000 231/467 40/92 40/92 0

5.2. NONLINEAR CONJUGATE GRADIENT METHODS

bounded, and that f is twice continuously differentiable, so that we have from Lemma 3.1
that there exists a step length o that satisfies the strong Wolfe conditions.

Lemma 5.6.
Suppose that Algorithm 5.4 is implemented with a step length ay that satisfies the strong
Wolfe conditions (5.42) with0 < ¢; < 1. Then the method generates descent directions py that

satisfy the following inequalities:

1 Vi pe _20—1

- =< =< , forallk=0,1,.... (5.48)
T—c ~ VAP l—c

proof. Note first that the function #(£) &of (26 — 1)(1 — &) is monotonically increasing on

the interval [0, 1] and that #(0) = —1 and #(3) = 0. Hence, because of ¢; € (0, 1), we have
2c, — 1

—1<27 0 co. (5.49)
1— Cy

The descent condition V £ p; < 0 follows immediately once we establish (5.48).

The proof is by induction. For k = 0, the middle term in (5.48) is —1, so by using
(5.49), we see that both inequalities in (5.48) are satisfied. Next, assume that (5.48) holds
for some k > 1. From (5.40b) and (5.40a) we have

V il bk o VL px
—Mﬂ=*1+ﬁk+1—“f%:—l+ﬂ~ (5.50)
IV ferdl? IV feeall IV fell?
By using the line search condition (5.42b), we have
IV i pel < =2V £ P
50 by combining with (5.50), we obtain
T VAL VT px
-1 +szfk Pk _ fk+1Pk+21 <-1-¢ S PAZ_
IV £ll2 ™ AV ferll IV fel

Substituting for the term V FEpe/IV fil? from the left-hand-side of the induction
hypothesis (5.48), we obtain

__e o V fi1 Pt I
I—c Y fegill? l—c

3

which shows that (5.48) holds for k + 1 as well. a

125

126

CHAPTER 5. CONJUGATE GRADIENT METHODS

This result used only the second strong Wolfe condition (5.42b); the first Wolfe condi-
tion (5.42a) will be needed in the next section to establish global convergence. The bounds
on V £iI pi in (5.48) impose a limit on how fast the norms of the steps || p« || can grow, and
they will play a crucial role in the convergence analysis given below.

Lemma 5.6 can also be used to explain a weakness of the Fletcher—Reeves method. We
will argue that if the method generates a bad direction and a tiny step, then the next direction
and next step are also likely to be poor. As in Chapter 3, we let 6; denote the angle between
D and the steepest descent direction —V fi, defined by

_kaTPk

Cos O = et
IV felt lpell

(5.51)

Suppose that py is a poor search direction, in the sense that it makes an angle of nearly 90°
with —V f;, that is, cos6; =~ 0. By multiplying both sides of (5.48) by |V fi|l/ll px!l and
using (5.51), we obtain

VAl _

< costy < o, IVA
X

k= X2)
Il prcll

forallk=0,1,..., (5.52)

1

where x; and x, are two positive constants. From the right-hand inequality we can have
cos 6 =~ 0 if and only if

IVl < lipell-

Since py is almost orthogonal to the gradient, it is likely that the step from x; to x4, is tiny,
that is, x¢1 = xi. If so, we have V fiy) = V f;, and therefore

B ~ 1, (5.53)

by the definition (5.40a). By using this approximation together with |V fill = |V fill <
[l pl in (5.40b), we conclude that

Prk+1 = P,

so the new search direction will improve little (if at all) on the previous one. It follows that
if the condition cos 6; = 0 holds at some iteration k and if the subsequent step is small, a
long sequence of unproductive iterates will follow.

The Polak—Ribiére method behaves quite differently in these circumstances. If, as in
the previous paragraph, the search direction p; satisfies cos 6, =~ 0 for some k, and if the
subsequent step is small, it follows by substituting V fi & V fi4 into (5.43) that 8%, ~ 0.
From the formula (5.40b), we find that the new search direction p;; will be close to the
steepest descent direction —V fiyy, and cos 6y will be close to 1. Therefore, Algorithm

5.2. NONLINEAR CONJUGATE GRADIENT METHODS

PR-CG essentially performs a restart after it encounters a bad direction. The same argument
can be applied to Algorithms PR+ and HS-CG.

The inefficient behavior of the Fletcher—Reeves method predicted by the arguments
given above can be observed in practice. For example, the paper [103] describes a problem
with n = 100 in which cos 6 is of order 1072 for hundreds of iterations, and the steps
llxx — xx—1 1l are of order 1072, Algorithm FR-CG requires thousands of iterations to solve this
problem, while Algorithm PR-CG requires just 37 iterations. In this example, the Fletcher—
Reeves method performs much better if it is periodically restarted along the steepest descent
direction, since each restart terminates the cycle of bad steps. In general, Algorithm FR-CG
should not be implemented without some kind of restart strategy.

GLOBAL CONVERGENCE

Unlike the linear conjugate gradient method, whose convergence properties are well
understood and which is known to be optimal as described above, nonlinear conjugate
gradient methods possess surprising, sometimes bizarre, convergence properties. The theory
developed in the literature offers fascinating glimpses into their behavior, but our knowledge
remains fragmentary. We now present a few of the main results known for the Fletcher—~Reeves
and Polak—Ribiére methods using practical line searches.

For the purposes of this section, we make the following (nonrestrictive) assumptions
on the objective function.

Assumption 5.1.
(i) Thelevel set £ := {x : f(x) < f(x0)} is bounded.

(ii) In some neighborhood N of L, the objective function f is Lipschitz continuously
differentiable, that is, there exists a constant L > 0 such that

IVf(x)—VFE < Lix —x||, forallx,%eN. (5.54)
This assumption implies that there is a constant y such that
IVf) <y, forallx € L. (5.55)

Our main analytical tool in this section is Zoutendijk’s theorem—Theorem 3.2 in
Chapter 3—which we restate here for convenience.

Theorem 5.7.
Suppose that Assumptions 5.1 hold. Consider any line search iteration of the form X4, =
X + oy pi, where py. is a descent direction and oy satisfies the Wolfe conditions (5.42). Then

o0
> ot b |V fill* < oo. (5.56)
k=1

127

128

CHAPTER 5. CONJUGATE GRADIENT METHODS

We can use this theorem to prove global convergence for algorithms that are periodi-
cally restarted by setting By = 0. If ky, k3, and so on denote the iterations on which restarts
occur, we have from (5.56) that

> IVl? < oo (5.57)

k=k; kz,...

If we allow no more than 71 iterations between restarts, the sequence {k;}32, will be infinite,
and from (5.57) we have that lim; , o [V fg,|| = 0. That is, a subsequence of gradients
approaches zero, or equivalently,

liminf |V f|| = 0. (5.58)
k—>00

This result applies equally to restarted versions of all the algorithms discussed in this chapter.

Itis more interesting, however, to study the global convergence of unrestarted conjugate
gradient methods, because for large problems (say n > 1000) we expect to find a solution in
many fewer than » iterations—the first point at which a regular restart would take place. Our
study of large sequences of unrestarted conjugate gradient iterations reveals some surprising
patterns in their behavior.

We can build on Lemma 5.6 and Theorem 5.7 to prove a global convergence result
for the Fletcher-Reeves method. While we cannot show that the limit of the sequence of
gradients {V f;} is zero (as in the restarted method above), the following result shows that
it is at least not bounded away from zero.

Theorem 5.8.
Suppose that Assumptions 5.1 hold, and that Algorithm 5.4 is implemented with a line
search that satisfies the strong Wolfe conditions (5.42), with0 < ¢ < ¢; < % Then

liminf |V fi || = 0. (5.59)
k—o00

PROOF. The proof is by contradiction. It assumes that the opposite of (5.59) holds, that is,
there is a constant ¥ > 0 such that

IVl =y, for all k sufficiently large, (5.60)

and uses Lemma 5.6 and Theorem 5.7 to derive the contradiction.
From Lemma 5.6, we have that

1 \%
cosfy > —— IV fel k=1,2,..., (5.61)
1—cy llpell’

5.2. NONLINEAR CONJUGATE GRADIENT METHODS

and by substituting this relation in Zoutendijk’s condition (5.56), we obtain

$AI 562)
— pell?

By using (5.42b) and Lemma 5.6 again, we obtain that

C
VAT Pl < =2V Lt £ 7= IV fem (5.63)
— ¢2
Thus, from (5.40b) and recalling the definition (5.40a) of B;* we obtain

lpell® < IV fill® + 2/3“‘ |kaTPk—1| + (B pra I
< IV Al? 14 /3[" IV fer I + (BE et |1

< (i“z)nvm + (B par I

Applying this relation repeatedly, defining c3 f (1 + ¢2)/(1 — ¢z) > 1, and using the

definition (5.40a) of 8;*, we have

1pcl? < sllV Fil® 4+ BEYLGIY fimi I + (B D) pe- 211

B 1 1] VAt
= oIV [qukuz Izl A
< llV A Z IV £172, (5.64)
j=1
where we used the facts that
o 2oy = VA
(BEY B (B = g7

and p; = —V f,. By using the bounds (5.55) and (5.60) in (5.64), we obtain
—4
Ipell® < 22 &, (5.65)
Y

which implies that

(5.66)

3

]

[e o) 1 o0
L T2

k=1 k=1

129

130 CHAPTER 5. CONJUGATE GRADIENT METHODS

for some positive constant y;.
Suppose for contradiction that (5.60) holds. Then from (5.62), we have that

= 1

k=1

However, if we combine this inequality with (5.66), we obtain that S te. 1/k < oo, which
is not true. Hence, (5.60) does not hold, and the claim (5.59) is proved. Od

Note that this global convergence result applies to a practical implementation of the
Fletcher—Reeves method and is valid for general nonlinear objective functions. In this sense, it
is more satisfactory than other convergence results that apply to specific types of objectives—
for example, convex functions.

In general, if we can show that there is a constant ¢4 > 0 such that

v
cos@kzc4” fk“, k=12,...,
Itpell
and another constant ¢s such that
v
—fd205>0, k=1,2,...,
Itpell

it follows from Theorem 5.7 that
klim IVl =o.
—00

This result can be established for the Polak-Ribiére method under the assumption that f is
strongly convex and that an exact line search is used.

For general (nonconvex) functions, is it not possible to prove a result like Theorem 5.8
for Algorithm PR-CG. This is unexpected, since the Polak—Ribiére method performs better
in practice than the Fletcher~Reeves method. In fact, the following surprising result shows
that the Polak-Ribi¢re method can cycle infinitely without approaching a solution point,
even if an ideal line search is used. (By “ideal” we mean that line search returns a value o
that is the first stationary point for the function tlo) = fxx +apy).)

Theorem 5.9.

. Consider the Polak-Ribiére method method (5.43), with an ideal line search. There exists
atwice continuously differentiable objective function f : R> — R anda starting pointxy € R’
such that the sequence of gradients {|V fi||} is bounded away from zero.

5.2. NONLINEAR CONJUGATE GRADIENT METHODS

The proof of this result is given in [207], and is quite complex. It demonstrates the
existence of the desired objective function without actually constructing this function explic-
itly. The result is interesting, since the step length assumed in the proof—the first stationary
point—may be accepted by any of the practical line search algorithms currently in use.

The proof of Theorem 5.9 requires that some consecutive search directions become
almost negatives of each other. In the case of ideal line searches, this can be achieved only if
B < 0, so the analysis suggests a modification of the Polak—Ribié¢re method in which we set

B¢ = max{BfF, 0}. (5.68)

This method is exactly Algorithm PR+ discussed above. We mentioned earlier that a line
search strategy based on a slight modification of the Wolfe conditions guarantees that all
search directions generated by Algorithm PR+ are descent directions. Using these facts, it is
possible to prove global convergence of Algorithm PR+ for general functions.

NOTES AND REFERENCES

The conjugate gradient method was developed in the 1950s by Hestenes and
Stiefel [135] as an alternative to factorization methods for finding exact solutions of symmet-
ric positive definite systems. It was not until some years later, in one of the most important
developments in sparse linear algebra, that this method came to be viewed as an iterative
method that could give good approximate solutions to systems in many fewer than n steps.
Our presentation of the linear conjugate gradient method follows that of Luenberger [152].

Interestingly enough, the nonlinear conjugate gradient method of Fletcher and
Reeves [88] was proposed after the linear conjugate gradient method had fallen out of favor,
but several years before it was rediscovered as an iterative method. The Polak—Ribiére method
was proposed in [194], and the example showing that it may fail to converge on nonconvex
problems is given by Powell {207]. Restart procedures are discussed in Powell {203].

Analysis due to Powell [200] provides further evidence of the inefficiency of the
Fletcher—Reeves method using exact line searches. He shows that if the iterates enter a region
in which the function is the two-dimensional quadratic

fx)=3xTx,

then theangle between the gradient V ;. and the search direction py stays constant. Therefore,
if this angle is close to 90°, the method will converge very slowly. Indeed, since this angle can
be arbitrarily close to 90°, the Fletcher—Reeves method can be slower than the steepest descent
method. The Polak—Ribiére method behaves quite differently in these circumstances: Ifa very
small step is generated, the next search direction tends to the steepest descent direction, as
argued above. This feature prevents a sequence of tiny steps.

The global convergence of nonlinear conjugate gradient methods is studied also in
Al-Baali [3] and Gilbert and Nocedal [103].

131

132 CHAPTER 5. CONJUGATE GRADIENT METHODS

Most of the theory on the rate of convergence of conjugate gradient methods assumes
that theline search is exact. Crowder and Wolfe [61] show that the rate of convergence is linear,
and show by constructing an example that Q-superlinear convergence is not achievable.
Powell [200] studies the case in which the conjugate gradient method enters a region where
the objective function is quadratic, and shows that either finite termination occurs or the rate
of convergence islinear. Cohen [43] and Burmeister [33] prove n-step quadratic convergence
for general objective functions, that is,

%40 — X711 = O(llxx — x*|?).
Ritter [214] shows that in fact, the rate is superquadratic, that is,
Iesn = x71 = o(llxe ~ x*[1%).

Powell [206] gives a slightly better result and performs numerical tests on small problems
to measure the rate observed in practice. He also summarizes rate-of-convergence results
for asymptotically exact line searches, such as those obtained by Baptist and Stoer [6] and
Stoer [232].

Even faster rates of convergence can be established (see Schuller [225], Ritter [214]),
under the assumption that the search directions are uniformly linearly independent, but this
assumption is hard to verify and does not often occur in practice.

Nemirovsky and Yudin {180] devote some attention to the global efficiency of the
Fletcher-Reeves and Polak—Ribiere methods with exact line searches. For this purpose they
define a measure of “laboriousness” and an “optimal bound” for it among a certain class
of iterations. They show that on strongly convex problems not only do the Fletcher-Reeves
and Polak-Ribiere methods fail to attain the optimal bound, but they may also be slower
than the steepest descent method. Subsequently, Nesterov [180] presented an algorithm that
attains this optimal bound. It is related to PARTAN, the method of parallel tangents (see, for
example, Luenberger [152]). We feel that this approach is unlikely to be effective in practice,
but no conclusive investigation has been carried out, to the best of our knowledge.

Special line search strategies that ensure global convergence of the Polak—Ribiére
method have been proposed, but they are not without disadvantages.

The results in Table 5.1 are taken from Gilbert and Nocedal [103]. This paper also de-

scribes aline search that guarantees that Algorithm PR+ always generates descent directions,
and proves global convergence.

& EXERCISES

& 5.1 Implement Algorithm 5.2 and use to it solve linear systems in which A is the Hilbert
matrix, whoseelementsare A; ; = 1/(i+j—1). Set the right-hand-sidetob = (1,1, ...,)T

5.9. NONLINEAR CONJUGATE GRADIENT METHODS

and the initial point to xo = 0. Try dimensions n = 5, 8, 12, 20 and report the number of
iterations required to reduce the residual below 107°.

& 5.2 Show thatifthe nonzero vectors po, pi, ..., pi satisfy (5.4), where A is symmetric
and positive definite, then these vectors are linearly independent. (This result implies that
A has at most n conjugate directions.)

& 5.3 Verify (5.6).

. def
& 5.4 Show thatif f(x)isa strictly convex quadratic, then the function k(') = f(x +
ooPo + -+ + Ok—1 pr—1) also is a strictly convex quadratic in o = (oo, ..., or-1)T.

& 5.5 Using the form of the CG iteration prove directly that (5.16) and (5.17) hold for
k=1.

& 5.6 Show that (5.23d) is equivalent to (5.13d).

& 5.7 Let {A;,v;} i = 1,..., n be the eigenpairs of A. Show that the eigenvalues and
eigenvectors of [I + Pr(A)AITA[I + P.(A)A] are A;[1 + A; P (A;)]* and v;, respectively.

& 5.8 Construct matrices with various eigenvalue distributions and apply the CG
method to them. Then observe whether the behavior can be explained from Theorem 5.5.

& 5.9 Derive Algorithm 5.3 by applying the standard CG method in the variables £ and
then transforming back into the original variables.

& 5.10 Verify the modified conjugacy condition (5.39).

& 5.11 Show that when applied to a quadratic function, and with exact line searches,
the Polak—Ribiére formula given by (5.43) and the Hestenes—Stiefel formula given by (5.45)
reduce to the Fletcher—Reeves formula (5.40a).

& 5.12 Prove that Lemma 5.6 holds for any choice of g satisfying |Bk| < B;".

133

