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Chap. 4  Duality theory

For extensions of duality theory to problems involving general convex
functions and constraint sets, see Rockafellar (1970) and Bertsekas
(1995b).

Exercises 4.6 and 4.7 are adapted from Boyd and Vandenberghe (1995).

The result on strict complementary slackness (Exercise 4.20) was
proved by Tucker (1956). The result in Exercise 4.21 is due to Clark
(1961). The result in Exercise 4.30 is due to Helly (1923). Input-
output macroeconomic models of the form considered in Exercise 4.32,
have been introduced by Leontief, who was awarded the 1973 Nobel
prize in economics. The result in Exercise 4.41 is due to Carathéodory
(1907).

Chapter 5

Sensitivity analysis
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Consider the standard form problem

minimize c¢'x
subject to Ax

d
v Il
o

and its dual
maximize p'b
subject to p’A <c'.

In this chapter, we study the dependence of the optimal cost and the opti-
mal solution on the coeflicient matrix A, the requirement vector b, and the
cost vector ¢. This is an important issue in practice because we often have
incomplete knowledge of the problem data and we may wish to predict the
effects of certain parameter changes.

In the first section of this chapter, we develop conditions under which
the optimal basis remains the same despite a change in the problem data,
and we examine the consequences on the optimal cost. We also discuss
how to obtain an optimal solution if we add or delete some constraints. In
subsequent sections, we allow larger changes in the problem data, resulting
in a new optimal basis, and we develop a global perspective of the depen-
dence of the optimal cost on the vectors b and c. The chapter ends with
a brief discussion of parametric programming, which is an extension of the
simplex method tailored to the case where there is a single scalar unknown
parameter.

Many of the results in this chapter can be extended to cover general
linear programming problems. Nevertheless, and in order to simplify the
presentation, our standing assurmnption throughout this chapter will be that
we are dealing with a standard form problem and that the rows of the m xn
matrix A are linearly independent.

5.1 Local sensitivity analysis

In this section, we develop a methodology for performing sensitivity anal-
ysis. We consider a linear programming problem, and we assume that we
already have an optimal basis B and the associated optimal solution x*.
We then assume that some entry of A, b, or ¢ has been changed, or that
a new constraint is added, or that a new variable is added. We first look
for conditions under which the current basis is still optimal. If these con-
ditions are violated, we look for an algorithm that finds a new optimal
solution without having to solve the new problem from scratch. We will
see that the simplex method can be quite useful in this respect.

Having assumed that B is an optimal basis for the original problem,
the following two conditions are satisfied:

B~'b > 0, (feasibility)

Sec. 5.1 Local sensitivity analysis 203

¢ —cpBlA > 0, (optimality).

When the problem is changed, we check to see how these conditions are
affected. By insisting that both conditions (feasibility and optimality) hold
for the modified problem, we obtain the conditions under which the basis
matrix B remains optimal for the modified problem. In what follows, we
apply this approach to several examples.

A new variable is added

Suppose that we introduce a new variable z,1, together with a corre-
sponding column A, 1, and obtain the new problem

minimize ¢'X + Cpp1%ntl
subject to AX + A,p1Tpy; = b
x > 0.

We wish to determine whether the current basis B is still optimal.

We note that (x,2,41) = (x*,0) is a basic feasible solution to the
new problem associated with the basis B, and we only need to examine the
optimality conditions. For the basis B to remain optimal, it is necessary
and sufficient that the reduced cost of z,41 be nonnegative, that is,

= / -1
Cnt1 = Cny1 —CgBT ALy 2 0.

If this condition is satisfied, (x*,0) is an optimal solution to the new prob-
lem. If, however, €,41 < 0, then (x*,0) is not necessarily optimal. In
order to find an optimal solution, we add a column to the simplex tableau,
associated with the new variable, and apply the primal simplex algorithm
starting from the current basis B. Typically, an optimal solution to the new
problem is obtained with a small number of iterations, and this approach
is usually much faster than solving the new problem from scratch.

Example 5.1 Consider the problem

minimize —5z1 — z2 + 12z3

subject to 3z + 2x2 + a3 = 10
51 + 3z + x4 = 16
fEl,-~-,Z4_>__O.

An optimal solution to this problem is given by x = (2,2,0,0) and the corre-
sponding simplex tableau is given by

12 0 0 2 7
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Note that B™! is given by the last two columns of the tableau.
Let us now introduce a variable =5 and consider the new problem

minimize —5x; — z2 + 12z3 - s

subject to 3z + 22 + T3 + x5 = 10
57 + 3z2 + z4 + 35 = 16
Ty,...,T5 > 0.

We have As = (1,1) and

- /-1 _ -3 2 11
Cs———Cs—-CBB As—-——[—S-—l][ 5 _3]{1 = —4.

Since Cs is negative, introducing the new variable to the basis can be beneficial.
We observe that B"'As = (—1,2) and augment the tableau by introducing a
column associated with @s:

12 0 0 2 7T -4

Ty = 2 1 0 -3 2 -1

T2=| 2 0 1 5 -3 2

We then bring zs into the basis; z2 exits and we obtain the following tableau,
which happens to be optimal:

Ty T2 3 T4 Ts

16 0 2 12 1 0
zy=1] 3 1 05 -05 05 0
3= 1 0 05 25 ~-15 1

An optimal solution is given by x = (3,0,0,0,1).

A new inequality constraint is added

Let us now introduce a new constraint aj, ;X > bp1, where a, 41 and
bmq1 are given. If the optimal solution x* to the original problem satisfies
this constraint, then x* is an optimal solution to the new problem as well.
If the new constraint is violated, we introduce a nonnegative slack variable
Znt1, and rewrite the new constraint in the form al, X " Tap1r = brt1-
‘We obtain a problem in standard form, in which the matrix A is replaced

by
A 0
aj; -1 |°
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Let B be an optimal basis for the original problem. We form a basis
for the new problem by selecting the original basic variables together with
Zp+1- The new basis matrix B is of the form

= B o

B - { al _1 ] ’
where the row vector a’ contains those components of aj, |, associated with
the original basic columns. (The determinant of this matrix is the negative
of the determinant of B, hence nonzero, and we therefore have a true basis
matrix.) The basic solution associated with this basis is (x*,a], ;x* —

bm+1), and is infeasible because of our assumption that x* violates the
new constraint. Note that the new inverse basis matrix is readily available

because 1
=1 B~ 0
B = [ aB~! -1 ] )

(To see this, note that the product BB is equal to the identity matrix.)

Let c¢g be the m-dimensional vector with the costs of the basic vari-
ables in the original problem. Then, the vector of reduced costs associated
with the basis B for the new problem, is given by

B! o0 A 0 , ﬁ
o [ B0 2] LA, 2]-w-sea n

and is nonnegative due to the optimality of B for the original problem.
Hence, B is a dual feasible basis and we are in a position to apply the dual
simplex method to the new problem. Note that an initial simplex tableau
for the new problem is readily constructed. For example, we have

5! A 0] BlA 0
an,g -1 [aBl'A-al, 1]
where B™'A is available from the final simplex tableau for the original

problem.

Example 5.2 Consider again the problem in Example 5.1:

minimize ~5z; — x2 + 123

subject to 3z1 + 222 +  x3 = 10
S5z + 3z + x4 = 16
:El,...,ﬂ?AZO,

and recall the optimal simplex tableau:

Ty T r3 T4

12 0 0 2 7
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We introduce the additional constraint z; + 2 = 5, which is violated by the
optimal solution x* = (2,2,0,0). We have am41 = (1,1,0,0), bin+1 = 5, and
al,11X" < bimy1. We form the standard form problem

minimize —5z1 — z» + 12z3

subject to 3z1 + 2z2 + T3 = 10
5z + 3a2 + x4 = 16
Ty +  z2 — x5 = 5
zy,...,zs 2 0.

Let a consist of the components of a,, 41 associated with the basic variables.
We then have a = (1, 1) and

10 -3 2

61 & _3]—[1 100=[o02-1]

aB'A—ala=[1 1] {

The tableau for the new problem is of the form

, Tz T3 T4 Ts

121 0 O 2 7 0

Ty = 2] 1 0 =3 2 0
Tp = 2|1 0 1 5 =3 0
zs=|-11 0 O 2 -1 1

We now have all the information necessary to apply the dual simplex method to
the new problem.

Our discussion has been focused on the case where an inequality con-
straint is added to the primal problem. Suppose now that we introduce
a new constraint p’A,41 < cpyq in the dual. This is equivalent to intro-
ducing a new variable in the primal, and we are back to the case that was
considered in the preceding subsection.

A new equality constraint is added

We now consider the case where the new constraint is of the form aj, , ;x =
bm+1, and we assume that this new constraint is violated by the optimal
solution x* to the original problem. The dual of the new problem is

maximize P'b + Pmtibm1

A
subject to [P’ Pm+1] [ , ] <d,
am+1
where pn,41 is a dual variable associated with the new constraint. Let p*
be an optimal basic feasible solution to the original dual problem. Then,
(p*,0) is a feasible solution to the new dual problem.
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Let m be the dimension of p, which is the same as the original num-
ber of constraints. Since p* is a basic feasible solution to the original dual
problem, m of the constraints in (p*)’A < ¢’ are linearly independent and
active. However, there is no guarantee that at (p*, 0) we will have m+1 lin-
early independent active constraints of the new dual problem. In particular,
(p*,0) need not be a basic feasible solution to the new dual problem and
may not provide a convenient starting point for the dual simplex method
on the new problem. While it may be possible to obtain a dual basic feasi-
ble solution by setting p,,41 to a suitably chosen nonzero value, we present
here an alternative approach.

Let us assume, without loss of generality, that aj, | x* > bny;. We
introduce the auxiliary primal problem

minimize c'x + Mzpy,
subject to Ax = b
’
Ap X — Tny1 = b'm-}—l

XZ 07 Tn41 ZO)

where M is a large positive constant. A primal feasible basis for the aux-
iliary problem is obtained by picking the basic variables of the optimal
solution to the original problem, together with the variable x,,4;. The re-
sulting basis matrix is the same as the matrix B of the preceding subsection.
There is a difference, however. In the preceding subsection, B was a dual
feasible basis, whereas here B is a primal feasible basis. For this reason,
the primal simplex method can now be used to solve the auxiliary problem
to optimality.

Suppose that an optimal solution to the auxiliary problem satisfies
Tny1 = 0; this will be the case if the new problem is feasible and the
coefficient M is large enough. Then, the additional constraint aj,,;x =
bm 41 has been satisfied and we have an optimal solution to the new problem.

Changes in the requirement vector b

Suppose that some component b; of the requirement vector b is changed
to b; + 6. Equivalently, the vector b is changed to b + de;, where e; is the
ith unit vector. We wish to determine the range of values of § under which
the current basis remains optimal. Note that the optimality conditions are
not affected by the change in b. We therefore need to examine only the
feasibility condition
B7'(b+de;) > 0. (5.1)

Let g = (Bii, B2i, - - -, Bmi) be the ith column of B~!. Equation (5.1)

becomes
xp + 6g > 0,
or,
.’L‘B(j)-i-(s,BjiZO, J=1...,m.
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Equivalently,

) Trrs
max (—m> <6< min <~—Bm> .
{4185:>0} Bji {41853 <0} Bii

For & in this range, the optimal cost, as a function of 4, is given by
czB7 (b + be;) = p'b + 8p;, where p’ = czB7! is the (optimal) dual
solution associated with the current basis B.

If § is outside the allowed range, the current solution satisfies the
optimality (or dual feasibility) conditions, but is primal infeasible. In that
case, we can apply the dual simplex algorithm starting from the current
basis.

Example 5.3 Consider the optimal tableau

Ty X2 X3 Ta

12 0 0 2 7

Xy = 2 1 0 -3 2

To=| 2 0 1 5 -3

from Example 5.1.

Let us contemplate adding § to b;. We look at the first column of B!
which is (—3,5). The basic variables under the same basis are 1 = 2 — 36 and
2 4 56. This basis will remain feasible as long as 2 — 3§ > 0 and 2+ 56 > 0, that
is, if —2/5 < 6 < 2/3. The rate of change of the optimal cost per unit change of
§ is given by cB ey = (—5,-1)'(—3,5) = 10.

If § is increased beyond 2/3, then x; becomes negative. At this point, we
can perform an iteration of the dual simplex method to remove z1 from the basis,
and z3 enters the basis.

Changes in the cost vector ¢

Suppose now that some cost coefficient c; becomes ¢; + 6. The primal
feasibility condition is not affected. We therefore need to focus on the
optimality condition )

cEpBTTA < ¢

If ¢; is the cost coefficient of a nonbasic variable z;, then cp does not
change, and the only inequality that is affected is the one for the reduced
cost of x;; we need

C/BBAIAJ‘ <¢+ 6,

or

Sec. 5.1 Local sensitivity analysis 209

If this condition holds, the current basis remains optimal; otherwise, we can
apply the primal simplex method starting from the current basic feasible
solution.

If c; is the cost coefficient of the £th basic variable, that is, if j = B(¢),
then cp becomes cp + 6ep and all of the optimality conditions will be
affected. The optimality conditions for the new problem are

(cp+6e) BT A <c;y,  Vi#j

(Since z; is a basic variable, its reduced cost stays at zero and need not be
examined.) Equivalently,

5‘1&‘55@ VZ#L

where qe; is the £th entry of B=1 A ;, which can be obtained from the simplex
tableau. These inequalities determine the range of § for which the same
basis remains optimal.

Example 5.4 We consider once more the problem in Example 5.1 and deter-
mine the range of changes §; of ¢;, under which the same basis remains optimal.
Since z3 and x4 are nonbasic variables, we obtain the conditions

b3 > ~C3= -2,
64 > —Cq = —T.

Consider now adding 8, to ¢;. From the simplex tableau, we obtain ¢q12 = 0,
g1z = —3, q14 = 2, and we are led to the conditions

6 > —2/3,
h < 7/2.

Changes in a nonbasic column of A

Suppose that some entry e;; in the jth column Aj; of the matrix A is
changed to a;; + 6. We wish to determine the range of values of § for which
the old optimal basis remains optimal.

If the column A; is nonbasic, the basis matrix B does not change,
and the primal feasibility condition is unaffected. Furthermore, only the
reduced cost of the jth column is affected, leading to the condition

Cj — p’(A]’ + 6ei) >0,
or,
C5 — ép; > 0,

where p’ = ¢z B~1. If this condition is violated, the nonbasic coluinn Aj;
can be brought into the basis, and we can continue with the primal simplex
method.
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Changes in a basic column of A

If one of the entries of a basic column A; changes, then both the feasibil-
ity and optimality conditions are affected. This case is more complicated
and we leave the full development for the exercises. As it turns out, the
range of values of § for which the same basis is optimal is again an interval
(Exercise 5.3).

Suppose that the basic column A; is changed to A + be;, where €;
is the ith unit vector. Assume that both the original problem and its dual
have unique and nondegenerate optimal solutions x* and p, respectively.
Let x*(8) be an optimal solution to the modified problem, as a function of
8. 1t can be shown (Exercise 5.2) that for small § we have

c'x"(8) = 'x* — éxip; + 0(8%).

For an intuitive interpretation of this equation, let us consider the diet
problem and recall that a;; corresponds to the amount of the ith nutrient
in the jth food. Given an optimal solution x* to the original problem,
an increase of a;; by § means that we are getting “for free” an additional
amount 6z of the ith nutrient. Since the dual variable p; is the marginal
cost per unit of the ith nutrient, we are getting for free something that is
normally worth ép;z}, and this allows us to reduce our costs by that same
amount.

Production planning revisited

In Section 1.2, we introduced a production planning problem that DEC had
faced in the end of 1988. In this section, we answer some of the questions
that we posed. Recall that there were two important choices, whether to
use the constrained or the unconstrained mode of production for disk drives,
and whether to use alternative memory boards. As discussed in Section 1.2,
these four combinations of choices led to four different linear programming
problems. We report the solution to these problems, as obtained from a
linear programming package, in Table 5.1.

Table 5.1 indicates that revenues can substantially increase by using
alternative memory boards, and the company should definitely do so. The
decision of whether to use the constrained or the unconstrained mode of
production for disk drives is less clear. In the constrained mode, the revenue
is 248 million versus 213 million in the unconstrained mode. However,
customer satisfaction and, therefore, future revenues might be affected,
since in the constrained mode some customers will get a product different
than the desired one. Morcover, these results are obtained assuming that
the number of available 256K memory boards and disk drives were 8,000
and 3,000, respectively, which is the lowest value in the range that was
estimated. We should therefore examine the sensitivity of the solution as
the number of available 256K memory boards and disk drives increases.

e e e e e
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Alt. boards Mode Revenue | z; Z9 T3 | T4 | @5
no constr. 145 0 2.5 0 0512
yes constr. 248 1.8 2 0 1 2
no unconstr. 133 0.272 ] 1.304 | 0.3 | 0.5 | 2.7
yes unconstr. 213 1.8 1.035 | 0.3 | 0.5 | 2.7

Table 5.1: Optimal solutions to the four variants of the produc-
tion planning problem. Revenue is in millions of dollars and the
quantities z; are in thousands.

With most linear programming packages, the output includes the val-
ues of the dual variables, as well as the range of parameter variations under
which local sensitivity analysis is valid. Table 5.2 presents the values of
the dual variables associated with the constraints on available disk drives
and 256K memory boards. In addition, it provides the range of allowed
changes on the number of disk drives and memory boards that would leave
the dual variables unchanged. This information is provided for the two lin-
ear programming problems corresponding to constrained and unconstrained
mode of production for disk drives, respectively, under the assumption that
alternative memory boards will be used.

Mode Constrained | Unconstrained
Revenue 248 213

Dual variable

for 256K boards 15 0
Range

for 256K boards [-1:5,0.2] [~1.62, 00]
Dual variable )

for disk drives 0 23.52
Range

for disk drives (~0.2,0.75] [~0.91,1.13]

Table 5.2: Dual prices and ranges for the constraints correspond-
ing to the availability of the number of 256K memory boards and
disk drives.
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In the constrained mode, increasing the number of available 256K
boards by 0.2 thousand (the largest number in the allowed range) results
in a revenue increase of 15 x 0.2 = 3 million. In the unconstrained mode,
increasing the number of available 256K boards has no effect on revenues,
because the dual variable is zero and the range extends upwards to infinity.
In the constrained mode, increasing the number of available disk drives by
up to 0.75 thousand (the largest number in the allowed range) has no effect
on revenue. Finally, in the unconstrained mode, increasing the number
of available disk drives by 1.13 thousand results in a revenue increase of
23.52 x 1.13 = 26.57 million.

In conclusion, in the constrained mode of production, it is important
to aim at an increase of the number of available 256K memory boards,
while in the unconstrained mode, increasing the number of disk drives is
more important.

This example demonstrates that even a small linear programming
problem (with five variables, in this case) can have an impact on a com-
pany’s planning process. Moreover, the information provided by linear pro-
gramming solvers (dual variables, ranges, etc.) can offer significant insights
and can be a very useful aid to decision makers.

5.2 Global dependence on the right-hand side
vector

In this section, we take a global view of the dependence of the optimal cost
on the requirement vector b.
Let
P(b):{x]Ax:b, xZO}

be the feasible set, and note that our notation makes the dependence on b
explicit. Let
S = {b| P(b) is nonempty },

and observe that
S ={Ax|x>0};

in particular, S is a convex set. For any b € S, we define

F(b) = min c'x,
x€P(b)

which is the optimal cost as a function of b.

Throughout this section, we assume that the dual feasible set {p |
p’A < c'} is nonempty. Then, duality theory implies that the optimal
primal cost F(b) is finite for every b € S. Our goal is to understand the
structure of the function F(b), for b € S.
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Let us fix a particular element b* of S. Suppose that there exists a
nondegenerate primal optimal basic feasible solution, and let B be the cor-
responding optimal basis matrix. The vector xz of basic variables at that
optimal solution is given by xp = B~!b*, and is positive by nondegeneracy.
In addition, the vector of reduced costs is nonnegative. If we change b* to b
and if the difference b — b* is sufficiently small, B~!'b remains positive and
we still have a basic feasible solution. The reduced costs are not affected
by the change from b* to b and remain nonnegative. Therefore, B is an
optimal basis for the new problem as well. The optimal cost F(b) for the
new problem is given by

F(b) = czB~'b = p'b, for b close to b*,
where p’ = c¢zB~! is the optimal solution to the dual problem. This
establishes that in the vicinity of b*, F(b) is a linear function of b and its
gradient is given by p.

We now turn to the global properties of F(b).

Theorem 5.
“the set. S

Proof. Let b! and b? be two elements of S. For i = 1,2, let x* be an
optimal solution to the problem of minimizing ¢'x subject to x > 0 and
Ax = b*. Thus, F(b!) = ¢'x! and F(b?) = ¢'x>. Fix a scalar A € [0,1],
and note that the vector y = Ax! + (1 — \)x? is nonnegative and satisfies
Ay = Ab! + (1 — \)b2. In particular, y is a feasible solution to the linear
programming problem obtained when the requirement vector b is set to
Ab! + (1 — A)b2. Therefore,

F(Ab'+ (1~ M%) <y = A/x! + (1= N)c'x? = AF(b") + (1 — \) F(b?),
establishing the convexity of F. ]

We now corroborate Theorem 5.1 by taking a different approach,
involving the dual problem

maximize p’b
subject to p’A < ¢,

which has been assumed feasible. For any b € S, F(b) is finite and, by
strong duality, is equal to the optimal value of the dual objective. Let
p,p?,...,p" be the extreme points of the dual feasible set. (Our standing
assumption is that the matrix A has linearly independent rows; hence its
columns span R™. Equivalently, the rows of A’ span ®™ and Theorem 2.6
in Section 2.5 implies that the dual feasible set must have at least one



214 Chap. 5  Sensitivity analysis

Figure 5.1: The optimal cost when the vector b is a function
of a scalar parameter. Each linear piece is of the form ) (b +
6d), where p° is the ith extreme point of the dual feasible set.
In each one of the intervals 8 < 61, 81 < 8 < 62, and 6 > 02,
we have different dual optimal solutions, namely, p', p%, and pd,
respectively. For 8 = 6, or 6 = 63, the dual problem has multiple
optimal solutions.

extreme point.) Since the optimum of the dual must be attained at an
extreme point, we obtain

F(b) = '_rgla,xN(pi)'b, besS. (5.2)

In particular, F is equal to the maximum of a finite collection of linear
functions. It is therefore a piecewise linear convex function, and we have a
new proof of Theorem 5.1. In addition, within a region where F is linear,
we have Fi(b) = (p')’b, where p’ is a corresponding dual optimal solution,
in agreement with our earlier discussion.

For those values of b for which F is not differentiable, that is, at the
junction of two or more linear pieces, the dual problem does not have a
unique optimal solution and this implies that every optimal basic feasible
solution to the primal is degenerate. (This is because, as shown earlier in
this section, the existence of a nondegenerate optimal basic feasible solution
to the primal implies that F is locally linear.)

We now restrict attention to changes in b of a particular type, namely,
b = b* + 4d, where b* and d are fixed vectors and 6 is a scalar. Let
f(8) = F(b* +6d) be the optimal cost as a function of the scalar parameter
6. Using Eq. (5.2), we obtain

f0) = maxN(pi)’(b* +6d), b*+édes.

=1,
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Figure 5.2: Illustration of subgradients of a function F at a
point b*. A subgradient p is the gradient of a linear function
F(b") + p’(b — b") that lies below the function F(b) and agrees
with it for b = b".

This is essentially a “section” of the function F; it is again a piecewise linear
convex function; see Figure 5.1. Once more, at breakpoints of this function,
every optimal basic feasible solution to the primal must be degenerate.

5.3 The set of all dual optimal solutions”

We have seen that if the function F' is defined, finite, and linear in the
vicinity of a certain vector b*, then there is a unique optimal dual solution,
equal to the gradient of F' at that point, which leads to the interpretation
of dual optimal solutions as marginal costs. We would like to extend this
interpretation so that it remains valid at the breakpoints of F. This is
indeed possible: we will show shortly that any dual optimal solution can
be viewed as a “generalized gradient” of F. We first need the following
definition, which is illustrated in Figure 5.2.

Definition 51 Let F be a convex fimctjoﬁ déﬁnéd on a'convex svet'\S.
Let.b* be an element of S. ‘We say that a vector. p is a subgradient -

F(o%) +p/(b ") < ',F/(b)a |

Note that if b* is a breakpoint of the function F, then there are
several subgradients. On the other hand, if F is linear near b*, there is a
unique subgradient, equal to the gradient of F.
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Proof. Recall that the function F' is defined on the set S, which is the
set of vectors b for which the set P(b) of feasible solutions to the primal
problem is nonempty. Suppose that p is an optimal solution to the dual
problem. Then, strong duality implies that p'b* = F (b*). Consider now
some arbitrary b € S. For any feasible solution x € P(b), weak duality
yields p'b < ¢/x. Taking the minimum over all x € P(b), we obtain
p'b < F(b). Hence, p'b — p’b* < F(b) — F(b*), and we conclude that p

is a subgradient of £ at b*.

We now prove the converse. Let p be a subgradient of F' at b*; that
is,

F(*)+p'(b—b") < F(b), Ybes. (5.3)

Pick some x > 0, let b = Ax, and note that x € P(b). In particular,
F(b) < ¢'x. Using Eq. (5.3), we obtain

p'Ax = p'b < F(b) — F(b*) + p'b* < 'x— F(b*) +p'b

Since this is true for all x > 0, we must have p’ A < ¢/, which shows that p
is a dual feasible solution. Also, by letting x = 0, we obtain F(b*) < p'b".
Using weak duality, every dual feasible solution g must satisfy @'b* <
F(b*) < p'b*, which shows that p is a dual optimal solution.

5.4 Global dependence on the cost vector

In the last two sections, we fixed the matrix A and the vector c, and we
considered the effect of changing the vector b. The key to our development
was the fact that the set of dual feasible solutions remains the same as b
varies. In this section, we study the case where A and b are fixed, but the
vector ¢ varies. In this case, the primal feasible set remains unaffected; our
standing assumption will be that it is nonempty.

We define the dual feasible set

Q)= {p|p'A<c},

and let

T={c|Q(c)is nonempty }-
Ifc! € T and ¢ € T, then there exist p* and p? such that (p')'A < ¢
and (p?)’A < ¢'. For any scalar X € [0,1], we have

(@Y + (1 =NEY))A < Act 4+ (1 = N)c?,
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and this establishes that Ac! + (1 — A\)c? € T. We have therefore shown
that T is a convex set.

If ¢ ¢ T, the infeasibility of the dual problem implies that the optimal
primal cost is —oco. On the other hand, if ¢ € T, the optimal primal cost
must be finite. Thus, the optimal primal cost, which we will denote by
G(c), is finite if and only if c € T.

Let x!,x2,...,x"N be the basic feasible solutions in the primal feasible
set; clearly, these do not depend on c. Since an optimal solution to a
standard form problem can always be found at an extreme point, we have

G(c) = rlninN c'xt
i=1,...,

Thus, G(c) is the minimum of a finite collection of linear functions and is
a piecewise linear concave function. If for some value c* of ¢, the primal
has a unique optimal solution x*, we have (¢*)'x* < (c*)'x7, for all j # i.
For c very close to c*, the inequalities ¢'x® < ¢'x7, j # i, continue to hold,
implying that x* is still a unique primal optimal solution with cost ¢/x*.
We conclude that, locally, G(c) = c¢’x?. On the other hand, at those values
of ¢ that lead to multiple primal optimal solutions, the function G has a
breakpoint.
We summarize the main points of the preceding discussion.

_.Theorem 5.3, ConSJder a feaszble 11near programmmg problem in stan—
dard form. P : : Y

(a) - The set T of all c for Wllxch the. optzmal/cost is ﬁmte, is: convex ‘
. (b)  The optimal cost G(c) isa concave fUHCtIOH of c on the st

s (c) If for some Value of c:the pnmal prob]em Ilas a unique opt;zmal
: solutwn x*, then G is linear in the v1cm1ty ofc and its gradwm‘,
is equal to x*

5.5 Parametric programming
Let us fix A, b, c, and a vector d of the same dimension as ¢. For any

scalar 6, we consider the problem

minimize (c+ 6d)'x
subject to Ax

X

b
0,

v

and let g(@) be the optimal cost as a function of §. Naturally, we assume
that the feasible set is nonempty. For those values of 6 for which the optimal
cost is finite, we have

— H 11
90) = qin (ot 0
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where x!,...,x" are the extreme points of the feasible set; see Figure 5.3.
In particular, g(@) is a piecewise linear and concave function of the param-
eter 6. In this section, we discuss a systematic procedure, based on the
simplex method, for obtaining g(8) for all values of 6. We start with an
example.

Figure 5.3: The optimal cost g(6) as a function of 6.

Example 5.5 Consider the problem

minimize (-3 +20)z1 + (3—0)zz + T3

subject to 7 + 2x2 — 3z3
2z -+ T2 — 4z3
z1,x2,23 2> 0.

w

<
<

We introduce slack variables in order to bring the problem into standard form,
and then let the slack variables be the basic variables. This determines a basic
feasible solution and leads to the following tableau.

0 |~-3+420 3-8 1 0 0

Ty= |5 1 2 =3 1 0

5= |7 2 1 -4 0 1

If ~3+20 >0 and 3-8 > 0, all reduced costs are nonnegative and we
have an optimal basic feasible solution. In particular,

9@y =0, if ggag&
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If 6 is increased slightly above 3, the reduced cost of z2 becomes negative
and we no longer have an optimal basic feasible solution. We let z2 enter the
basis, x4 exits, and we obtain the new tableau:

T xo z3 Ty s

~7.5+2.50 | —4.5+2.50 0 55—-1560 —-15-+056 0
T2 = 2.5 0.5 1 -1.5 05 0
T5 = 4.5 1.5 0 —-2.5 -0.5 1

We note that all reduced costs are nonnegative if and only if 3 < 6 < 5.5/1.5.
The optimal cost for that range of values of 8 is
g(6) =75 250, if 3<0< %

If § is increased beyond 5.5/1.5, the reduced cost of z3 becomes negative. If we
attempt to bring z3 into the basis, we cannot find a positive pivot element in the
third column of the tableau, and the problem is unbounded, with g(#) = —o0.

Let us now go back to the original tableau and suppose that 8 is decreased
to a value slightly below 3/2. Then, the reduced cost of z; becomes negative, we
let z; enter the basis, and x5 exits. The new tableau is:

z T2 x3 Iy s

10.5 — 76 0 45-20 -5446 0 15-6

T4 = 1.5 0 1.5 -1 1 -0.5
T = 3.5 1 0.5 -2 0 0.5

We note that all of the reduced costs are nonnegative if and only if 5/4 < § < 3/2.
For these values of 6, we have an optimal solution, with an optimal cost of

9(6) = ~105+79, if 2<p<2

4 2
Finally, for 6 < 5/4, the reduced cost of z3 is negative, but the optimal cost is
equal to —oo, because all entries in the third column of the tableau are negative.
We plot the optimal cost in Figure 5.4.

We now generalize the steps in the preceding example, in order to
obtain a broader methodology. The key observation is that once a basis
is fixed, the reduced costs are affine (linear plus a constant) functions of
0. Then, if we require that all reduced costs be nonnegative, we force 8 to
belong to some interval. (The interval could be empty but if it is nonempty,
its endpoints are also included.) We conclude that for any given basis, the
set of 6 for which this basis is optimal is a closed interval.
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Figure 5.4: The optimal cost g(6) as a function of 6, in Example
5.5. For @ outside the interval [5/4,11/3], g(9) is equal to —oo.

Let us now assume that we have chosen a basic feasible solution and
an associated basis matrix B, and suppose that this basis is optimal for 6
satisfying 6; < 6 < 6,. Let z; be a variable whose reduced cost becomes
negative for § > . Since this reduced cost is nonnegative for 6, <6 <6,,
it must be equal to zero when § = ;. We now attempt to bring z; into
the basis and consider separately the different cases that may arise.

Suppose that no entry of the jth column B~'A; of the simplex
tableau is positive. For 6 > 6o, the reduced cost of z; is negative, and
this implies that the optimal cost is —oo in that range.

If the jth column of the tableau has at least one positive element, we
carry out a change of basis and obtain a new basis matrix B. For 8 = 85,
the reduced cost of the entering variable is zero and, therefore, the cost
associated with the new basis is the same as the cost associated with the
old basis. Since the old basis was optimal for § = 05, the same must be
true for the new basis. On the other hand, for 8 < ,, the entering variable
x; had a positive reduced cost. According to the pivoting mechanics, and
for 8 < 05, a negative multiple of the pivot row is added to the pivot row,
and this makes the reduced cost of the exiting variable negative. This
implies that the new basis cannot be optimal for § < 6. We conclude that
the range of values of @ for which the new basis is optimal is of the form
0, < 8 < 85, for some f;. By continuing similarly, we obtain a sequence of
bases, with the ith basis being optimal for 6; < 8 < 0;41.

Note that a basis which is optimal for 8 € [6;, 0;4.1] cannot be optimal
for values of @ greater than @;,1. Thus, if #;4.1 > 6; for all 7, the same basis
cannot be encountered more than once and the entire range of values of ¢
will be traced in a finite number of iterations, with each iteration leading
to a new breakpoint of the optimal cost function g(8). (The number of
breakpoints may increase exponentially with the dimension of the problem.)

Sec. 5.6  Summary 221

The situation is more complicated if for some basis we have 0; = ;4.
In this case, it is possible that the algorithm keeps cycling between a finite
number of different bases, all of which are optimal only for § = 8; = 6;,,.
Such cycling can only happen in the presence of degeneracy in the primal
problem (Exercise 5.17), but can be avoided if an appropriate anticycling
rule is followed. In conclusion, the procedure we have outlined, together
with an anticycling rule, partitions the range of possible values of ¢ into
consecutive intervals and, for each interval, provides us with an optimal
basis and the optimal cost function as a function of 6.

There is another variant of parametric programming that can be used
when c is kept fixed but b is replaced by b + 6d, where d is a given vector
and 0 is a scalar. In this case, the zeroth column of the tableau depends
on . Whenever 8 reaches a value at which some basic variable becomes
negative, we apply the dual simplex method in order to recover primal
feasibility.

5.6 Summary

In this chapter, we have studied the dependence of optimal solutions and of
the optimal cost on the problem data, that is, on the entries of A, b, and
c. For many of the cases that we have examined, a common methodology
was used. Subsequent to a change in the problem data, we first examine its
effects on the feasibility and optimality conditions. If we wish the same basis
to remain optimal, this leads us to certain limitations on the magnitude of
the changes in the problem data. For larger changes, we no longer have
an optimal basis and some remedial action (involving the primal or dual
simplex method) is typically needed.
We close with a summary of our main results.

(a) If a new variable is added, we check its reduced cost and if it is
negative, we add a new column to the tableau and proceed from
there.

(b) If a new constraint is added, we check whether it is violated and if
so, we form an auxiliary problem and its tableau, and proceed from
there.

(c) If an entry of b or ¢ is changed by §, we obtain an interval of values
of § for which the same basis remains optimal.

(d) If an entry of A is changed by §, a similar analysis is possible. How-
ever, this case is somewhat complicated if the change affects an entry
of a basic column.

(e) Assuming that the dual problem is feasible, the optimal cost is a
piecewise linear convex function of the vector b (for those b for which
the primal is feasible). Furthermore, subgradients of the optimal cost
function correspond to optimal solutions to the dual problem.
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(f) Assuming that the primal problem is feasible, the optimal cost is a
piecewise linear concave function of the vector ¢ (for those ¢ for which
the primal has finite cost).

(g) If the cost vector is an affine function of a scalar parameter 6, there
is a systematic procedure (parametric programming) for solving the
problem for all values of . A similar procedure is possible if the
vector b is an affine function of a scalar parameter.

5.7 Exercises

Exercise 5.1 Consider the same problem as in Example 5.1, for which we al-
ready have an optimal basis. Let us introduce the additional constraint =, +z2 =
3. Form the auxiliary problem described in the text, and solve it using the pri-
mal simplex method. Whenever the “large” constant M is compared to another
number, M should be treated as being the larger one.

Exercise 5.2 (Sensitivity with respect to changes in a basic column
of A) In this problem (and the next two) we study the change in the value
of the optimal cost when an entry of the matrix A is perturbed by a small
amount. We consider a linear programming problem in standard form, under the
usual assumption that A has linearly independent rows. Suppose that we have
an optimal basis B that leads to a nondegenerate optimal solution x”, and a
nondegenerate dual optimal solution p. We assume that the first column is basic.
We will now change the first entry of A, from a); to a1 + §, where § is a small
scalar. Let E be a matrix of dimensions m X m (where m is the number of rows
of A), whose entries are all zero except for the top left entry e;1, which is equal
to 1.

(a) Show that if § is small enough, B+8E is a basis matrix for the new problem.

(b) Show that under the basis B + §E, the vector xp of basic variables in the
new problem is equal to (I + 6B~ 'E)"'B™'b.

(c) Show that if § is sufficiently small, B + 8E is an optimal basis for the new
problem.

(d) We use the symbol = to denote equality when second order terms in § are ig-
nored. The following approximation is known to be true: (I+§B7'E)~! =~
I~ 6B~ E. Using this approximation, show that

cpxp ~ X" - éprz],

where z] (respectively, p;) is the first component of the optimal solution to
the original primal (respectively, dual) problem, and xp has been defined
in part (b).

Exercise 5.3 (Sensitivity with respect to changes in a basic column
of A) Consider a linear programming problem in standard form under the usual
assumption that the rows of the matrix A are linearly independent. Suppose
that the columns A,,..., A, form an optimal basis. Let Ay be some vector and
suppose that we change A, to Ai 4+ §Ag. Consider the matrix B(§) consisting of

Sec. 5.7  Exercises 223

the columns Ag + 6A1, Aa, ..., Am. Let [61,82] be a closed interval of values of
§ that contains zero and in which the determinant of B(§) is nonzero. Show that
the subset of {61, 62] for which B(§) is an optimal basis is also a closed interval.

Exercise 5.4 Consider the problem in Example 5.1, with a;, changed from
3 to 3 + 6. Let us keep z1 and a2 as the basic variables and let B(6) be the
corresponding basis matrix, as a function of .
(a) Compute B(6)~'b. For which values of § is B(§) a feasible basis?
(b) Compute ¢zB(6)~". For which values of § is B(6) an optimal basis?
(c) Determine the optimal cost, as a function of §, when § is restricted to those
values for which B(§) is an optimal basis matrix.

Exercise 5.5 While solving a standard form linear programming problem using
the simplex method, we arrive at the following tableau:

ry X2 3 Ta s

0 0 @& 0 &

zo=| 1 0 1 -1 0 g
zs=| 2 0 0 2 1
Ty = 3 1 0 4 0 [

Suppose also that the last three columns of the matrix A form an identity matrix.

(a) Give necessary and sufficient conditions for the basis described by this
tableau to be optimal (in terms of the coefficients in the tableau).

(b) Assume that this basis is optimal and that 3 = 0. Find an optimal basic
feasible solution, other than the one described by this tableau.

(c) Suppose that v > 0. Show that there exists an optimal basic feasible
solution, regardless of the values of €; and ¢s.

(d) Assume that the basis associated with this tableau is optimal. Suppose
also that b; in the original problem is replaced by b; + ¢. Give upper and
lower bounds on € so that this basis remains optimal.

(e) Assume that the basis associated with this tableau is optimal. Suppose
also that ¢; in the original problem is replaced by ¢; + ¢. Give upper and
lower bounds on € so that this basis remains optimal.

Exercise 5.6 Company A has agreed to supply the following quantities of spe-
cial lamps to Company B during the next 4 months:

Month | January | February | March | April

Units 150 160 225 180

Company A can produce a maximum of 160 lamps per month at a cost of $35
per unit. Additional lamps can be purchased from Company C at a cost of $50
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per lamp. Company A incurs an inventory holding cost of $5 per month for each
lamp held in inventory.

(a) Formulate the problem that Company A is facing as a linear programming
problem.

(b) Solve the problem using a linear programming package.

(c) Company A is considering some preventive maintenance during one of the
first three months. If maintenance is scheduled for January, the company
can manufacture only 151 units (instead of 160); similarly, the maximum
possible production if maintenance is scheduled for February or March is
153 and 155 units, respectively. What maintenance schedule would you
recommend and why?

(d) Company D has offered to supply up to 50 lamps (total) to Company A
during either January, February or March. Company D charges $45 per
lamp. Should Company A buy lamps from Company D7 If yes, when and
how many lamps should Company A purchase, and what is the impact of
this decision on the total cost?

(e) Company C has offered to lower the price of units supplied to Company
A during February. What is the maximum decrease that would make this
offer attractive to Company A?

(f) Because of anticipated increases in interest rates, the holding cost per lamp
is expected to increase to $8 per unit in February. How does this change
affect the total cost and the optimal solution?

(g) Company B has just informed Company A that it requires only 90 units in
January (instead of 150 requested previously). Calculate upper and lower
bounds on the impact of this order on the optimal cost using information
from the optimal solution to the original problem.

Exercise 5.7 A paper company manufactures three basic products: pads of
paper, 5-packs of paper, and 20-packs of paper. The pad of paper consists of a
single pad of 25 sheets of lined paper. The 5-pack consists of 5 pads of paper,
together with a small notebook. The 20-pack of paper consists of 20 pads of
paper, together with a large notebook. The small and large notebooks are not
sold separately.

Production of each pad of paper requires 1 minute of paper-machine time,
1 minute of supervisory time, and $.10 in direct costs. Production of each small
notebook takes 2 minutes of paper-machine time, 45 seconds of supervisory time,
and $.20 in direct cost. Production of each large notebook takes 3 minutes of
paper machine time, 30 seconds of supervisory time and $.30 in direct costs. To
package the 5-pack takes 1 minute of packager’s time and 1 minute of supervisory
time. To package the 20-pack takes 3 minutes of packager’s time and 2 minutes
of supervisory time. The amounts of available paper-machine time, supervisory
time, and packager’s time are constants by, b2, ba, respectively. Any of the three
products can be sold to retailers in any quantity at the prices $.30, $1.60, and
$7.00, respectively.

Provide a linear programming formulation of the problem of determining
an optimal mix of the three products. (You may ignore the constraint that only
integer quantities can be produced.) Try to formulate the problem in such a
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way that the following questions can be answered by looking at a single dual
variable or reduced cost in the final tableau. Also, for each question, give a brief
explanation of why it can be answered by looking at just one dual price or reduced
cost.

(a) What is the marginal value of an extra unit of supervisory time?

(b) What is the lowest price at which it is worthwhile to produce single pads
of paper for sale?

(c) Suppose that part-time supervisors can be hired at $8 per hour. Is it
worthwhile to hire any?

(d) Suppose that the direct cost of producing pads of paper increases from $.10
to $.12. What is the profit decrease?

Exercise 5.8 A pottery manufacturer can make four different types of dining
room service sets: JJP English, Currier, Primrose, and Bluetail. Furthermore,
Primrose can be made by two different methods. Each set uses clay, enamel, dry
room time, and kiln time, and results in a profit shown in Table 5.3. (Here, lbs
is the abbreviation for pounds).

Resources |E| c |P:i][P:]| B | Total |
Clay (Ibs) 10 15]10] 10 20 | 130
Enamel (lbs) 1 2| 2 1 1 13
Dry room (hours) 3 11 6 6 3 45
Kiln (hours) 2 4 2 5 3 23
Profit 51 | 102 | 66 | 66 89

Table 5.3: The rightmost column in the table gives the manufac-
turer’s resource availability for the remainder of the week. Notice‘
that Primrose can be made by two different methods. They both
use the same amount of clay (10 1bs.) and dry room time (6 hours).
But the second method uses one pound less of enamel and three
more hours in the kiln.

The manufacturer is currently committed to making the same amount of
Primrose using methods 1 and 2. The formulation of the profit maximization
problem is given below. The decision variables E,C, Py, P2, B are the number
of sets of type English, Currier, Primrose Method 1, Primrose Method 2, and
Bluetail, respectively. We assume, for the purposes of this problem, that the
number of sets of each type can be fractional.
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maximize 51F + 102C + 66P + 66P + 89B
subject to 10E 4+ 15C + 10P + 10 + 20B < 130
E+ 20+ 2+ P+ B<I3
3E + C + 6P+ 6P + 3B £ 45
2E + 4C + 2P + 5P, + 3B < 23
]31 - P2 = 0

E,C,P,P,B>0.

The optimal solution to the primal and the dual, respectively, together. with
sensitivity information, is given in Tables 5.4 and 5.5. Use this information to
answer the questions that follow.

Optimal | Reduced | Objective | Allowable | Allowable
Value Cost Coefficient | Increase Decrease

0 —3.571 51 3.571 00

0 102 16.667 12.5

0 66 37.571 o0

2
0
0 —-37.571 66 37.571 00
5 0 89 47 12.5

()
(b)
()
(d)
()

Table 5.4: The optimal primal solution and its sensitivity with
respect to changes in coefficients of the objective function. The
last two columns describe the allowed changes in these coefficients
for which the same solution remains optimal.

What is the optimal quantity of each service set, and what is the total
profit?

Give an economic (not mathematical) interpretation of the optimal fiual
variables appearing in the sensitivity report, for each of the five constraints.
Should the manufacturer buy an additional 20 lbs. of Clay at $1.1 per
pound?

Suppose that the number of hours available in the dry room decreases by
30. Give a bound for the decrease in the total profit.

In the current model, the number of Primrose produced using method 1 was
required to be the same as the number of Primrose produced by method 2.
Consider a revision of the model in which this constraint is replaced by the
constraint Py — P > 0. In the reformulated problem would the amount of
Primrose made by method 1 be positive?

Exercise 5.9 Using the notation of Section 5.2, show that for any posi1-:ive
scalar A and any b € S, we have F(Ab) = AF(b). Assume that the dual feasible
set is nonempty, so that F'(b) is finite.
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Slack Dual Constr. | Allowable | Allowable
Value | Variable RHS Increase Decrease
Clay 130 1.429 130 23.33 4375 |
Enamel 9 0 13 0 4
Dry Rm. 17 0 45 00 28
Kiln 23 20.143 23 5.60 3.50
Prim. 0 11.429 0 3.50 0

Table 5.5: The optimal dual solution and its sensitivity. The
column labeled “slack value” gives us the optimal values of the
slack variables associated with each of the primal constraints. The
third column simply repeats the right-hand side vector b, while the
last two columns describe the allowed changes in the components
of b for which the optimal dual solution remains the same.

Exercise 5.10 Consider the linear programming problem:

minimize x; 4 z,
subject to 1z 4 2z, = 9,

T1,x2 2 0.

(a) Find (by inspection) an optimal solution, as a function of 6.

(b) Draw a graph showing the optimal cost as a function of 6.

(c) Use the picture in part (b) to obtain the set of all dual optimal solutions,

for every value of 8.

Exercise 5.11 Consider the function 9(6), as defined in the beginning of Sec-
tion 5.5. Suppose that g(8) is linear for § € [61,62]. Is it true that there exists a
unique optimal solution when 6, < 6 < 6,? Prove or provide a counterexample.

Exercise 5.12 Consider the parametric programming problem discussed in Sec-
tion 5.5.

(a) Suppose that for some value of 8, there are exactly two distinct basic feasible

(b)

solutions that are optimal. Show that they must be adjacent.

Let 6" be a breakpoint of the function 9(0). Let x', x2, x% be basic feasible
solutions, all of which are optimal for § = 6*. Suppose that x! is a unique
optimal solution for § < 8*, x% is a unique optimal solution for § > 6*, and
x!, %%, %% are the only optimal basic feasible solutions for 8 = §*. Provide
an example to show that x* and x” need not be adjacent.
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Exercise 5.13 Consider the following linear programming problem:

minimize 4a, + 5x3
subject to 2z, + z2 — 5z3 =1
-3z + dz3 + x4 = 2

z31,%2,3,T4 2 0.

(a) Write down a simplex tableau and find an optimal solution. Is it unique?
(b) Write down the dual problem and find an optimal solution. Is it unique?

(¢) Suppose now that we change the vector b from b = (1,2) to b = (1 —
20,2 — 30), where 6 is a scalar parameter. Find an optimal solution and
the value of the optimal cost, as a function of §. (For all , both positive
and negative.)

Exercise 5.14 Consider the problem

minimize (c + 0d)'x
subject to Ax
X

b+ 6f
0)

vV il

where A is an m X n matrix with linearly independent rows. We assume that the
problem is feasible and the optimal cost f(6) is finite for all values of @ in some
interval {6y, 62].
(a) Suppose that a certain basis is optimal for # = —10 and for § = 10. Prove
that the same basis is optimal for § = 5.
(b) Show that f(8) is a piecewise quadratic function of §. Give an upper bound
on the number of “pieces.”
(c) Let b = 0 and ¢ = 0. Suppose that a certain basis is optimal for 6 = 1.
For what other nonnegative values of ¢ is that same basis optimal?

(d) Is f(6) convex, concave or neither?

Exercise 5.15 Consider the problem

minimize ¢'x
subject to Ax
x

b+6d
0,

vl

and let f(8) be the optimal cost, as a function of 6.

(a) Let X(8) be the set of all optimal solutions, for a given value of §. For
any nonnegative scalar ¢, define X(0,t) to be the union of the sets X(6),
0<6 <t Is X(0,t) a convex set? Provide a proof or a counterexample.

(b) Suppose that we remove the nonnegativity constraints x > 0 from the
problem under consideration. Is X(0,t) a convex set? Provide a proof or
a counterexample.

(c) Suppose that x' and x* belong to X (0,t). Show that there is a continuous
path from x! to x? that is contained within X(0,t). That is, there exists
a continuous function g(}) such that g(A1) = x*, g(X2) = x%, and g()) €
X(0,t) for all A € (Mg, A2).
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Exercise 5.16 Consider the parametric programming problem of Section 5.5.
Suppose that some basic feasible solution is optimal if and only if 8 is equal to

some 8.
(a) Suppose that the feasible set is unbounded. Is it true that there exist at
least three distinct basic feasible solutions that are optimal when 6 = §*?

(b) Answer the question in part (a) for the case where the feasible set is
bounded.

Exercisg 5.17 Consider the parametric programming problem. Suppose that
every basic solution encountered by the algorithm is nondegenerate. Prove that
the algorithm does not cycle.

5.8 Notes and sources

The material in this chapter, with the exception of Section 5.3, is standard,
and can be found in any text on linear programming.

5.1. A more detailed discussion of the results of the production planning
case study can be found in Freund and Shannahan (1992).

5.3. The re§ults in this section have beautiful generalizations to the case
of nonlinear convex optimization; see, e.g., Rockafellar (1970).

5.5. ?nticycling rules for parametric programming can be found in Murty
1983).
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In this chapter, we discuss methods for solving linear programming prob-
lems with a large number of variables or constraints. We present the idea
of delayed column generation whereby we generate a column of the matrix
A only after it has been determined that it can profitably enter the ba-
sis. The dual of this idea leads to the cutting plane, or delayed constraint
generation method, in which the feasible set is approximated using only
a subset of the constraints, with more constraints added if the resulting
solution is infeasible. We illustrate the delayed column generation method
by discussing a classical application, the cutting-stock problem. Another
application is found in Dantzig- Wolfe decomposition, which is a method de-
signed for linear programming problems with a special structure. We close
with a discussion of stochastic programming, which deals with two-stage
optimization problems involving uncertainty. We obtain a large scale linear
programming formulation, and we present a decomposition method known
as Benders decomposition.

6.1 Delayed column generation

Consider the standard form problem
minimize c¢'x
subject to Ax = b
x > 0,

with x € ®" and b € R™, under the usual assumption that the rows
of A are linearly independent. Suppose that the number of columns is
so large that it is impossible to generate and store the entire maftrix A
in memory. Experience with large problems indicates that, usually, most
of the columns never enter the basis, and we can therefore afford not to
ever generate these unused columns. This blends well with the revised
simplex method which, at any given iteration, only requires the current
basic columns and the column which is to enter the basis. There is only
one difficulty that remains to be addressed; namely, we need a method for
discovering variables z; with negative reduced costs €;, without having to
generate all columns. Sometimes, this can be accomplished by solving the
problem

minimize ¢, (6.1)
where the minimization is over all 7. In many instances (e.g., for the formu-
Jations to be studied in Sections 6.2 and 6.4), this optimization problem has
a special structure: a smallest €; can be found efficiently without comput-
ing every ¢;. If the minimum in this optimization problem is greater than
or equal to 0, all reduced costs are nonnegative and we have an optimal
solution to the original linear programming problem. If on the other hand,
the minimum is negative, the variable z; corresponding to a minimizing
index ¢ has negative reduced cost, and the column A; can enter the basis.
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The key to the above outlined approach is our ability to solve the
optimization problem (6.1) efficiently. We will see that in the Dantzig-
Wolfe decomposition method, the problem (6.1) is a smaller auxiliary linear
programming problem that can be solved using the simplex method. For the
cutting-stock problem, the problem (6.1) is a certain discrete optimization
problem that can be solved fairly efficiently using special purpose methods.
Of course, there are also cases where the problem (6.1) has no special
structure and the methodology described here cannot be applied.

A variant involving retained columns

In the delayed column generation method that we have just discussed, the
columns that exit the basis are discarded from memory and do not enjoy
any special status. In a variant of this method, the algorithm retains in
memory all or some of the columns that have been generated in the past,
and proceeds in terms of restricted linear programming problems that in-
volve only the retained columns.

We describe the algorithm as a sequence of master iterations. At the
beginning of a master iteration, we have a basic feasible solution to the
original problem, and an associated basis matrix. We search for a variable
with negative reduced cost, possibly by minimizing ¢; over all #; if none is
found, the algorithm terminates. Suppose that we have found some j such
that ¢; < 0. We then form a collection of columns A;, i € I, which contains
all of the basic columns, the entering column A;, and possibly some other
columns as well. Let us define the restricted problem

minimize E CiT;

iel
subject to ZAizi =b (6.2)
i€l
x > 0.

Recall that the basic variables at the current basic feasible solution to
the original problem are among the columns that have been kept in the
restricted problem. We therefore have a basic feasible solution to the re-
stricted problem, which can be used as a starting point for its solution.
We then perform as many simplex iterations as needed, until the restricted
problem is solved to optimality. At that point, we are ready to start with
the next master iteration.

The method we have just described is a special case of the revised
simplex method, in conjunction with some special rules for choosing the
entering variable that give priority to the variables z;, ¢ € I; it is only when
the reduced costs of these variables are all nonnegative (which happens at
an optimal solution to the restricted problem) that the algorithm examines
the reduced costs of the remaining variables. The motivation is that we
may wish to give priority to variables for which the corresponding columns
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have already been generated and stored in memory, or to variables that are
more probable to have negative reduced cost. There are several variants
of this method, depending on the manner that the set I is chosen at each
iteration.

(a) At one extreme, [ is just the set of indices of the current basic vari-
ables, together with the entering variable; a variable that exits the
basis is immediately dropped from the set I. Since the restricted
problem has m + 1 variables and m constraints, its feasible set is at
most one-dimensional, and it gets solved in a single simplex iteration,
that is, as soon as the column A enters the basis.

(b) At the other extreme, we let I be the set of indices of all variables
that have become basic at some point in the past; equivalently, no
variables are ever dropped, and each entering variable is added to
I. If the number of master iterations is large, this option can be
problematic because the set I keeps growing.

(¢) Finally, there are intermediate options in which the set I is kept to
a moderate size by dropping from I those variables that have exited
the basis in the remote past and have not reentered since.

In the absence of degeneracy, all of the above variants are guaranteed
to terminate because they are special cases of the revised simplex method.
In the presence of degeneracy, cycling can be avoided by using the revised
simplex method in conjunction with the lexicographic tie breaking rule.

6.2 The cutting stock problem

In this section, we discuss the cutting stock problem, which is a classical
example of delayed column generation.

Consider a paper company that has a supply of large rolls of paper,
of width W. (We assume that W is a positive integer.) However, customer
demand is for smaller widths of paper; in particular b; rolls of width w;,
i=1,2,...,m, need to be produced. We assume that w; < W for each 1,
and that each w; is an integer. Smaller rolls are obtained by slicing a large
roll in a certain way, called a pattern. For example, a large roll of width 70
can be cut into three rolls of width w, = 17 and one roll of width w, = 15,
with a waste of 4.

In general, a pattern, say the jth pattern, can be represented by a
column vector A; whose ith entry a;; indicates how many rolls of width w;
are produced by that pattern. For example, the pattern described earlier is
represented by the vector (3,1,0,...,0). For a vector (a1j,...,am;) to be
a representation of a feasible pattern, its components must be nonnegative
integers and we must also have

zaijwi < W (6‘3)
i=1
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Let n be the number of all feasible patterns and consider the m x n matrix
A with columns A, j = 1,...,n. Note that n can be a very large number.

The goal of the company is to minimize the number of large rolls used
while satisfying customer demand. Let z; be the number of large rolls cut
according to pattern j. Then, the problem under consideration is

n
minimize sz
j=1
n 4
subject to Za.ij:vj = b;, t=1,...,m, (64
j=1
x; > 0, i=1...,n.

Naturally, each z; should be an integer and we have an integer program-
ming problem. However, an optimal solution to the linear programming
problem (6.4) often provides a feasible solution to the integer programming
problem (by rounding or other ad hoc methods), which is fairly close to
optimal, at least if the demands b; are reasonably large (cf. Exercise 6.1).

Solving the linear programming problem (6.4) is a difficult compu-
tational task: even if m is comparatively small, the number of feasible
patterns n can be huge, so that forming the coeflicient matrix A in full is
impractical. However, we will now show that the problem can be solved
efficiently, by using the revised simplex method and by generating columns
of A as needed rather than in advance.

Finding an initial basic feasible solution is easy for this problem. For
j=1,...,m, we may let the jth pattern consist of one roll of width w; and
none of the other widths. Then, the first m columns of A form a basis that
leads to a basic feasible solution. (In fact, the corresponding basis matrix
is the identity.)

Suppose now that we have a basis matrix B and an associated basic
feasible solution, and that we wish to carry out the next iteration of the
revised simplex method. Because the cost coefficient of every variable z;
is unity, every component of the vector cg is equal to 1. We compute the
simplex multipliers p’ = c’;B~!. Next, instead of computing the reduced
cost ¢; = 1 —p’A; associated with every column (pattern) A, we consider
the problem of minimizing (1 — p’A;) over all j. This is the same as
maximizing.p’A; over all j. If the maximum is less than or equal to 1, all
reduced costs are nonnegative and we have an optimal solution. If on the
other hand, the maximum is greater than 1, the column A; corresponding
to a maximizing j has negative reduced cost and enters the basis.

We are now left with the task of finding a pattern j that maximizes
p’A;. Given our earlier description of what constitutes an admissible pat-
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tern [cf. Eq. (6.3)], we are faced with the problem

mn
maximize E D

i=1

m
subject to Y wia; < W (6.5)
i=1
a; >0, i=1,...,m,
a; integer, 1=1,...,m.

This problem is called the integer knapsack problem. (Think of p; as the
value, and w; as the weight of the ith item; we seek to fill a knapsack and
maximize its value without the total weight exceeding W). Solving the
knapsack problem requires some effort, but for the range of numbers that
arise in the cutting stock problem, this can be done fairly efficiently.

One possible algorithm for solving the knapsack problem, based on
dynamic programming, is as follows. Let F'(v) denote the optimal objective
value in the problem (6.5), when W is replaced by v, and let us use the
convention F(v) = 0 when v < 0. Let wpin = min; w;. If v < Wyin, then
clearly F'(v) = 0. For v > wpin, we have the recursion

F(v) = (Jmax {F(v—w;) +pi} (6.6)

For an interpretation of this recursion, note that a knapsack of weight
at most v is obtained by first filling the knapsack with weight at most
v — w;, and then adding an item of weight w;. The knapsack of weight
at most v — w; should be filled so that we obtain the maximum value,
which is F(v — w;), and the ith item should be chosen so that the total
value F(v — w;) + p; is maximized. Using the recursion (6.6), F(v) can be
computed for v = Wins Wmin + 1, .., W. In addition, an optimal solution
is obtained by backtracking if a record of the maximizing index ¢ is kept
at each step. The computational complexity of this procedure is O(mW)
because the recursion (6.6) is to be carried out for O(W) different values
of v, each time requiring O(m) arithmetic operations.

The dynamic programming methodology is discussed in more gener-
ality in Section 11.3, where it is also applied to a somewhat different variant
of the knapsack problem. The knapsack problem can also be solved using
the branch and bound methodology, developed in Section 11.2.

6.3 Cutting plane methods

Delayed column generation methods, when viewed in terms of the dual
variables, can be described as delayed constraint generation, or cutting plane
methods. In this section, we develop this alternative perspective.
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Consider the problem

maximize p’b 6.7)
subject to p’A; < ¢, i=1,...,n,

which is the dual of the standard form problem considered in Section 6.1.
Once more, we assume that it is impossible to generate and store each one
of the vectors A;, because the number n is very large. Instead of dealing
with all n of the dual constraints, we consider a subset I of {1,...,n}, and
form the relazed dual problem

maximize p’b (6.8)
subject to p'A; < ¢, 1€l

which we solve to optimality. Let p* be an optimal basic feasible solution
to the relaxed dual problem. There are two possibilities.

*

(a) Suppose that p* is a feasible solution to the original problem (6.7).
Any other feasible solution p to the original problem (6.7) is also
feasible for the relaxed problem (6.8), because the latter has fewer
constraints. Therefore, by the optimality of p* for the problem (6.8),
we have p'b < (p*)’'b. Therefore, p* is an optimal solution to the
original problem (6.7), and we can terminate the algorithm.

(b) If p* is infeasible for the problem (6.7), we find a violated constraint,
add it to the constraints of the relaxed dual problem, and continue
similarly. See Figure 6.1 for an illustration.

In order to carry out this algorithm, we need a method for checking
whether a vector p* is a feasible solution to the original dual problem (6.7).
Second, if p* is dual infeasible, we need an efficient method for identifying
a violated constraint. (This is known as the separation problem, because it
amounts to finding a hyperplane that separates p* from the dual feasible
set, and is discussed further in Section 8.5.) One possibility is to formulate
and solve the optimization problem

minimize c¢; — (p*) A; (6.9)

over all 4. If the optimal value in this problem is nonnegative, we have
a feasible (and, therefore, optimal) solution to the original dual problem;
if it is negative, then an optimizing ¢ satisfies ¢; < (p*)’A;, and we have
identified a violated constraint. The success of this approach hinges on our
ability to solve the problem (6.9) efficiently; fortunately, this is sometimes
possible. In addition, there are cases where the optimization problem (6.9)
is not easily solved but one can test for feasibility and identify violated
constraints using other means. (See, e.g., Section 11.1 for applications of
the cutting plane method to integer programming problems.)

It should be apparent at this point that applying the cutting plane
method to the dual problem is identical to applying the delayed column
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Figure 6.1: A polyhedron P defined in terms of several inequality
constraints. Let the vector b point downwards, so that maximizing
p'b is the same as looking for the lowest point. We start with the
constraints indicated by the thicker lines, and the optimal solution
to the relaxed dual problem is p®. The vector p° is infeasible and
we identify the constraint indicated by a thatched line as a violated
one. We incorporate this constraint in the relaxed dual problem,
and solve the new relaxed dual problem to optimality, to arrive at
the vector p.

generation method to the primal. For example, minimizing ¢; —~ (p*) A;
in order to find a violated dual constraint is identical to minimizing ¢; in
order to find a primal variable with negative reduced cost. Furthermore,
the relaxed dual problem (6.8) is simply the dual of the restricted primal
problem (6.2) formed in Section 6.1.

The cutting plane method, as described here, corresponds to the vari-
ant of delayed column genérat-ion in which all columns generated by the al-
gorithm are retained, and the set I grows with each iteration. As discussed
in Section 6.1, a possible alternative is to drop some of the elements of I;
for example, we could drop those constraints that have not been active for
some time.

If we take the idea of dropping old dual constraints and carry it to
the extreme, we obtain a variant of the cutting plane method whereby, at
each stage, we add one violated constraint, move to a new p vector, and
remove a constraint that has been rendered inactive at the new vector.

Example 6.1 Consider Figure 6.1 once more. We start at p° and let I consist
of the two constraints that are active at p®. The constraint corresponding to
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the thatched line is violated and we add it to the set I. At this point, the set I
consists of three dual constraints, and the relaxed dual problem has exactly three
basic solutions, namely the points p?, p', and p?. We maximize p'b subject to
these three constraints, and the vector p! is chosen. At this point, the constraint
that goes through p° and p® is satisfied, but has been rendered inactive. We
drop this constraint from I, which leaves us with the two constraints through the
point p'. Since p' is infeasible, we can now identify another violated constraint
and continue similarly.

Since the cutting plane method is simply the delayed column gener-
ation method, viewed from a different angle, there is no need to provide
implementation details. While the algorithm is easily visualized in terms of
cutting planes and the dual problem, the computations can be carried out
using the revised simplex method on the primal problem, in the standard
fashion.

We close by noting that in some occasions, we may be faced with a
primal problem (not in standard form) that has relatively few variables but
a very large number of constraints. In that case, it makes sense to apply
the cutting plane algorithm to the primal; equivalently, we can form the
dual problem and solve it using delayed column generation.

6.4 Dantzig-Wolfe decomposition

Consider a linear programming problem of the form

o , ,
minimize ¢]x; + chXo
subject to Di;x; + Doxy = by

lel = b1 (610)
FQXQ = bg
X1, x2 2> 0.

Suppose that x; and xo are vectors of dimensions n; and ns, respectively,
and that by, by, by have dimensions mg, m;, mo, respectively. Thus,
besides nonnegativity constraints, x, satisfies m; constraints, x, satisfies
my constraints, and x;,xs together satisfy mg coupling constraints. Here,
Dy, Dy, Fy, Fy are matrices of appropriate dimensions.

Problems with the structure we have just described arise in several
applications. For example, x; and x5 could be decision variables associ-
ated with two divisions of the same firm. There are constraints tied to
cach division, and there are also some coupling constraints representing
shared resources, such as a total budget. Often, the number of coupling
constraints is a small fraction of the total. We will now proceed to develop
a decomposition method tailored to problems of this type.
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Reformulation of the problem

Qur first step is to introduce an equivalent problem, with fewer equality
constraints, but many more variables.
For i = 1, 2, we define

P; = {x; > 0| Fx; = by},

and we assume that P, and P, are nonempty. Then, the problem can be
rewritten as

minimize ¢}x; + cHXo
subject to Dix; + Doxa = bg
X] € Pl
X9 € Ps.

Fori=1,2, let xf, j € J;, be the extreme points of P;. Let also w¥,
k € K;, be a complete set of extreme rays of P;. Using the resolution theo-
rem (Theorem 4.15 in Section 4.9), any element x; of F; can be represented

in the form o .
X; = E NxI + E Fwf,
e kEK;

where the coefficients A} and 6% are nonnegative and satisfy

SA=1  i=12

JE€Ji

The original problem (6.10) can be now reformulated as

s i i ki ok 3ot i ks ok
minimize E M+ E 01c1w1+§ Meoxd + E O5cows

JEJL keK, Jj€J2 keKa
subject to Z MDixd + Z 0¥D,wt + Z M Dox]
JEN k€K jEJ2
‘ + 5 65Dowk =by  (6.11)
keKo
doA=1 (6.12)
jey
S =1 (6.13)
j€J2

M >o0, 0 >0, Vi, 5, k.

This problem will be called the master problem. It is equivalent to the
original problem (6.10) and is & linear programming problem in standard
form, with decision variables X] and 6¥. An alternative notation for the
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equality constraints (6.11)-(6.13) that shows more clearly the structure of
the column associated with each variable is

. Dlx{ ) DQX%
M| 1 + > M1 o
i€y 0 j€J2 1
Dlw‘f DZ‘/VéC by
+ > 6f 0 + > 0% 0 =1
k€K, 0 EeK, 0 1

The decomposition algorithm

In contrast to the original problem, which had my 4+ m; + mao equality
constraints, the master problem has only mg + 2 equality constraints. On
the other hand, the number of decision variables in the master problem
could be astronomical, because the number of extreme points and rays is
usually exponential in the number of variables and constraints. Because
of the enormous number of variables in the master problem, we need to
use the revised simplex method which, at any given iteration, involves only
mg -+ 2 basic variables and a basis matrix of dimensions (mg +2) X (mg + 2).

Suppose that we have a basic feasible solution to the master problem,
associated with a basis matrix B. We assume that the inverse basis matrix
B! is available, as well as the dual vector p’ = ¢zB~!. Since we have
mg+2 equality constraints, the vector p has dimension mg+2. The first mg
components of p, to be denoted by q, are the dual variables associated with
the constraints (6.11). The last two components, to be denoted by r; and
9, are the dual variables associated with the “convexity” constraints (6.12)
and (6.13), respectively. In particular, p = (q,71,72). :

In order to decide whether the current basic feasible solution is op-
timal, we need to examine the reduced costs of the different variables and
check whether any one of them is negative. The cost coefficient of a variable
A is ¢} x]. Therefore, the reduced cost of the variable A] is given by

D[XJI
r ’
X1 — (4 172 1

0

= (¢} —a'Di)x] - 1.

Similarly, the cost coefficient of the variable 6% is ciw¥. Therefore, its

reduced cost is
Dlw'f
ciwh — [q’ T 1'2] 0
0

= (¢} —g'D))wt.

We now introduce the most critical idea in the decomposition algo-
rithm. Instead of evaluating the reduced cost of every variable A} and 6%,
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and checking its sign, we form the linear programming problem

minimize (¢} — q'D1)x1

subject to x; € Py,

called the first subproblem, which we solve by means of the simplex method.
There are three possibilities to consider.

(a) If the optimal cost in the subproblem is —co, then, upon termination,
the simplex method provides us with an extreme ray w¥ that satisfies
(¢} — q'Dy)wl < 0 (see the discussion at the end of Section 4.8).
In this case, the reduced cost of the variable 6% is negative. At this
point, we can generate the column

Dlw;f
0
0

associated with 8%, and have it enter the basis in the master problem.

(b) If the optimal cost in the subproblem is finite and smaller than 7;,
then, upon termination, the simplex method provides us with an ex-
treme point x) that satisfies (¢} — ¢'D1)x] < r1. In this case, the
reduced cost of the variable A{ is negative. At this point, we can
generate the column

D;x]
1
0

associated with A}, and have it enter the basis in the master problem.

Finally, if the optimal cost in the subproblem is finite and no smaller
than 7, this implies that (¢ — q'D1)x] > ry for all extreme points
%7, and (¢} — @'Dy)wh > 0 for all extreme rays w¥. In this case, the
reduced cost of every variable X} or 6% is nonnegative.

(c

~—

The same approach is followed for checking the reduced costs of the
variables X} and 6%: we form the second subproblem

minimize (¢, — q'D2)xz
subject to  x3 € Po,

and solve it using the simplex method. Either the optimal cost is greater

than or equal to rp and all reduced costs are nonnegative, or we find a

variable X}, or 05 whose reduced cost is negative and can enter the basis.
The resulting algorithm is summarized below.
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We recognize delayed column generation as the centerpiece of the
decomposition algorithm. Even though the master problem can have a
huge number of columns, a column is generated only after it is found to
have negative reduced cost and is about to enter the basis. Note that the
subproblems are smaller linear programming problems that are employed as
an economical search method for discovering columns with negative reduced
costs.

As discussed in Section 6.1, we can also use a variant whereby all
columns that have been generated in the past are retained. In this case,
Step 5 of the algorithm has to be modified. Instead of carrying out a single
simplex iteration, we solve a restricted master problem to optimality. This
restricted problem has the same structure as the master problem, except
that it only involves the columns that have been generated so far.

Economic interpretation

We provide an appealing economic interpretation of the Dantzig-Wolfe de-
composition method. We have an organization with two divisions that
have to meet a common objective, reflected in the coupling constraint
D;x; + Dyxy = bg. A central planner assigns a value of q for each unit
of contribution towards the common objective. Division i is interested in
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minimizing ¢;x; subject to its own constraints. However, any choice of x;
contributes D;x; towards the common objective and has therefore a value
of @'D;x;. This leads division ¢ to minimize (¢ — q'D;)x; (cost minus
value) subject to its local constraints. The optimal solution to the divi-
sion’s subproblem can be viewed as a proposal to the central planner. The
central planner uses these proposals and combines them (optimally) with
preexisting proposals to form a feasible solution for the overall problem.
Based on this feasible solution (which is a basic feasible solution to the
master problem), the values q are reassessed and the process is repeated.

Applicability of the method

It should be clear that there is nothing special about having exactly two
subproblems in the Dantzig-Wolfe decomposition method. In particular,
the method generalizes in a straightforward manner to problems of the
form

minimize ¢{x; +chXp + - + €)Xy
subject to Djx; +Doxg + -+ Dyx; = by
Fix; = by, i=1,2,...,t
Xi,X2,...,Xs > 0.
The only difference is that at each iteration of the revised simplex method
for the master problem, we may have to solve ¢ subproblems.

In fact, the method is applicable even if ¢ = 1, as we now discuss.
Consider the linear programming problem

minimize c¢/x

subject to Dx = by
Fx = b
x > 0,

in which the equality constraints have been partitioned into two sets, and
define the polyhedron P = {x > 0 | Fx = b}. By expressing each element
of P in terms of extreme points and extreme rays, we obtain a master
problem with a large number of columns, but a smaller number of equality
coustraints. Searching for columns with negative reduced cost in the master
problem is then accomplished by solving a single subproblem, which is a
minimization over the set P. This approach can be useful if the subproblem
has a special structure and can be solved very fast.

Throughout our development, we have been assuming that all con-
straints are in standard form and, in particular, the feasible sets /; of the
subproblems are also in standard form. This is hardly necessary. For ex-
ample, if we assume that the sets P; have at least one extreme point, the
resolution theorem and the same line of development applies.
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Examples
We now consider some examples and go through the details of the algorithm.

In order to avoid excessive bookkeeping, our first example involves a single
subproblem.

Example 6.2 Consider the problem

minimize -4z, — =z — 6z
subject to 3z1 + 2z + 4dxz = 17
1 S Z) S 2
1<z, <2
1 S T3 S 2.

We divide the constraints into two groups: the first group consists of the con-
straint Dx = by, where D is the 1 x 3 matrix D = [3 2 4], and where by = 17;
the second group is the constraint x € P, where P = xe®R|1<z: <2, 4 :,
1,2,3}. Note that P has eight extreme points; furthermore, it is Eouncfed’and,

therefore, has no extreme rays. The master problem has two equality constraints,
namely

8
> VDY =17,
=1

i/\j =1
s=1

where x7 are the extreme points of P. The columns of the constraint matrix in the
master problem are of the form (Dx7,1). Let us pick two of the extreme points
of P, say, x! = (2,2,2) and x* = (1, 1,2), and let the corresponding variables
Al and A? be our initial basic variables. We have Dx! — 18, Dx? = 13, and
therefore, the corresponding basis matrix is ’ ’ 1

B={18 13J_
11’

B~ { 02 -26 }

its inverse is

—0.2 3.6

We form the product of B™! with the vector (17,1). The result, which is (0.8,0.2),
gives us the values of the basic variables A*, A>. Since these values are nonnegative
we have a basic feasible solution to the master problem.

L We now determine the simplex multipliers. Recalling that the cost of A is
c'x?, we have

3

2
63(1)’—:—(:/)(1:[—4 -1 —6][2}=—22,
2
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and

1
ey =c*’=[-4 ~1 6] { 1 } =-17.
2

We therefore have
p=[d r]=cpB ' =[-22 ~17]B =[-1 -4].

We now form the subproblem. We are to minimize (¢’ — q'D)x subject to
x € P. We have

¢d—-qD=[-4 -1 —-6]-(-1)[3 2 4] =[-11 -2

and the optimal solution is x = (2,1, 2). This is a new extreme point of P, which
we will denote by x*. The optimal cost in the subproblem is —5, and is less than
r, which is —4. It follows that the reduced cost of the variable A® is negative,
and this variable can enter the basis. At this point, we generate the column
corresponding to A®. Since Dx® = 16, the corresponding column, call it g, is
(16,1). We form the vector u = B™'g, which is found to be (0.6,0.4). In order
to determine which variable exits the basis, we form the ratios A\’ /u; = 0.8/0.6
and A\?/u2 = 0.2/0.4. The second ratio is smaller and A? exits the basis. We now

have a new basis
18 16
o[ V)

-1 _ 0.5 -8
5= 08 8
We form the product of B™! with the vector (17,1) and determine the values of
the basic variables, which are A' = 0.5 and A\* = 0.5. The new value of cp(z) is
¢'x® = —21. Once more, we compute [q 7] = cxB™!, which is (0.5, ~13)".
We now go back to the subproblem. We have

¢-qD=[-4 -1 ~6]-(-05)[3 2 4]=[-250 —4].

We minimize (¢’ — q'D)x over P. We find that (2,2,2) is an optimal solution,
and the optimal cost is equal to —13. Since this is the same as the value of r,
we conclude that the reduced cost of every A! is nonnegative, and we have an
optimal solution to the master problem.

In terms of the variables z;, the optimal solution is

2
x:—l—xl—i—%xa: [ 1.5].

its inverse is

2 2
The progress of the algorithm is illustrated in Figure 6.2.

As shown in Figure 6.2, even though the optimal solution is an ex-
treme point of the feasible set in x-space, feasible solutions generated in the
course of the algorithm (e.g., the point A) are not extreme points. Another
illustration that conveys the same message is provided by Figure 6.3. Notice
the similarity with our discussion of the column geometry in Section 3.6.
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Figure 6.2: Illustration of Example 6.2, in terms of the variables
@i in the original problem. The cube shown is the set P. The
feasible set is the intersection of the cube with the hyperplane 3z, +
222 +4x3 = 17, and corresponds to the shaded triangle. Under the
first basis considered, we have a feasible solution which is a convex
combination of the extreme points x!, %2, namely, point 4. At
the next step, the extreme point x° is introduced. If Al were to
become nonbasic, we would be dealing with convex combinations
of x* and x°, and we would not be able to satisfy the constraint
3:1c 1+2z2+4z3 = 17. This provides a geometric explanation of why
A" must stay and A% must exit the basis. The new basic feasible
solution corresponds to the point B, is a convex combination of x!
and x%, and was found to be optimal.

247
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Figure 6.3: Another illustration of the geometry of Dantzig-
Wolfe decomposition. Consider the case where there is a single
subproblem whose feasible set has extreme points x?,...,x%, and
a single coupling equality constraint which corresponds to the line
shown in the figure. The algorithm is initialized at point A and
follows the path A, B, C, with point C being an optimal solution.

Example 6.3 The purpose of this example is to illustrate the behavior of the
decomposition algorithm when the feasible set of a subproblem is unbounded.
Consider the linear programming problem

minimize —5x; + z2

subject to T < 8
zy — 22 < 4
2z, — xz9 < 10
zy,z2 > 0.

The feasible set is shown in Figure 6.4.
We associate a slack variable z3 with the first constraint and obtain the

problem

minimize —5z; + z2
subject to z)+xz3 = 8
Ty —x2 < 4
2z) —xz2 < 10
1,22 2 0
z3 > 0.

We view the constraint 2, + 3 = 8 as a coupling constraint and let
P = {(mx,m) l Ty —z2 < 4, 221 — 22 <10, z1, T2 > 0},

Py = {z3 | z3 > 0}.

We therefore have two subproblems, although the second subproblem has a very
simple feasible set.
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Figure 6.4: Illustration of Example 6.3. The algorithmn starts
at (z1,22) = (6,2) and after one master iteration reaches point
(z1,22) = (8,6), which is an optimal solution.

The set P, is the same as the set shown in Figure 6.4, except that the
constraint 1 < 8 is absent. Thus, P, has three extreme points, namely, x} =
(6,2), xi = (4,0), x} = (0,0), and two extreme rays, namely, wi = (1,2) and
wi = (0,1).

Because of the simple structure of the set P, instead of introducing an
extreme ray wj and an associated variable 03, we identify 03 with z3, and keep
Z3 as a variable in the master problem.

The master problem has two equality constraints, namely,

3 2
Z)\’lx{ +Z¢9’fw'{+:n3 = 8,
—

k=1
3
da=1
j=1

Accordingly, a basis consists of exactly two columns.

. Inlthis exgmple, we have Dy = [1 0] and D, = 1. Consider the variable
Aj associated with the extreme point x} = (6,2) of the first subproblem. The
corresponding column is (D;x},1) = (6,1). The column associated with T3 is
(1,0). If we choose A} and z3 as the basic variables, the basis matrix is

6 1
o-[ V5]

and its inverse is
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We form the product of B~! with the vector (bo,1) = (8,1). The result, which
is (1,2), gives us the values of the basic variables A}, z3. Since these values
are nonnegative, we have a basic feasible solution to the master problem, which
corresponds to (z1,z2) = x} = (6,2); see Figure 6.4.

We now determine the dual variables. We have cga) = (=5, 1)'x} = —28
and cg(zy = 0 x 1 = 0. We therefore have

p=[¢g n]=cpB'=[-28 0]B'=[0 -28]

(Note that we use the notation g instead of q, because q is one-dimensional. Fur-
thermore, the dual variable 72 is absent because there is no convexity constraint
associated with the second subproblem.)

We form the first subproblem. We are to minimize (c¢; — q'D1)x1 subject
to x; € P,. Because ¢ = 0, we have ¢} — ¢D; = ¢} = (~5,1)". We are therefore
minimizing —5z; + T2 subject to x; € P and the optimal cost is —oo. In
particular, we find that the extreme ray wj = (1,2) has negative cost. The
associated variable 8} is to enter the basis. At this point, we generate the column
corresponding to 6. Since D;w] = 1, the corresponding column, call it g, is
(1,0). We form the vector u = B~ 'g, which is found to be (0,1). The only
positive entry is the second one and this is therefore the pivot element. It follows
that the second basic variable, namely z3, exits the basis. Because the column
associated with the entering variable 8} is equal to the column associated with
the exiting variable x3, we still have the same basis matrix and, therefore, the
same values of the basic variables, namely, A} = 1, 8} = 2. This takes us to the
vector x = x} + 2w} = (8,6); see Figure 6.4.

For the new basic variables, cg(1) is again —28 and

cB(g)::c/lw}:[—S 1] [ ; } = —3.

We compute (g,71) = c5FB™*, which is equal to (=3, —10)".
We now go back to the first subproblem. Since ¢ = —3, we have

ci—qDi=[-5 1] - (-3)[1 0] =[-2 1].

We minimize —2; +z2 over the set P,. The optimal cost is —10 and is attained at
(z1,z2) = (8,6). Because the optimal cost —10 is equal to 71, all of the variables
associated with the first subproblem have nonnegative reduced costs.

We next consider the second subproblem. We have ¢z = 0, ¢ = —3, and
D: = 1. Thus, the reduced cost of z3 is equal to c; — gDz = 3. We conclude that
all of the variables in the master problem have nonnegative reduced costs and we
have an optimal solution.

Starting the algorithm

In order to start the decomposition algorithm, we need to find a basic
feasible solution to the master problem. This can be done as follows. We
first apply Phase I of the simplex method to each one of the polyhedra
P, and Py, separately, and find extreme points xi and x} of P; and P,
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respectively. By possibly multiplying both sides of some of the coupling
constraints by —1, we can assume that Djx} + Dax} < b. Let y be a
vector of auxiliary variables of dimension my. We form the auxiliary master
problem

™o
minimize E Ui
t=1

subject to Z z )\{Dix{ + Z GfDin +y=byg

i=1,2 \j€J; kEK;
SN =1

j€

> N =

j€J2

XN20,0f>0,y>0, Vijkt

A basic feasible solution to the auxiliary problem is obtained by letting
M=M= =0forj#1,0f=0forall k, and y = by — Dyx} — Dox}.
Starting from here, we can use the decomposition algorithm to solve the
auxiliary master problem. If the optimal cost is positive, then the master
problem is infeasible. If the optimal cost is zero, an optimal solution to the
auxiliary problem provides us with a basic feasible solution to the master
problem.

Termination and computational experience

The decomposition algorithm is a special case of the revised simplex method
and, therefore, inherits its termination properties. In particular, in the ab-
sence of degeneracy, it is guaranteed to terminate in a finite number of steps.
In the presence of degeneracy, finite termination is ensured if an anticycling
rule is used, although this is rarely done in practice. Note that Bland’s rule
cannot be applied in this context, because it is incompatible with the way
that the decomposition algorithm chooses the entering variable. There is no
such difficulty, in principle, with the lexicographic pivoting rule, provided
that the inverse basis matrix is explicitly computed.

A practical way of speeding up the solution of the subproblems is
to start the simplex method on a subproblem using the optimal solution
obtained the previous time that the subproblem was solved. As long as
the objective function of the subproblem does not change too drastically
between successive master iterations, one expects that this could lead to
an optimal solution for the subproblem after a relatively small number of
iterations.

Practical experience suggests that the algorithm makes substantial
progress in the beginning, but the cost improvement can become very slow
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later on. For this reason, the algorithm is sometimes terminated prema-
turely, yielding a suboptimal solution.

The available experience also suggests that the algorithm is usually
no faster than the revised simplex method applied to the original prob-
lem. The true advantage of the decomposition algorithm lies in its storage
requirements. Suppose that we have ¢ subproblems, each one having the
same number m; of equality constraints. The storage requirements of the
revised simplex method for the original problem are O ((mq+tm,)?), which
is the size of the revised simplex tableau. In contrast, the storage require-
ments of the decomposition algorithm are O((mg + t)*) for the tableau of
the master problem, and t times O(m?) for the revised simplex tableaux of
the subproblems. Furthermore, the decomposition algorithm needs to have
only one tableau stored in main memory at any given time. For example,
if t = 10 and if mg = m, is much larger than ¢, the main memory require-
ments of the decomposition algorithm are about 100 times smaller than
those of the revised simplex method. With memory being a key bottleneck
in handling very large linear programming problems, the decomposition
approach can substantially enlarge the range of problems that can be prac-
tically solved.

Bounds on the optimal cost

As already discussed, the decomposition algorithm may take a long time
to terminate, especially for very large problems. We will now show how
to obtain upper and lower bounds for the optimal cost. Such bounds can
be used to stop the algorithm once the cost gets acceptably close to the
optimum.

Theorem 6. 1 Suppose that the master problem s feamble and 1ts Op-‘ :
.:tzmal cost 2% JS ﬁmte Let z'be. the cost of tbe sasible solutlon obtained .

4::stra1ut; for the. 'zth subpzoblem Fmall) €
e tbe,zth ,subproblez_n, ‘assumed: ﬁmj;e, Then,

Proof. The inequality z* < z is obvious, since z is the cost associated

with a feasible solution to the original problem. It remains to prove the
left-hand side inequality in the statement of the theorem.

We provide the proof for the case of two subproblems. The proof for
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the general case is similar. The dual of the master problem is

maximize q'bg -+ 7y + 72

subject to q’Dlx{ +r < cix{, Y jeJ,
q'D,wk < cfjwk, Y ke K, (6.14)
q’Dgx,Jé + 1o < c%xg, Vje s,
q'Dowk < chwh, YV ke K.

Suppose that we have a basic feasible solution to the master problem, with

cost z, and let (q,71,72) be the associated vector of simplex multipliers.

This is a (generally infeasible)} basic solution to the dual problem, with the
same cost, that is,

a’bo+7; +71 = 2. (6.15)

Since the optimal cost z; in the first subproblem is finite, we have
in(c! I o Jy —
J1_21}1( 1Xi —a'Dixy) = 21,

min {(cjwF — ¢'Dywt) > 0.

ke Ky

v

Thus, g together with z; in the place of 7y, satisfy the first two dual con-
straints. By a similar argument, q together with z; in the place of o, satisfy
the last two dual constraints. Therefore, (q, z1, 22) is a feasible solution to
the dual problem (6.14). Its cost is q'bg + 21 + 22 and, by weak duality, is
no larger than the optimal cost z*. Hence,

z* > qdbo+z1+ 2
= qbo+r+r2+ (21 —71) + (22 ~ 72)
= z+ (21 —71) + (22 — 72),

where the last equality follows from Eq. (6.15). O

Note that if the optimal cost in one of the subproblems is ~oo, then
Theorem 6.1 does not provide any useful bounds.

The proof of Theorem 6.1 is an instance of a general method for ob-
taining lower bounds on the optimal cost of linear programming problems,
which is the following. Given a nonoptimal basic feasible solution to the
primal, we consider the corresponding (infeasible) basic solution to the dual
problem. If we can somehow modify this dual solution, to make it feasi-
ble, the weak duality theorem readily yields a lower bound. This was the
approach taken in the proof of Theorem 6.1, where we started from the gen-
erally infeasible dual solution (q, ry,72), moved to the dual feasible solution
(q, 21, 22), and then invoked weak duality.

Example 6.4 Let us revisit Example 6.2 and consider the situation just be-
fore the first change of basis. We are at a basic feasible solution determined by
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(A1, A%) = (0.8,0.2). Since cp = (—22, —17), we have z = (-22,-17)(0.8,0.2) =
—21. We also have 7 = —4. Finally, the optimal cost in the subproblem is
(=1,1,-2)"(2,1,2) = —5. It follows that —21 > z* 2 —21 + (=5) — (—4) = —22.
Indeed, the true value of z* is —21.5.

6.5 Stochastic programming and Benders
decomposition

In this section, we introduce and study two-stage stochastic linear program-
ming problems. In this important class of problems, there are two sets of
decisions that are made in consecutive stages. Furthermore, there are some
exogenous parameters that influence the second stage of decision making,
but whose values are uncertain, and only become known after the first set of
decisions has been fixed. In order to address problems of this type, we de-
velop a new decomposition algorithm, called Benders decomposition, which
is based on delayed constraint generation (as opposed to delayed column
generation).

Problem formulation

Consider a decision maker who has to act in two consecutive stages. The
first stage involves the choice of a decision vector x. Subsequently, some new
information is obtained, and then, at the second stage, a new vector y of
decisions is to be chosen. Regarding the nature of the obtained information,
we assume that there are K possible scenarios, and that the true scenario
is only revealed after x is chosen. We use w to index the different scenarios,
and we let a,, stand for the probability of any particular scenario w, which
we assume to be positive. Since the second stage decisions are made after
the true scenario w becomes known, we allow the decision vector y to
depend on w, and we use the notation y,, to make this dependence explicit.

We now make more specific assumptions on the problem objectives
and constraints. We are given cost vectors ¢ and f, associated with the
decisions x and y,,, respectively. The first stage decisions must satisfy the
constraints

Ax =D
x > 0.

In addition, the first and second stage decisions need to satisfy constraints
of the form

Il
o)
€

B.,x+ Dy,
Yw

v
L
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for all w; in particular, every scenario may involve a different set of con-
straints. The objective is to choose x and y, ..., yk so that the “expected
cost”

cx+ofy + - +axfyy

is minimized. We thus arrive at the problem

minimize  ¢'x + a1f'y; + aof’yy + - + axf'yx

subject to  Ax =b
Bl)( + Dy1 = dl
BQX + Dyg = dg
Bix + Dyx = dg

X ¥Y1,¥2, - YK > O’

which will be referred to as the master problem. Notice that even if the
number of possible scenarios K is moderate, this formulation can be a large
linear programming problem. For this reason, a decomposition method is
in order.

Example 6.5 (Electric power capacity expansion) An electric utility is
installing two generators (indexed by j = 1,2) with different fixed and operating
costs, in order to meet the demand within its service region. Each day is divided
into three parts of equal duration, indexed by ¢ = 1,2,3. These correspond to
parts of the day during which demand takes a base, medium, or peak value,
respectively. The fixed cost per unit capacity of generator j is amortized over its
lifetime and amounts to ¢; per day. The operating cost of generator j during the
ith part of the day is fi;. If the demand during the ith part of the day cannot be
served due to lack of capacity, additional capacity must be purchased at a cost of
gi. Finally, the capacity of each generator j is required to be at least b;.

There are two sources of uncertainty, namely, the exact value of the de-
mand d; during each part of the day, and the availability a; of generator j. The
demand d; can take one of four values d 1, . . .,di 4, with probability p; 1,...,pi4,
respectively. The availability of generator 1 is ay,,...,a14, with probability
qin,---,q1,4, respectively. Similarly, the availability of generator 2is az,1,...,azs,
with probability g2,1,...,¢2,5, respectively. If we enumerate all the possible
events, we see that there is a total of 43 x 4 x 5 = 1280 scenarios w. Let us
use d;’ and aj to denote the demands and availabilities, respectively, under sce-
nario w.

We introduce the first stage variables z;, j = 1,2, that represent the in-
stalled capacity of generator j. We also introduce the second stage variables ¥}
that denote the operating levels of generator j during the ith part of the day and
under scenario w. Finally 4} is the capacity that needs to be purchased under
scenario w, in order to satisfy unmet demand during the ith part of the day. We
interpret availability to mean that the operating level of generator j, at any given
time, is at most a;x;. We then arrive at the following formulation:
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2 3 2
minimize chfﬂj + E ‘:Z (Zfi,-yig + gg}f)i\
j=1

j=1 i=1
subject to  z; > by, Y 7,
yi; < aiwy, v 1,j,w,
2
S+ zdt, Viw
j=1
z5,¥5, 90 2 0, Y 1,7, w.

(Here, E[-] stands for mathematical expectation, that is the average over all
scenarios w, weighted according to their probabilities.) The full model involves
11592 variables and 11522 constraints (not counting nonnegativity constraints).

Reformulation of the problem

Consider a vector x such that Ax = b and x > 0, and suppose that this is
our choice for the first stage decisions. Once x is fixed, the optimal second
stage decisions y,, can be determined separately from each other, by solving
for each w the problem

minimize f'y.
subject to Bux + Dy, =du (6.16)
Yo 2 0.
Let z,(x) be the optimal cost of the problem (6.16), together with the

convention z,(x) = oo if the problem is infeasible. If we now go back to
the optimization of x, we are faced with the problem

K
minimize ¢'x + Z 07 (X)
w=1
subject to Ax=Db (6.17)
x > 0.

Of course, in solving this problem, we should only consider those x for
which none of the z,(x) are equal to infinity. o
We will approach problem (6.16) by forming its dual, which is

maximize p.(d, — BuX)

(6.18)
subject to p.,,D < f.

Let
P={p|pD<f}

We assume that P is nonempty and has at lea§t one extreme point. Let pt,
i=1,...,1, be the extreme points, and let w7, j =1,..., J, be a complete
set of extreme rays of P.
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Under our assumption that the set P is nonempty, either the dual
problem (6.18) has an optimal solution and z,(x) is finite, or the optimal
dual cost is infinite, the primal problem (6.16) is infeasible, and z,,(x) = co.
In particular, z,(x) < oo if and only if

(w?)(dy, — Bux) <0, Y j. (6.19)

Whenever z,,(x) is finite, it is the optimal cost of the problem (6.18), and the
optimum must be attained at an extreme point of the set P; in particular,

zu(x) = _lYllaXI(pi)/(du - B,x).
i=1,..,
Alternatively, z,(x) is the smallest number z, such that
(pi)/(dw —B,x) < z,, V1.
We use this characterization of z,(x) in the original problem (6.17), and
also take into account the condition (6.19), which is required for z,(x) to

be finite, and we conclude that the master problem (6.17) can be put in
the form

K
minimize c¢'x + Zawzw
w=1

subject to Ax=Db

A (6.20)
(p*)'(dw — Bux) < 2., Vi, w,
(w9)(dy, — Bux) <0, Y j,w,
x > 0.

With this reformulation, the number of variables has been reduced
substantially. The number of constraints can be extremely large, but this
obstacle can be overcome using the cutting plane method. In particular,
we will only generate constraints that we find to be violated by the current
solution. '

Delayed constraint generation

At a typical iteration of the algorithm, we consider the relazed master
problem, which has the same objective as the problem (6.20), but involves
only a subset of the constraints. We assume that we have an optimal
solution to the relaxed master problem, consisting of a vector x* and a
vector z* = (z{,...,z}). In the spirit of the cutting plane method, we
need to check whether (x*,2*) is also a feasible solution to the full master
problem. However, instead of individually checking all of the constraints,
we proceed by solving some auxiliary subproblems.
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For w=1,..., K, we consider the subproblem

minimize 'y
subject to Dy, = do, — Bux
Yu 20,

*

which we solve to optimality. Notice that the subproblems encountered at
different iterations, or for different values of w, differ only in the right-hand
side vector d, — Box*. In particular, the corresponding dual problems
always have the same feasible set, namely, P. For this reason, it is natural
to assume that the subproblems are solved by means of the dual simplex

method.
There are a few different possibilities to consider:

(a) If the dual simplex method indicates that a (primal) subproblem is
infeasible, it provides us with an extreme ray w’ () of the dual feasible

set P, such that
(W)Y (d, — Bux*) > 0.

We have then identified a violated constraint, which can be added to
the relaxed master problem.

(b) If a primal subproblem is feasible, then the dual simplex method
terminates, and provides us with a dual optimal basic feasible solution

pi@). If we have
(pi(u))l(dw _ wa*) > 2,

we have again identified a violated constraint, which can be added to
the relaxed master problem.

(¢) Finally, if the primal subproblems are all feasible and we have
(P')) (do = Bux") < 2,
for all w, then, by the optimality of pi(“’), we obtain
(p")(dw — Bux") < 2,
for all extreme points p*. In addition,
(W) (dw —Bux") £ 0,

for all extreme rays w’?, and no constraint is violated. We then have
an optimal solution to the master problem (6.20), and the algorithm
terminates.

The resulting algorithm is summarized below.
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with-a rélaXéd ﬁénsfi‘e!f"pfoblem, in whlch
ints of the master problem (6.20) are:
: elaxed master

e e 1o the oed mastr probom.

G

Benders decomposition uses delayed constraint generation and the
cutting plane method, and should be contrasted with Dantzig-Wolfe de-
composition, which is based on column generation. Nevertheless, the two
methods are almost identical, with Benders decomposition being essentially
the same as Dantzig-Wolfe decomposition applied to the dual. Let us also
n.ote, consistently with our discussion in Section 6.3, that we have the op-
tion of discarding all or some of the constraints in the relaxed primal that
have become inactive.

. One of the principal practical difficulties with stochastic program-
ming, is that the number K of possible scenarios is often large, leading to
a large number of subproblems. This is even more so for stochastic pro-
gramming problems involving more than two stages, where similar methods
can be in principle applied. A number of remedies have been proposed, in-
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cluding the use of random sampling to generate only a representative set
of scenarios. With the use of parallel computers and sophisticated sam-
pling methods, the solution of some extremely large problems may become
possible.

6.6 Summary

The main ideas developed in this chapter are the following:

(a) In a problem with an excessive number of columns, we need to gen-
erate a column only if its reduced cost is negative, and that column
is to enter the basis (delayed column generation). A method of this
type requires an efficient subroutine for identifying a variable with
negative reduced cost.

(b) In a problem with an excessive number of constraints, a constraint
needs to be taken into account only if it is violated by the current so-
lution (delayed constraint generation). A method of this type (cutting

plane method) requires an efficient subroutine for identifying violated

constraints.

We have noted that delayed column generation methods applied to
the primal coincide with cutting plane methods applied to the dual. Fur-
thermore, we noted that there are several variants depending on whether we
retain or discard from memory previously generated columns or constraints.

For a problem consisting of a number of subproblems linked by cou-
pling constraints, the delayed column generation method applied to a suit-
ably reformulated problem, results in the Dantzig-Wolfe decomposition
method. Loosely speaking, Benders decomposition is the “dual” of Dantzig-
Wolfe decomposition, and is based on delayed constraint generation. Stoch-
astic programming is an important class of problems where Benders decom-
position can be applied.

6.7 Exercises

Exercise 6.1 Consider the cutting stock problem. Use an optimal solution to
the linear programming problem (6.4) to construct a feasible solution for the
corresponding integer programming problem, whose cost differs from the optimal
cost by no more than m.

Exercise 6.2 This problem is a variation of the diet problem. There are n foods
and m nutrients. We are given an m xn matrix A, with a;; specifying the amount
of nutrient ¢ per unit of the jth food. Consider a parent with two children. Let b
and b? be the minimal nutritional requirements of the two children, respectively.
Finally, let ¢ be the cost vector with the prices of the different foods. Assume
that a;; > 0 and ¢; > 0 for all 7 and j.

Sec. 6.7  Exercises 261

The pftrgnt has to buy food to satisfy the children’s needs, at minimum
cost. To avoid jealousy, there is the additional constraint that the amount to be
spent for each child is the same.

(a) Ffrovide a standard form formulation of this problem. What are the dimen-
sions of the constraint matrix?

(b) If the Dantzig-Wolfe method is used to solve the problem in part (a), con-
lsf:ruct the subproblems solved during a typical iteration of the master prob-
em.

(c) Sugge;t a direct approach for solving this problem based on the solution of
two single-child diet problems.

Exercise 6.3 Consider the following linear programming problem:

maximize A Tip + Too 4+ 223
subject to Tn + o + 13 Ao N = 20
s o1 + Toz + X3 = 20
~Z1y A3 — T2 ~ = —20 1 @
-z _ = {
12 - Tao e —10
-~ T3 — T3 = —IOJ
Tt + z23 < 15

zij 2 0, foralld,y.

We wis.h to solve this problem using Dantzig-Wolfe decomposition, where the
constra‘mt T + T2 < 15 is the only “coupling” constraint and the remaining
constraints define a single subproblem.

(a) Consider the following two feasible solutions for the subproblem:

x! = (211,212, 313, T21, 22, 725) = (20,0, 0,0, 10, 10),
and
x% = (11511,(1312,11}13,11721,(1}22,3}23) = (0,10, 10, 20, 0, 0).
Construct a restricted master problem in which x is constrained to be

a cs)nvex'combination of x! and x*. Find the optimal solution and the
optimal simplex multipliers for the restricted master problem.

(b) Using the simplex multipliers calculated in part (a), formulate the subprob-
lem and solve it by inspection.

(c) What is th.e reduced cost of the variable ); associated with the optimal
extreme point x* obtained from the subproblem solved in part (b)?

(d) Compute an upper bound on the optimal cost.
Exercise 6.4 Consider a linear programming problem of the form
minimize cix; + chXa + chy

. D, 0 F X b

subject to ! ! !
{ 0 D, FZJ(XQ = qu

Y
X1,X2 > 0.

We will develop two different ways of decomposing this problem.
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(a) Form the dual problem and explain how Dantzig-Wolfe decompositiox} can
be applied to it. What is the structure of the subproblems solved during a
typical iteration?

(b) Rewrite the first set of constraints in the form Dl?q + Fiy1 > bf and
Dax2 + Fays > ba, together with a constraint relating y:1 to yz. Discuss
how to apply Dantzig-Wolfe decomposition and describe the structure of
the subproblems solved during a typical iteration.

Exercise 6.5 Consider a linear programming problem of the form
minimize ¢'x+d'y
subject to Ax+ Dy < b
Fx<f
y 2 0.

(a) Suppose that we have access to a very fast subroutine for solving problems
of the form
minimize h'x
subject to Fx < f,

for arbitrary cost vectors h. How would you go about decomposing the
problem?
(b) Suppose that we have access to a very fast subroutine for solving problems
of the form o ,
minimize d'y
subject to Dy
y
for arbitrary right-hand side vectors h. How would you go about decom-
posing the problem?

<h
>0,

Exercise 6.6 Consider a linear programming problem in standard form in which
the matrix A has the following structure:

Ag Aor - - Aon
A An

A= A22
Ao Ann

(All submatrices other than those indicated are zero.) Show how a decc?mposition
method can be applied to a problem with this structure. Do not provide detgxls,
as long as you clearly indicate the master problem and the subproblems. Hint:
Decompose twice.

Exercise 6.7 Consider a linear programming problem in standard form. Let us
treat the equality constraints as the “coupling” constraints and use the Dantzig-
Wolfe decomposition method, for the case of a single subproblem. Shm\f that the
resulting master problem is identical to the problem that we started with.
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Exercise 6.8 Consider the Dantzig-Wolfe decomposition method and suppose
that we are at a basic feasible solution to the master problem.

(a) Show that at least one of the variables )\{ must be a basic variable.
(b) Let ry be the current value of the simplex multiplier associated with the

first convexity constraint (6.12), and let z; be the optimal cost in the first
subproblem. Show that z; < ry.

Exercise 6.9 Consider a problem of the form
minimize max (ajx — b;),
i=1,...,m

subject to no constraints, where a;, b; are given vectors and scalars, respectively.
(a) Describe a cutting plane method for problems of this form.
(b) Let x be an optimal solution to a relaxed problem in which only some of the

terms ajx — b; have been retained. Describe a simple method for obtaining
lower and upper bounds on the optimal cost in the original problem.

Exercise 6.10 In this exercise, we develop an alternative proof of Theorem 6.1.

(a) Suppose that x is a basic feasible solution to a standard form problem,
and let € be the corresponding vector of reduced costs. Let y be any other
feasible solution. Show that c'y = ¢’y + c¢'x.

(b) Consider a basic feasible solution to the master problem whose cost is equal
to 2. Write down a lower bound on the reduced cost of any variable A} and
6%, in terms of 7; and z;. Then, use the result of part (a) to provide a proof
of Theorem 6.1.

Exercise 6.11 (The relation between Dantzig-Wolfe and Benders de-
composition) Consider the two-stage stochastic linear programming problem
treated in Section 6.5.

(a) Show that the dual problem has a form which is amenable to Dantzig-Wolfe
decomposition.

(b) Describe the Dantzig-Wolfe decomposition algorithm, as applied to the
dual, and identify differences and similarities with Benders decomposition.

Exercise 6.12 (Bounds in Benders decomposition) For the two-stage
stochastic linear programming problem of Section 6.5, derive upper and lower
bounds on the optimal cost of the master problem, based on the information
provided by the solutions to the subproblems.

6.8 Notes and sources

6.2. The delayed column generation approach to the cutting stock problem
was put forth by Gilmore and Gomory (1961, 1963).

6.3. Cutting plane methods are often employed in linear programming
approaches to integer programming problems, and will be discussed
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6.4.

6.5.
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in Section 11.1. The same idea can also be applied to more general
convex optimization problems; see, e.g., Bertsekas (1995b).
Dantzig-Wolfe decomposition was developed by Dantzig and Wolfe
(1960). Example 6.2 is adapted from Bradley, Hax, and Magnanti
(1977).

Stochastic programming began with work by Dantzig in the 1950’s
and has been extensively studied since then. Some books on this sub-
ject are Kall and Wallace (1994), and Infanger (1993); Example 6.5
is adapted from the latter reference. The Benders decomposition
method was developed by Benders (1962). It finds applications in
other contexts as well, such as discrete optimization; see, e.g., Schri-
jver (1986), and Nemhauser and Wosley (1988).

Chapter 7

Network flow problems

twork flow: problems -
o

78T 5 : prébleﬁ;-aﬁdf~i:'hé 1

7.9, The shortest path problem

‘ spanning tree problem

3. Notes and source
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