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Preface

The purpose of this book is to provide a unified, insightful, and modern
treatment of linear optimization, that i, linear programming, network flow
problems, and discrete linear optimization. We discuss both classical top-
ics, as well as the state of the art. We give special attention to theory, but
also cover applications and present case studies. Our main objective is to
help the reader become a sophisticated practitioner of (linear) optimiza-
tion, or a researcher. More specifically, we wish to develep the ability to
formulate fairly complex optimization problems, provide an appreciation
of the main classes of problems that are practically solvable, describe the
available solution methods, and build an understanding o the qualitative
propertiss of the solutions they provide.

Qur general philosophy is that nsight matters most. For the sub-
ject matter of this book, this necessarily requires a geometric view. On
the other hand, problems are solved by algorithms, and these can only
be described algebraically. Hence, ou: focus is on the beautiful interplay
between algebra and geometry. We build understanding using figures and
geometric arguments, and then translste ideas into algebraic formulas and
algorithms. Given enough time, we expect that the reader will develop the
ability to pass from one domain to the other without much effort.

Another of our objectives is to becomprehensive, but economical. We
have made an effort to cover and highlight all of the principal ideas in this
field. However, we have not tried to e encyclopedic, or to discuss every
possible detail relevant to a particular algorithm. Our premise is that once
mature understanding of the basic principles is in place, further details can
he acquired by the reader with little additional effort.

Our last objective is to bring thereader up to date with respect to the
state of the art. This is especially true in our treatment of interior point
methods, large scale optimization, and the presentation of case studies that
stretch she limits of currently available algerithms and computers.

The success of any optimization methodology hinges on its ability to
deal with large and important problems. In that sense, the last chapter,
on the art of linear optimization, is a critical part of this book. It will, we
hope, convince the reader that progress on challenging problems requires
both problem specific insight, as wel as a deeper unde-standing of the
underlying theory.
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xii Preface

In any book dealing with linear programming, there are some impor-
tant chcices to be made regarding the treatment of the simplex method.
Traditionally, the simplex method is developed in terms of the full simplex
tableau, which tends to become the central topic. We have found that the
full simplex tableau is a useful device for working out numerical examples.
But other than that, we have tried not to overemphasize its importance.

Let us also mention another departure from many other textbooks.
Introductory treatments often focus on standard form problems, which is
sufficient for the purposes of the simplex method. On the other hand, this
approac cften leaves the reader wondering whether certain properties are
generally true, and can hinder the deeper understanding of the subject. We
depart from this tradition: we consider the general form of linear program-
ming problems and define key concepts (e.g., extreme points} within this
context. (Of course, when it comes to algorithms, we often have to special-
ize to the standard form.) In the same spirit, we separate the structural
understanding of linear pregramming from the particulars of the simplex
method. For example, we include a derivation of duality theory that does
not rely on the simplex method.

Finally, this book contains a treatment of several important topics
that are not commonly covered. These include a discussion of the col-
umn geometry and of the insights it provides into the efficiency of the
simplex method, the connection between duality and the pricing of finan-
cial assets, a unified view of delayed column generation and cutting plane
methods, stochastic programming and Benders decomposition, the auction
algorithm for the assignment problem, certain theoretical implications of
the ellipsoid algorithm, a thorough treatment of interior point methods,
and a whole chapter on the practice of linear optimization. There are
also several noteworthy topics that are covered in the exercises, such as
Leontief systems, strict complementarity, options pricing, von Neumann’s
algorithm, submodular function minimization, and bounds for a number of
integer programming problems.

Here is a chapter by chapter description of the book.

Chapter 1: Introduces the linear programming problem, together with
a number of examples, and provides some background material on linear
algebra.

Chapter 2: Deals with the basic geometric properties of polyhedra, focus-
ing on tae definition and the existence of extreme points, and emphasizing
the interplay betwen the geometric and the algebraic viewpoints.

Chapter 3: Contains more or less the classical material associated with the
simplex method, as well as a discussion of the column geometry. It starts
with a high-level and geometrically motivated derivation of the simplex
method. Tt then introduces the revised simplex method, and concludes
with the simplex tableau. The usual topics of Phase I and anticycling are

Preface xiii

also covered.

Chapter 4: It is a comprehensive treatment of linear programming du-
ality. The duality theorem is first obained as a corollary of the simplex
method. A more abstract detivation is also provided, based on the separat-
ing hyperplane theorem, which is developed from first principles. It ends
with a deeper look into the geometry of polyhedra.

Chapter 5: Discusses sensitivity analysis, that is, the dependence of so-
lutions and the optimal cost on the oroblem data, including parametric
programming. It also develops a characterization of dual optimal solutions
as subgradients of a suitably defined cptimal cost function.

Chapter 6: Presents the complementary ideas of delayed column gen-
eration and cutting planes. These methods are first developed at a high
level, and are then made concrete by discussing the cutting stock prob-
lem, Dantzig-Wolfe decomposition, stochastic programming, and Benders
decomposition.

Chapter 7: Provides a comprehensive review of the principal results and
methods for the different variants of the network flow problem. It contains
representatives from all major types of algorithms: primal descent (the
simplex method), dual ascent (the primal-dual method), and approximate
duat ascent {the auction algorithm). The focus is on the major algorithmic
ideas, rather than on the refinements that can lead to better complexity
estimates.

Chapter 8: Includes a discussion of complexity, a development of the el-
lipsoid method, and a proof of the polynomiality of linear programming. It
also discusses the equivalence of separation and optimization, and provides
examples where the ellipsoid algorithm can be used to derive polynomial
time results for problems involving an exponential number of constraints.

Chapter 9: Contains an overview of all major classes of interior point
methods, including affine scaling, potential reduction, and path following
(both primal and primal-dual) methods. It includes a discussion of the
underlying geometric ideas and compusational issues, as well as convergence
proofs and complexity analysis.

Chapter 10: Introduces integer programming formulations of discrete
optimization problems. [t provides a number of examples, as well as some
intuition as to what constitutes a “strong” formulation.

Chapter 11: Covers the major classes of integer programming algorithms,
including exact, methods (branch and bound, cutting planes, dynamic pro-
gramming), approximation algorithms, and heuristic methods (local search
and simulated annealing). ¥} also introduces a duality theory for integer
programming.

Chapter 12: Deals with the art in linear optimization, i.e., the process
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of modeling, exploiting problem structure, and fine tuning of optimization
algorithms. We discuss the relative performance of interior point meth-
ods and different veriants of the simplex method, in a realistic large scale
setting. We also give some indication of the size of problems that can be
currently solved.

An important theme that runs through several chapters is the model-
ing, complexity, and algorithms for problems with an exponential number
constraints. We discuss modeling in Section 10.3, complexity in Section 8.5,
algorithmic approaches in Chapter 6 and 8.5, and we conclude with a case
study in Section 12.5.

There is a fair number of exercises that are given at the end of each
chapter. Most of them are intended to deepen the understanding of the
subject, or to explore extensions of the theory in the text, as opposed
to routine drills. However, several numerical exercises are also included.
Starred exercises are supposed to be fairly hard. A solutions manual for
qualified instructors can be obtained from the authors.

We have made a special effort to keep the text as modular as possible,
allowing the reader to omit certain topics without loss of continuity. For
exampie, much of the material in Chapters 5 and 6 is rarely used in the
rest of the book. Furthermore, in Chapter 7 (on network flow problems), a
reader who has gone through the problem formulation (Sections 7.1-7.2) can
immediately move to any later section in that chapter. Also, the interior
point algorithms of Chapter 9 are not used later, with the exception of
some of the applications in Chapter 12. Even within the core chapters
(Chapters 1-4}, there are many sections that can be skipped during a first
reading. Some sections have been marked with a star indicating that they
contain somewhat more advanced material that is not usually covered in
an introductory course.

The book was developed while we took turns teaching a first-year
graduate course at M.I.T., for students in engineering and operations re-
search. The only prerequisite is a working knowledge of linear algebra. In
fact, it is only a small subset of linear algebra that is needed (e.g., the
concepts of subspaces, linear independence, and the rark of a matrix).
However, these elementary tools are sometimes used in subtle ways, and
some mathematical maturity on the part of the reader can lead to a better
appreciation of the subject.

The book can be used to teach several different. types of courses. The
first two suggestions below are one-semester variants that we have tried at
M.LT., bus there are also other meaningful alternatives, depending on the
s;udents’ background and the course’s objectives.

(a) Cover most of Chapters 1-7, and if time permits, cover a small number
of topics from Chapters 9-12.

(b) An alternative could be the same as above, except that interior point
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algorithms (Chapter 9) are fully covered, replacing network flow prob-
lems (Chapter 7).

(c) A broad overview course can be constructed by concentrating on the
easier material in most of the chapters. The core of such a course
could consist of Chapter 1, Sections 2.1-2.4, 3.1-3.5, 4.1-4.3, 5.1, 7.1-
7.3, 91, 10.1, some of the easier material in Chapter 11, and an
application from Chapter 12.

(d) Finally, the book is also suitable for a half-course on integer pro-
gramming, based on parts of Chapters 1 and 8, as well as Chapters
10-12.

There is a truly large literature on linear optimization, and we make
nc attempt to provide a comprehensive bibliography. To a great extent, the
sources that we cite are either original references of historical interest, or
recent texts where additional informaticn can be found. For those topics,
however, that touch upon current research, we also provide pointers to
recent jourral articles.

We would like to express our thanks to a number of individuals. We
ars grateful to our colleagues Dimitri Bertsekas and Rob Freund, for many
discussions on the subjects in this boox, as well as for reading parts of
the manuscript. Several of our students, colleagues, and friends have con-
tributed by reading parts of tke manuscript, providing critical comments,
and working on the exercises: Jim Christodouleas, Thalia Chryssikou,
Austin Frakt, David Gamarnik. Leon Hsu, Spyros Kontogiorgis, Peter Mar-
bach, Gina Mourtzinou, Yannis Paschalidis, Georgia Perakis, Lakis Poly-
menakos, Jay Sethuraman, Sarah Stock, Paul Tseng, and Ben Van Roy.
But mostly, we are grateful to our families for their patience, love, and
support in the course of this long project.

Dimitris Bertsimas
John N. Tsitsiklis
Cambridge, January 1997
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2 Chap.1  Introduction

In this chapter, we introduce linear programming, the problem of mini-
mizing a linear cost function subject to linear equality and inequality con-
straints. We consider a few equivalent forms and then present a number
of examples to illustrate the applicability of linear programming to a wide
variety of contexts. We also solve a few simple examples and obtain some
basic geometric intuition on the nature of the problem. The chapter ends
with a review of linear algebra and of the conventions used in describing
the computational requirements (operation count) of algorithms.

1.1 Variants of the linear programming
problem

In this section, we pose the linear programming problem, discuss a few
special forms that it takes, and establish some standard notation that we
will be using. Rather than starting abstractly, we first state a concrete
example, which is meant to facilitate understanding of the formal definition
that will follow. The example we give is devoid of any interpretation. Later
on, in Section 1.2, we will have ample opportunity to develop examples that
arise in practical settings.

Example 1.1 The following is a linear programming problem:

minimize 2x; — 3 + 4z3
subject to = + X2 + x4 22
3xy — x3 =35
r3 + g =3
! >0
T3 <0

Here 1, x2, €3, and x4 are variables whose values are to be chosen to minimize
the linear cost function 2z, — 3 + 4Tz, subject to a set of linear equality and
inequality constraints. Some of these constraints, such asz; > O and z3 € 0,
amount to simple restrictions on the sign of certain variables. The remaining
constraints are of the form a'x < b, a’x = b, or a’x > b, wherea = (a1, a2, a3, G4)
is a given vector', x = {1, T2, 3, T4) is the vector of decision variables, a'x is
their inner product 23:1 a:x:, and b is a given scalar. For example, in the first
constraint, we have a= (1,1,0,1) and b = 2.

We now generalize. In a general linear programming problem, we are
given a cost vector ¢ = {c1,...,¢x) and we seek to minimize a linear cost
function ¢'x = ¥, ¢;z; over all n-dimensional vectors x = (T1,--5%n),

1 Ag discussed further in Section 1.5, all vectors are assumed to be column vectors, and
are treated as such in matrix-vector products. Row vectors are indicated as transposes
of (column) vectors. However, whenever we refer to a vector x inside the text, we
use the more economical notation x = (z1,...,%n), even though x is a column vector.
The readet who is unfamiliar with our notation may wish to consult Section 1.5 before
continuing

Sec. 1.1  Variants of the linear programming problem 3

sub’ect to a set of lineer equality and inequality constraints. In particular,
let M1, Ma, My be some finite index sets, and suppose that for every ¢ in
any one of these sets, we are given an n-dimensional vector a; and a scalar
b;, that will be used to form the ith constraint. Let also N; and Ny be
subsets of {1,...,n} that indicate which variables z, are constrained to be
nonnegative or nonpositive, respectively. We then consider the problem

minimize c¢'x

subject to alx > b, 1€ M,
a;x S bi\ i€ Mg, (1 1
a;x = bi‘ i€ Mg, ) )
Ty 2 01 .7 S Nla
Tj < 0, j < NQ.
The variables x,,..., T, are called decision variables, and a vector x sat-

isfying all of the constraints is called a fezsible solution or feasible vector.
The set of all feasible solutions is called the feasible sel or feasible region.
If 7 is in neither N7 nor Ng, there are no restrictions on the sign of z;, in
which case we say that «; is a free or unrestricted variable. The function
¢'x is called the objective function or cost function. A feasible solution x*
that minimizes the objective function (that is, ¢’x* < ¢’x, for all feasible x)
is called an optimal feasible solution or, simply, an optimal solution. The
value of c¢’x* is then called the optimal cost. On the other hand, if for
every real number K we can find a feasible solution x whose cost is less
than K, we say that the optimal cost is —oo or that the cost is unbounded
below. {Sometimes, we will abuse terminology and say that the problem is
unbounded.} We finally note that there is no need to study maximization
problems separately, because maximizing ¢'x is equivalent to minimizing
the linear cost function —c'x.

An equality constraint ajx = b; is equivalent to the two constraints
a;x < b; and ajx > b;. In addition, any constraint of the form a/x < b; can
be rewritten as (—a;)’x > —b;. Finally, constraints of the form ; > 0 or
x; < 0 are special cases of constraints of the form alx > b;, where a; is a
unit vector and b; = 0. We conclude that the feasible set in a general linear
programming problem can be expressed exclusively in terms of inequality
constraints of the form alx > b,. Suppose that there is a total of m such
constraints, indexed by i = 1,...,m, let b = (b1,...,by), and let A be the

m ¥ n matrix whose rows are the row vectors al,...,al,, that is,
— & —
a)
A= :
r
— al, —
. , .
Then, the constraints alx > b;, ¢t =1,...,m, can be expressed compactly

in the form Ax > b, and the linear programming problem can be written
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minimize ¢'x

1.2
subject to Ax > b. (1.2)

Inequaiities such as Ax > b will always be interpreted componentwise; that
is, for every i, the ith camponent of the vector Ax, which is ajx, is greater
than or equal .o the ith component b; of the vector b.

Example 1.2 The linear programming problem in Example 1.1 can be rewrt-
ten as

minimize 2x; — z2 + 4dr3
subject to -~z — T2 — x4 > —2
3xz2 — za z 8
— 3z2 + 3 > =5
£3 + 24 > 3
T 2 0
— X3 2 0,

which is of the same form as the problem (1.2), with ¢ =(2,-1,4,0),

-1 -1 0 -1
0 3 -1 0
0 -3 1 0
A=l o o 1 1|
1 0 0 0
0 0 -1 0
and b = (~2,5,-5,3,0,0).
Standard form problems
A linear programming problem of the form
minimize ¢'x
sybjectto Ax = b (1.3)
x>0

)

is said to be in standard form. We provide an interpretation of problems in
standard form. Suppose that x has dimension n and let A;,..., A, be the
columns of A. Then, the constraint Ax = b can be written in the form

f: Aifﬂi =h.
i=1

Intuitively, there are n available resource vectors Ag,..., A, end a target
vector b. We wish to “synthesize” the target vector b by using a non-
negative amount x; of each resource vector A;, while minimizing tlhe c_ost
3 on) cifty, Where ¢; is the unit cost of the ith resource. The following is a
more concrete example.

Sec. 1.1 Variants of the linear programming problem 5

Example 1.3 (The diet problem) Suppose that there are n different foods
and m different nutrients, and that we are given the following table with the
nutritional content of a unit of each food:

food1 -+ foodmn

nutrient 1 @11 e d1n

nutrient m @m1

Grrry

Let A be the m x n matrix with entries G;;. Note that the jth column A;
of this matrix represents the nutritional coutent of the jth food. Let b he a
vector with the requirements of an ideal diet or, equivalently, a specification of
the nutritional contents of an “ideal food.” We then interpret the standard form
problem as the problem of mixing nonnegative quantities «; of the available foods,
to synthesize the ideal food at minimal cost. In a variant of this problem, the
vector b specifies the minimal requirements of an adequate diet; in that case, the

constraints Ax = b are replaced by Ax > b, and the problem is not in standard
form.

Reduction to standard form

As argued earlier, any linear programming problem, including the standard
form problem (1.3), is a special case of the general form (1.1}. We now
argue that the converse is also true and that a general linear programming
problem can be transformed into an equivalent problem in standard form.
Here, when we say that the two problems are equivalent, we mean that given
a feasible solution to one problem, we can construct a feasible solution to
¥he other, with the same cost. In particular, the two problems have the
same optimal cost and given an optimal solution to one problem, we can
construct an optimal solution to the other. The problem transformation
we have in mind involves two steps:

(a) Elimination of free variables: Civen an unrestricted variable z; in a
problem in general form, we replace it by ] — z; , where =} and x;
are new variables on which we impose the sign constraints Cl?;r >0

and z; > 0. The underlying idea is that any real number can be
written as the difference of two nonnegative numbers.

(b) Elimination of inequality constraints: Given an inequality ccnstraint
of the form
n
Z oz < by,

=1
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we introduce a new variable s; and the standard form constraints

n
Zﬂ.{jﬂij +8; = bi,
j=1
&4 2 0.
Such a variable s; is called a slack variable. Similarly, an inequality
constraint E};l @i;z; > b; can be put in standard form by intro-
ducing a surplus variable s; and the constraints ZLI €T — 8§ =
bi, 84 2 0.
We conclude that a general problem can be brought into standard form
and, therefore, we only reed to develop methods that are capable of solving
standard form problems.
Example 1.4 The problem

minimize 2x1 + 413

subjectto x1 + 1z > 3
3z, + 222 = 14
T > 07
is equivalent to the standard form problem
minimize 2z; + 4m2+ — 4z,
subject to  x1 + 1:;' — xy; — x3 = 3
3z + 2o — Zz; =14

R
T1,%y,Ty , T3 = 0.

For example, given the feasible solution (x1,z2) = (6, —2) to the original prob-
lem, we obtain the feasible solution (z;, z'{,m;,m) = {6,0,2,1) to the standard
form problem, which has the same cost. Conversely, given the feasible solution
{(z1,2), 25 ,73) = (8,1,6,0) to the standard form problem, we obtain the feasible
solution (#1,x2) = (8, —5) to the original problem with the same cost.

In the sequel, we will often use the general form Ax > b to develop
the theory of linear programming. However, when it comes to algorithms,
and especially the simplex and interior point methods, we will be focusing
on the standard form Ax = b, x > 0, which is computationally more
convenient.

1.2 Examples of linear programming
problems

In this section, we discuss a number of examples of linear programming
probiems. One of our purposes is to indicate the vast range of situations to
which linear programming can be applied. Another purpose is to develop
some familiarity with the art of constructing mathematical formulations of
loosely defined optimization problems.

Sec. 1.2 Examples of linear programming problems T

A production problem

A firm produces n different goods nsing m different raw materials. Let b;,
i = 1,...,m, be the available amount of the ith raw material. The jth
good, j = 1,...,n, requires a,;; units of the ¢th material and results in a
revenue of ¢; per unit produced. The firm faces the problem of deciding
how much of each good to produce in order to maximize its total revenue.

In this example, the choice of the decision variables is simple. Let X,
7=1,...,n, be the amount of the jth good. Then, the problem facing the
firm can be formulated as follows:

maximize ¢z + -0 + CuZn
subject to  a;121 + -+ + ajpzy < by, i=1,...,m,
r; > 0, i=1...,n.

Production planning by a computer manufacturer

The example that we consider here is a problem that Digital Equipment
Corporation (DEC) had faced in tte fourth quarter of 1988, It ilustrates
the complexities and uncertainties of real world applications, as well as
the usefuiness of mathematical modeling for making important strategic
decisions.

In the second quarter of 1988, DEC introduced a new family of (single
CPU) computer systems and workstations: GP-1, GP-2, and GP-3, which
are general purpose computer systems with different memory, disk storage,
and exdansion capabilities, as well as WS-1 and WS-2, which are work-
stations. In Table 1.1, we list the models, the list prices, the average disk
usage per system, and the memory usage. For exambole, GP-1 uses fou-

(215§K memory beards, and 3 out of every 10 units are produced with a disk
rive.

System | Price | # disk drives | # 256K boards
GP-1 | $60,000 0.3 4

GP-2 | $40,000 T 2

GP-3 | $30,000 ¢ 2

WS-1 | $30,000 14 2

WS-2 | $15,000 ¢ 1

Table 1.1: Features of the five different DEC systems.

Shipments of this new family of products started in the third quarter
and ramped slowly during the fourth quarter. The following difficulties
were anticipated for the next quarter:
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(a) The in-house supplier of CPUs could provide at most 7,000 units, due
1o debugging problems.

(b} The supply of disk drives was uncertain and was estimated by the
manufacturer to be in the range of 3,000 to 7,000 units.

(¢) The supply of 256K memory boards was also limited in the range of
3,000 to 16,000 units.

On the demand side, the marketing department established that the
maximum demand for the first quarter of 1989 would be 1,800 for GP-1
systems, 300 for GP-3 systems, 3,800 systems for the whole GP family, and
3,200 systems for the WS family. Included in these projections were 500
orders for GP-2, 500 orders for WS-1, and 400 orders for WS-2 that had
already been received and had to be fulfilled in the next guarter.

In the previous quarters, in order to address the disk drive shortage,
DEC had produced GP-1, GP-3, and WS-2 with no disk drive (although
3 out of 10 customers for GP-1 systems wanted a disk drive), and GP-2,
WS-1 with one disk drive. We refer to this way of configuring the systems
as the constrained mode of production.

In addition, DEC could address the shortage of 256K memory boards
by using two alternative boards, instead of four 256K memory boards, in
the GP-1 system. DEC could provide 4,000 alternative boards for the next
quarter.

Tt was clear to the manufacturing staff that the problem had become
complex, as revenue, profitability, and customer satisfaction were at risk.
The following decisions needed to be made:

(a) The production plan for the first quarter of 1989.

(b) Concerning disk drive usage, should DEC continue to manufacture
products in the constrained mode, or should it plan to satisfy cus-
tomer preferences?

{¢) Concerning memory boards, should DEC use alternative memory
boards for its GP-1 systems?

(d) A final decision that had to be mace was related to tradeoffs be-
tween shortages of disk drives and of 256K memory boards. The
manufacturing staff would like to corcentrate their efforts on either
decreasing the shortage of disks or decreasing the shortage of 256K
memory boards. Hence, they would like to know which alternative
would have a larger effect on revenue.

In order to model the problem that DEC faced, we introduce variables
%1, Ty, T4, L4, T5, that represent the number (in thousands) of GP-1, GP-
2, GP-3, WS-1, and WS-2 systems, respectively, to be procuced in the
next quarter. Strictly speaking, since 1000z; stands for number of units, it
must be an integer. This can be accomplisied by truncating each z; after
the third decimal point; given the size of the demand and the size of the
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variables x;, this has a negligible effect and the integralify constraint ea
1000z; can be ignored.

DEC had to make two distinct decisions: whether to use the con-
strained mode of production regarling disk drive usage, and whether to
use alternative memory boards for the GP-1 system. As a result, there are
four different combinations of possible choices.

We first develop a model fcr the case where alternative memory
boards are not used and the constrained mode of production of disk drives
is selected. The problem can be formulated as follows:

maximize 60z, + 4Cx2 + 30x: + 30x4 + 1525 (total revenue)

subject to the following constraints

L+ T2+ T3+ T4+ X T (CPU availability)
4z + 279 + 223 + 2y + 75 < 8 (256K availability)
T + x4 <3 (disk drive availability)
o < 1.8  (max demand for GP-1)
I3 < 0.3 (max demand for GP-3)
Ty + X2 + T3 < 3.8 (max demand for GP)
24 + x5 < 32 (max demand for WS)
T2 > 0.5 {min demand for GP-2)
%4 > 0.5 (min demand for WS-1)
z; > 0.4  (min demand for WS-2)

T1,T2,L3,T4,725 2 0.

Notice that the objective furction is in millions of dollars. In some
respects, this is a pessimistic formulation, because the 256K memory and
disk drive availability were set to 8 and 3, respectively, which is the lowest
value in the range that was estimated. It is actually of interest to determine
the solution to this problem as the 256K memory availability ranges from
8 to 16, and the disk drive availability ranges from 3 to 7, because this
provides valuable informztion on the sensitivity of the optimal solution cn
availability. In another respect, the formulation is optimistic because, for
example, it assumes that the revenue from GP-1 systems is 60z, for any
x1 < 1.8, even though a demand for 1,800 GP-1 systems is not guaranteed.

In order to accommodate theother three choices that DEC had, some
of the problem constrainis have t¢ be modified, as follows. If we use the
unconstrained mode of production for disk drives, the constraint zo+xz4 <3
is replaced by

0.3z + Lixe + 1404 < 3.

Furthermore, if we wish to use altemative memory boards in GP-1 systems,
we replace the constraint 4x; + 22 + 23 + 2x4 + 25 < 8 by the two
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constraints

2"El < 4)
2re + 223 + 2044 15 < 8.

The four combinations of choices lead to four different linear programming
problems, each of which needs to be solved for a variety of parameter values
because, as discussed earlier, the right-hand side of some of the constraints
is only known to lie within a certain range. Methods for solving linear
programming problems, when certain parameters are allowed to vary, will
be studied in Chapter 5, where this case study is revisited.

Multiperiod planning of electric power capacity

A state wants to plan its electricity capacity for the next 7" years. The
state nas a forecast of di megawatts, presumed accurate, of the demand
for electricity during year £ = 1,...,T. The existing capacity, which is in
oil-fired plants, that will not be retired anc will be available during year
¢, is e:. There are two alternatives for expanding electric capacity: coal-
fired or nuclear power plants. There is a capital cost of ¢; per megawatt
of coal-fired capacity that becomes operational at the beginning of year .
The corresponding capital cost for nuclear power plants is n,. For various
political and safety reasons, it has been decided that nc more than 20%
of the total capacity should ever be nuclear. Coal plants last for 20 years,
while nuclear plants last ‘or 15 years. A least cost capacity expansion plan
is desired.

The first step in formulating this problem as a linear programming
problem is to define the decision variables. Let x; and %, be the amount
of coal (respectively, nuclear) capacity brought on line at the beginning
of year t. Let w; and z; be the total coal (respectively, nuclear) capacity
available in year ¢. The cost of a capacity expansion plan is therefore,

T
Z(C;:L't + et :l .
t=1

Since coal-fired plants last for 20 years, we have

t

We = Z g, t=l,....T.

s=max{1,t—19}
Similarly, for nuclear power plants,

3

= Y. ¥, i=1,...T

s=max{1,t—14}
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Since the available capacity must meet the forecasted demand, we require
we + 2z + e > d, t=1,...,T.

Finally, since no more than 20% of the total capacity should ever be nuclear,

we have 2

—_— < (.2,
we + 2 + ey

which can be written as
0.82: — 021{)‘: S 0.261.

Summarizing, the capacity expansicn problem is as fol.ows:

T
minimize Z(ctxt + 1)
t=1
i
subject to  wy — Z zs =0, t=1,...,T,
s=max{1,t-19}
¢
- Y w=0  t=l...T,
s=max{1,t—-14}
we + 2¢ > dy —ey, t=1,...,T,
0.82; — 0.2w; < 0.2e;, t=1,...,T,
T, Yy We, 2 > 0, t=1,...,T.

We note that this formulation is not entirely realistic, because it disregards
certain economies of scale that may favor larger plants, However, it can
provide a ballpark estimate of the t-ue cost.

A scheduling problem

In the previous examples, the choize of the decision variables was fairly
straightforward. We now discuss an example where this choice is less obvi-
ous.

A hospital wants to make a weekly night shift (12pm-8am) schedule
for its nurses. The demand for nurses for the night shift on day § is an
integer d;, j = 1,...,7. Every nurse works 5 days in a row on the night
shift. The problem is to find the minimal number of nurses the hospital
needs to hire.

One could try using a decisin variable y; equal to the number of
nurses that work on day j. With ths definition, however, we would not be
able to capture the constraint that every nurse works & days in a row. For
this reason, we choose the decision variables differently, and define z; as



xew'uoneziwndo Jeaul|

12 Chap. 1  Introduction

the number of nurses starting their week on day j. (For example, a nurse
whose week starts on day 5 will work days 5,6,7,1,2.) We then have the
following problem formulation:

minimize Ty + X2 + T3 + T2+ 25 + Ts + T7
subject to T + x4 + x5 + 26 + 27 2 di
T + To + x5 + xs + T7 2 do
T, + o + X3 + x6 + x7 2 d3
1 + X2 + 33 + 24 + zy > dy
Ty + ¥z + Ty + T4+ Ls > ds
Ty + T3 + T4 + Tz + Ts > dy
T3 + T4 + &5 + T5 + 27 = dy

z; >0, z; integer.

This would be a linear programming problem, except for the constraint that
each z; must be an integer, and we actually have a linear inieger program-
ming problem. One way of dealing with this issue is to ignore (“relax™)
the integrality constraints and obtain the so-called linear programming re-
lazation of the original problem. Because the linear programming problem
has fewer constraints, and therefore more options, the optima. cost will be
less than or equal to the optimal cost of the original problem. If the optimal
solution to the linear programming relaxation happens to be integer, then
it is alsc an optimal solution to the original problem. If it is not integer, we
ean round each z; upwards, thus obtaining a feasible, but nct necessarily
optimal, solution to the original problem. Tt turns out that for this partic-
ular problem, an optimal solution can be found without too much effort.
However, this is the exception rather than the rule: finding optimal solu-
tions to general integer programming problems is typically difficult; some
methods will be discussed in Chapter 11.

Choosing paths in a communication network

Consider a communicaiion network consisting of n nodes. Nodes are con-
nected by communication links. A link allowing one-way transmission from
node i to node j is described by an ordered pair (i, j). Let A be the set
of all links. We assume that each link (i,7) € A can carry up to u,; bits
per second. There is a positive charge ¢;; per bit transmitted along that
link. Each node k generates data, at the rate of B bits per second, that
have to be transmitted to node £, either through a direct link (k, £) or by
tracing a sequence of links. The problem is to choose paths along which
all data reach their intended destinations, while minimizing the total cost.
We allow the data with the same origin and destination to be split and be
transmitted along different paths.

In order to formulate this problem as a linear programming problem,
we introduce variables rf indicating the amount of data with origin k and
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destination ¢ that traverse link (4, 7). Let
bee if i =k,
b= ¢ —bFL i i =,
0. otherwise.

Thus, b¥ is the net inflow at node ¢, fom outside the network, of data with
origin k and destination £. We then have the following formulation:

n T
o ke
minimize Cij Ty

(5.5)€A k=1 £=1

subject to Z aci-“f‘— Z x?f:bfg, i,k £=1,...,n,
{il(z,5)eA} {70 Hedr
ki3 K
37>k < ay, (4,4) € A,
k=1 {=1
x>0, (G,Ned ki=1,...,n

The first constraint is a flow conservation constraint at node i for data with
origin & and destination £. The expression

ke
> T
{il(i.g)eA}
represents the amount of data with crigin and destination k and £, respec-
tively, that leave node i along some link. The expression

>
{il(7.i)z.A}
represents the amount of data with the same origin and destination that
enter node i through some link. Fnally, b is the net amount of such
data that enter node i from outside the network. The second constraint
expresses the requirement that the total traffic through a link (i, j} cannot
exceed the link’s capacity.

This problem is known as the multicommodity flow problem, with the
traffic corresponding to each origin-lestination pair viewed as a different
commodity. A mathematically similar problem arises when we consider a
transportation company that wishes to transport several commodities from
their origins to their destinations through a network. There is a version
of this problem, known as the minimum cost networt flow problem, in
which we do not distinguish between different commodities. Instead, we
are given the amount b; of external supply or demand at each node 4, and
the objective is to transport material from the supply nodes to the demand
nodes, at minimum cost. The netwark flow problem, which is the subject
of Chapter 7, contains as special cases some important problers such as
the shortest path problem, the maximum flow problem, and the assignment
problerr.
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Pattern classification

We are given m examples of objects and for each one, say the ith one, a
description of its features in terms of an n-dimensional vector a;. Objects
belong to one of two classes, and for each example we are told the class
that it belongs to.

More concretely, suppose that each object is an image of an apple
or an orange (these are our two classes). In this context, we can use a
three-dimensional feature vector a; to summarize the contents of the ith
image. The three components of a; (the features) could be the ellipticity
of the object, the length of its stem, and its color, as measured in some
scale. We are interested in designing a classifier which, given a new object
(other than the originally available examples), will figure out whether it is
an image of an apple or of an orange.

A lineer classifier is defined in terms of an n-dimensional vector x
and a scalar 7,1, and operates as follows. Given a new object with feature
vector a, the classifier declares it to be an object of the first class if

a'x > Tpy1,

and of the second class if
a'x < Trtl-

In words, a linear classifier makes decisions on the basis of a linear combina-
tion of the different features. Our objective is to use the available examples
in order to design a “good” linear classifier.

There are many ways of approaching this problem, but a reasonable
starting point could be the requirement that the classifier must give the
correct answer for each one of the available examples. Let 5 be the set of
examples of the first class. We are then looking for some x and x,; that
satisfy the constraints

aAjxX > T+, i€S,
ix<:cn+1, 1 §§S

Note that the second set of constraints invelves a strict inequality and is
no; quite of the form arising in linear programming. This issue can be
bypassed by observing that if some choice of x and z,4 satisfies all of
the above constraints, then there exists some other choice {obtained by
multiplying x and z,,, by a suitably large positive scalar) that satisfies

alx > z,41, i€ S,

:
;xanH—l, 1¢S

We conclude that the search for a linear classifier consistent with all avail-
able examples is a problem of finding a feasible solution to a linear pro-
gramming problem.
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1.3 Piecewise linear convex objective
functions

All of the examples in the preceding section involved a linear objective
function. However, there is an important class of optimization problems
with a nonlinear objective function that can be cast as linear programming
problems; these are examined next.

We first need some definitions:

e T oo

%@&‘}“;{ ﬁmetzoﬂ f R > R is called convex Jffor every X,y € R,
ﬁ§§§§§§§”d

;TR

;‘; .

g{b) A functzon f R R is called concave if for every x,y € R",
a1 and everyA € [0,1], we have

";éfi“i?’ C :
‘3‘;;5,; ' (,\,x+(1-)\)y)2Af(x)+(i—)k)f(y}:

Note that if x and y are vectors in R™ and if A ranges in [0, 1], then
points of the form Ax 4 (1 — A)y belong to the line segment joining x
and y. The definition of a convex function refers to the values of f, as
its argument traces this segment. If f were linear, the inequality in part
(a) of the definition would hold with equality. The inequality therefore
means that when we restrict attention to such a segment, the graph of the
function lies no higher than the graph of a corresponding linear function;
see Figure 1.1(a).

It is easily seen that a function f is convex if and only if the function
—f is concave. Note that a function of the form f(x) = ayp + Z?:] ;T
where ag, ..., a, are scalars, called an gffine function, is both convex and
concave. (It turns out that affine functions are the only functions that are
both convex and concave) Convex (as well as concave) functions play a
central role in optimization.

We say that a vector x is a local minimum of f if f(x) < f(y) for all y
in the vicinity of x. We also say thet x is a global minimum if F(x) < fly)
for all y. A convex function cannot have local minima that fail to be global
minima (see Figure 1.1), and this property is of great help in designing
efficient optimization algorithms.

Let e;,..., ¢y, be vectors in R*, let dy, .. ., d,p, be scalars, and consider
the function f : R” — R defined by

f(x) = (Jrax (elx +d;)

. )
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AFG) + (1L - DF(E)

‘Ef('y) SR b) N

fi:x.

8

x  Ax+ {1 -Ay ¥

(a) (c)

Figure 1.1: (a) Hlustration of the definition of a convex function.
(b) A concave function. (c} A function that is neither convex nor
concave; note that A4 is a local, but not global, minimum.

[see Figure 1.2(a)]. Such a function is convex, as a consequence of the
following result.

Theoremll Let fl,, fm : R® — R be convex functions. Then,
the function f defined by f(x) = max;.1, _m fi(x) is also convex.

Proof. Let x,y € R" and let A € [0,1]. We have

It

Fx+(1-Ny) max f; (Ax+ (1= Ny)

i=1,...,

< Jnax (Afi(x] + (1= Nfiy))
< max Afi(x) + max (1-2)fily)
= M +(1-X/) 1

A function of the form max;—; . . (c;x+d;) is called a piecewise linear
conver function. A simple example is the absolute value functicn defined by
f(z) = {z| = max{z, —z}. Asillustrated in Figure 1.2(b), a piecewise linear
convex function can be nsed to approximate a general convex function.

We now consider a generalization of linear programming, where the
objective function is piecewise linear and convex rather than linear:

minimize ma (cix + d;)
e o

i=1,..,

subject to Ax > b.
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3% +dy

x

(a) (b)

Sy

Figure 1.2: {a) A piecewise linear convex function of a single
variable. {b) An approximation of a convex function by a piecewise
linear convex functior.

Note that max;_; . _m(cix + d;) is equal to the smallest number z that
satisfies z > c{x + d; for &ll ¢. For this reason, the optimization problem
under eonsideration is equivalent to the linear programming problem
minimize z
subject to z > ex+d, i=1,...,m,
Ax > b,

where the decision variables are z and x.

To summarize, linear programriing can be used to solve problems with
piecewise linear convex cost functiors, and the latter class of functions can
be used as an approximation of mcre general convex cost functions. On
the other hand, such a piecewise linear approximation is not always a good
idea because it can turn a smooth furction into a nonsmooth one (piecewisc
linear functions have discontinuous derivatives).

We finally note that if we are given a constraint of the form f(x) < #
where f is the piecewise linear convex function f(x) = max;— . (£x+g:).
such a constraint can be rewritten as

fix +g: <h, i=1,...,m,

and linear programming is again apolicable.

Problems involving absolute values

Consider a problem of the form
T
minimize Z izl
i=1

subject to Ax > b,
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where x = (#1,.--,%n), and where the cost coefficients ¢; are assumed
to be nonnegative. The cost criterion, being the sum of the piecewise
linear convex functions c;|z;| is easily shown to be piecewise linear and
convex (Exercise 1.2). However, expressing this cost criterion in the form
max;(cjx + d;) is a bit involved, and a more direct route is preferable.
We observe that |z:| is the smallest number 2; that satisfies z; < z; and
—x; < #;, and we obtain the linear programming formulation

n
minimize E CiZ;
i=1

subject to Ax > b
Ti S Ziy 1= 11 » 1
-z; < %, i=1...,n

An alternative method for dealing with absolute values is to introduce
new variables x}, =7, constrained to be nonnegative, and let z; = z -z
(Our intention is to have x; = z§ or z; = —z; , depending on whether z; is
positive or negative.) We then replace every occurrence of |z;| with z7
and obtain the alternative formulation

ki3
minimize Z a(zf +z7)

i=1
subject to Axt —Ax~ >b
xt,x™ >0,
where xt = (z7,...,z}) and x~ = (z7,..., 2, ).

The relations ¢; = z7 —z;, ¥ > 0, 27 > 0, are not enough to
guarantee that |z;| = =7 + =], and the validity of this reformulation may
not be entirely obvious. Let us assume for simplicity that ¢ > 0 for all
i. At an optimal solution to the reformulated problem, and for each i, we
must have either z} = 0 or 2] = 0, because otherwise we could reduce both
xj and z; by the same amount and preserve feasibility, while reducing the
cost, in contradiction of optimality. Having guaranteed that either zf =0
or x =0, the desired relation |z;| = ] + z; now follows.

The formal correctness of the two reformulations that have been pre-
sented here, and in a somewhat more general setting, is the subject of
Exercise 1.5. We also note that the nonnegativity assumption on the cost
coefficients ¢; is crucial because, otherwise, the cost criterion is nonconvex,

Example 1.5 Consider the problem

minimize 2{x1| + 22
subject to = + 22 > 4.
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Our first reformulation yields

minimize 2z + x3
subject to  z + x2
Ty

-1

INIA IV
R

while the second yields

minimize 2zfr + 2z] + x2

subject to z — z; + 72 > 4
zF >0
xr = 0.

We now continue with some applications involving piecewise linear
convex objective functions.

Data fitting

We are given m data points of the form (a;, b;}, ¢ = 1,...,m, where a;, € R"
and b; € R, and wish to build a model that predicss the value of the variable
b from knowledge of the vector a. In such a situation, one often uses a linear
model of the form & = a’x, where x is a parameter vector to be determined.
Given a particular parameter vector x, the residual, or prediction error, at
the ith data point is defined as |b; —ajx|. Given a choice between alternative
models, one should choose a model that “explains” the available data as
best as possible, i.e., a model that results in small residuals.

One possibility is to minimize the largest residual. This is the problem
of minimizing

max Ibl - aixh
T

with respect to x, subject to no constraints. Nots that we are dealing here
with a piecewise linear convex cost criterion. The following is an equivalent
linear programming formulation:

minimize 2
subject to b, —aix < z, i=1,...,m,
—bh+ax<z, i=1,...,m,
the decision variables being z and x.
In an alternative formulation, we could adopt the cost criterion

m

> 16 —alx].

i=1
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Since |b; — a}x| is the smallest number z; that satisfies b; —ajx < z; and
—b; + ajx < z;, we cbtain the formulation

minimize 2t 4 zZm
subject to b —alx <z, i=1,...,m,
— bi+ax <z, i=1,...,m.

In practice, one may wish to use the quadratic cost criterion S bi—
ax)?, in order to obtain a “least squares fit.” This is a problem which is
easier than linear programming; it can be solved using calculus methods,
but its discussion is outside the scope of this book.

Optimal control of linear systems

Consider a dynamical system that evolves according to a model of the form

x(t +1) = Ax(t) + Bu(?),
(1) = e'x(1).

Here x(t) is the state of the system at time ¢, y(t) is the system output,
assumed scalar, and u{f) is a contrel vector that we are free to choose
subject to linear constraints of the form Du(t) < d [these might include
saturation constraints, i.e., hard bounds on the magnitude of each com-
ponent of u{t)]. To mention some possible applications, this could be a
model of an airplans, an engine, an electrical circuit, a mechanical sys.em,
a manufacturing system, or even a model of economic growth. We are also
given the initial state x(0). In one possible problem, we are to choose the
values of the control variables u(0), ..., u(T — 1) to drive the state x(T) to
a target state, assumed for simplicity to be zero. In addition to zeroing the
state, it is often desirable to keep the magnitude of the output small at all
intermediate times, and we may wish te minimize

mex by ()]

We then obtain the following linear programming problem:

minimize z

subject to —z < y(t) < 2, i=1,...,T—1,
x(t + 1) = Ax(t) + Bu(t), t=0,...,T—1,
w(t} = ¢'x(t), t=1,...,T—1,
Du(t) < d, t=0,..,T—1,
x(T) =0,

x(0) = given.
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Additional linear constraints on the state vectors x(t), or a more general
piecewise linear convex cost function of the state and the control, can also
be incorporated.

Rocket control

Consider a rocket that travels along a straight path. Let z;, v, and a; be
the position, velocity, and acceleration, respectively, of the rocket at time
t. By discretizing time and by taking the time increment to be unity, we
obtain an approximate discrete-time model of the form

Trp1 = Ty + U,

Y1 = P+ Gy

We assume that the acceleration a; is under our control, as it is determined
by the rocket thrust. In a rough model, the magnitude |a,| of the accelera-
tion can be assumed to be proportional to the rate of fuel consumption at
time t.

Suppose that the rocket is initially at rest ab the origin, that is, £ = 0
and vy = 0. We wish the rocket to take off and “land softly” at unit dis-
tance from the origin after T time umits, that is, z+ = 1 and vr = 0.
Furthermore, we wish to accomplish this in an economical fashion. One
possibility is to minimize the total fuel Zz:ol ja:| spent subject to the pre-
ceding constraints. Alternatively, we may wish to minimize the maximum
thrust required, which is max, |a;|. Under either alternative, the problem
can be formulated as a linesr programming problem (Exercise 1.6).

1.4 Graphical representation and solution

In this section, we consider a few simple examples that provide useful geo-
metric insights into the nature of linear programming problems. Our first
example involves the graphical solution of a linear programming problem
with two variables.

Example 1.6 Consider the problem

minimize -z — T2

subject to x + 2x2 < 3
2z + 32 £ 3
21,22 > 0.

The feasible set is the shaded region in Figure 1.3. In order to find an cptimal
solution, we proceed as follows. For any given scalar z, we consider the set of
all points whose cost ¢'x is equal to z; this is the line described by the equation
—x; — 23 = z. Note that this line is perpendicular to the vector ¢ = (-1, —1).
Different values of z lead to different lines, all of them parallel to each other. In



xew'uoneziwndo Jeaul|

22 Chap. 1  Introduction

241y < 3

Figure 1.3: Graphical solution of the problem in Example 1.6.

particular, increasing z corresponds to moving the line z = —z; — 2 along the
direction of the vector ¢. Since we are interested in minimizing z, we would like
to move the line as much as possible in the direction of —c, as long as we do not
leave the feasible region. The best we can do is z = -2 (see Figure 1.3), and the
vector x = (1, 1) is an optimal solution. Note that this is a corner of the feasible
set. (The concept of a “corner” will be defined formally in Chapter 2.)

For a problem in three dimensions, the same approach can be used
except that the set of points with the same value of ¢'x is a plane, instead of
a line. This plane is again perpendicular to the vector ¢, and the objective
is to slide this plane as much as possible in the direction of —c¢, as long as
we do not leave the feasible set.

Example 1.7 Suppose that the feasible set is the unit cube, described by the
constraints 0 < z; <1, 4 = 1,23, and that ¢ = {—1,—1, —1). Then, the vector
x = (1,1,1) is an optimal solution. Once more, the optimal solution happens to
be a corner of the feasible set (Figure 1.4).
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Figure 1.4: The three-dimensioral linear programming problem
in Example 1.7.

In both of tte preceding examples, the feasible set is bounded (does
not extend to infinity), and the problem has a unique optimal solution.
This is not always the case and we have some additional possibilities that
are illustrated by the example that follows.

Example 1.8 Consider the feasible set in ®? definad by the constraints

—rtzz <1
Xy 2 ]
T2 2 O,

which is shown in Figure 1.5.

{a) For the cost vector ¢ = (1,1), it is clear that x = (0,0) is the unique
optimal solution.

(b) For the cost vector ¢ = (1,0), there are multiple optimal solutions, namely,
every vector x of the form x = (0,22), with 0 < 22 < 1, is optimal. Note
that the set of optimal solutions is bounded.

(¢) For the cost vector ¢ = (0,1), there are multiple optimal solutions, nemeiy,
every vector x of the form x = (x1,0), with z; > 0, is optimal. In this case,
the set of optimal solutions is unbeunded (contains vectors of arbitrarily
large magnitude).

{d) Consider the cost vector ¢ = (—1, —1). For any feasible solution (z1,x,), we
can always produce another feasible solution with less cost, by increasing
the value of #1. Therefore, no feasible solution is optimal. Furthermore,
by considering vectors (i, «2) with ever increasing values of 1 and #;, we
can obtain a sequence of feasible solutions whose cost converges to —oo.
‘We therefore cay that the optimal cost is —oc.

(e} If we impose an additional constraint of the form z; + 22 < —2, it is evident
that no feasible solution exists.
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Figure 1.5: The feasible set in Example 1.8 For each choice of
¢, an optimal sclution is obtained by moving as much as possible
in the direction of —c.

To summarize the insights obtained from Example 1.8, we have the
following possibilities:

{a) There exists a unique optimal solution.

(b} There exist multiple optimal solutions; in this case, the set of optimal
solutions can be either bounded or unbounded.

{¢) The optimal cost is —co, and no feasible sclution is optimal.
(d) The feasible set is empty.

In principle, there is an additional possibility: an optimal solution
does not exist even though the problem is feasible and the optimal cost is
not —oo; this is the case, for example, in the problem of minimizing 1/x
subject to = > 0 (for every feasible solution, there exists another with less
cost, but the optimal cost is not —co). We will see later in this book that
this possibility never arises in linear programiming.

In the examples that we have considered, if the problem has at least
one optimal solution, then an optimal solution can be found among the
corners of the feasible set. In Chapter 2, we will show that this is a general
feature of linear programming problems, as long as the feasible set has at
least one corner.

Sec. 1.4  Graphical representation and solution 25

Visualizing standard form problems

We now discuss a method that allows us to visualize standard form prcblems
even if the dimension n of the vector x is greater than three. The reason
for wishing to do so is that when n < 3, the feasible set of a standard
form problem does not have much variety and does not provide enough
insight into the general case. (In contrast, if the feasible set is described by
constraints of the form Ax > b, enough variety is obtained even if x has
dimension three.}

Suppose that we have a standard form problem, and that the matrix
A has dimensions m x n. In particular, the decision vector x is of dimension
n and we have m equality constraints. We assume that m < n and that
the constraints Ax = b force x to lie on an (n — m)-dimensional set.
(Intuitively, each constraint removes one of the “degrees of freedom” of x.)
If we “stand” on that (n —m)-dimensional set and ignore the m dimensions
orthogonal to it, the feasible set is only constrained by the linear inequality
constraints z; > 0, ¢ = 1,...,n. In particular, if n — m = 2, the feasible
set can be drawn as a two-dimensional set defined by n linear inequality
constraints.

To illustrate this approach, consider the feasible set in ®* defined by
the constraints x4 x3 +x3 = 1 and x|, 2o, 23 > 0 [Figure 1.6(a)], and note
that n = 3 and m = 1. If we stand on the plane defined by the constraint
T7 + x5+ x3 = 1, then the feasible se: has the appearance of a triangle in
two-dimensional space. Furthermore, each edge of the triangle corresponds
to one of the constraints z,, 2,3 > 0; see Figure 1.6(b).

LY

T3

(a) (®)

Figure 1.6: (a) An n-dimensional view of the feasible set. {b)
An (n — m)-dimensional view of the same set.
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1.5 Linear algebra background and notation

This section provides a summary of the main notational conventions that
we will be employing. It also contains a brief review of those results from
linear algebra that are used in the sequel.

Set theoretic notation

If §is a set and « is an element of S, we write x € §. A set car be
specified in the formn S = {x | = satisfies P}, as the set of all elements
having property P. The cardinality of a finite set § is denoted by |S|. The
union of two sets § and T is denoted by S U T, and their intersection by
SNT. Weuse S\T to denote the set of all elements of § that do not belong
to T'. The notation § C T means that S is a subset of T, i.e., every element
of S is also an element of T'; in particular, S could be equal to T. Jf in
addition § # T, we say that S'is a proper subset o T. We use ¢} to denote
the empty set. The symbols 3 and V have the meanings “there exists” and
“for all,” respectively.

We use R to denote the set of real numbers. For any real numbers o
and b, we define the closed and open intervals [a, b] and (a, b), respectively,
by

et ={zeR|a<z<b},

and

(g,0)={recR|e<z<b}

Vectors and matrices

A matriz of dimensions m x n is an array of real numbers a;;:

app a1z Qin

az1 (a2 G2n
A= .

m1 Gm2 * Qmn

Matrices will be always denoted by upper case boldface characters. If A
is a matrix, we use the notation a;; or [Al];; to refer to its (1, f)th entry.
A row vector is a matrix with m = 1 and a column vector is a matrix
with n = 1. The word wector will always mean column vector unless the
contrary is explicitly stated. Vectors will be usually denoted by lower case
boldface characters. We use the notation R" to indicate the set of all
n-dimensional vectors. For any vector x € R™, we use =1,72,...,%, to
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indicate its components. Thus, ; R

I x.
T3
X =
Tn L
The more economical notation x = (z1,%2,...,2,) will also be used even

if we are referring to column vectors. We use 0 to denote the vector with
all components equal to zero. The ith unit vector e; is the vector with all
components equal to zero except for the ith component which is equal to
one.

The transpose A’ of an m x n matrix A is the n x m matrix

211 421 - C&m
12 a2 - G,
r_ .
A= ) . ;
A Gan  *r GQpp

that is, [A"];; = [A ;. Similarly, if x is a vector in R, its transpose x’ is
the row vector with the same entries.
If x and y are two vectors in 8™, then

i3
X'y=yx= Zmiyi.

i=1
This quantity is called the inner product of x and y. Two vectors are
called orthogonal if their inner product is zero. Note that x'x > 0 for every
vector X, with equality holding if and only if x = 0. The expression v/x'x
is the Buclidean norm of x and is denoted by ||x||. The Schuartz inequality
asserts that for any two vectors of the same dimension, we have

Xyl <l - fiyl,

with equality helding if and only if one of the two vectors is a scalar multiple
of the other.
If A is an m x n matrix, we use A; to denote its jth column, that is,
Aj = (@15,82,. .. ,am;). (This is our only exception to the rule of using
lower case characters to represent vectors.) We also use a; to denote the
vector formed by the entries of the ith row, that is, a; = (@, 002, -, Gin).
Thus,
L | I
A = Al A2 e An =
o | —w -
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Given two matrices A, B of dimensions m x n and n x k, respectively,
their product AB is a matrix of dimensions m x k whose entries are given
by

[ABl;; = >_[Al«[Bl; = aB;,
=1

where a, is the ith row of A, and B; is the jth column of B. Matrix
multiplication is associative, i.e., (AB)C = A(BC]), but, in general, it is
not commutative, that is, the equality AB = BA is not always true. We
also have (AB) = B'A’.

Let A be an m x n matrix with columns A;. We then have Ae; = A;.
Any vector x € R" can be written in the form x = 3.7, 2;€;, which leads

to
n
Ax = Ai e;r; = Zn: Ae;x; = Z Az
i=1 =1

i=1
A different representation of the matrix-vector product Ax is provided by
the formula

ajx
apx
Ax = . ’
L
aTnx
where &), ...,aj, are the rows of A.

A matrix is called square if the number m of its rows is equal to the
number n of its colurmns. We use I to denote the identity matrix, which is
a square matrix whose diagonal entries are equal to one and its off-diagonal
entries are equal to zero. The identity matrix salisfies IA = A and BI=B
for any matrices A, B of dimensions compatible with those of L.

If x is a vector, the notation x > 0 and x > 0 means that every
component of x is nonnegative (respectively, positive). If A is a matrix,
the inequalities A > 0 and A > 0 have a similar meaning,

Matrix inversion

Let A be a square matrix. If there exists a square matrix B of the same
dimensions satisfying AB = BA = I, we say that A is invertible or non-
singuler. Such a matrix B, called the inverse of A, is unique and is de-
noted by A1, We note that (A")™ = (A™"). Also, if A and B are
invertible matrices of the same dimensions, then AB is also invertible and
(AB)' =B-lAa L

Given a finite collection of vectors x!,...,x% € R", we say that they
are linearly dependent if there exist real numbers ai,...,ax, not all of
them zero, such that Ele apx* = 0; otherwise, they are called iinearly
independent. An equivalent definition of linear independence requires that
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none of the vectors x*,...,x% is a linear combination of the remaining

vectors (Exercise 1.18). We have the following result.

Theorem 1.2 Let A be a square matrix. Then, the following state-
ments are equivalent:

{a) The matrix A is invertible.

(b) The matrix A’ is invertible.

(c) The determinant of A is nonzero.

(d) The rows of A are linearly independent.
(e) The columns of A are linearly independent.

(f) For every vector b, the linear system Ax = b has a unique
solution.

(g) There exists some vector b such that the linear system Ax =b
has a unique solution.

Assuming that A is an invertible square matrix, an explicit formula
for the solution x = A~!b of the system Ax = b, is given by Cremer’s
rule. Specifically, the jth component of x is given by

I det(A7)
T det(A)}’

where A7 is the same matrix as A, except that its jth column is replaced
by b. Here, as well as later, the notation det(A) is used to denote the
determinant of a square matrix A.

Subspaces and bases

A nonempty subset S of R" is called a subspace of R™ if ax + by € 5 for
every x,y € S and every a,b € R. If, in addition, § # R", we say that S is
a proper subspace Note that every susspace must contain the zero vector.

The span of a finite number of vectors x!, ..., x¥ in R" is the subspace
of R” defined as the set of all vectors ¥ of the form y = Zle apx®, where
each ay is a real number. Any such vector y is called a linear combination
of x1 ... x¥

Given a subspace S of R™, with § # {0}, a basis of S'is a collection of
vectors that are linearly independent and whose span is equal to S. Every
basis of a given subspace has the same number of vectors and this number
is called the dimension of the subspace. In particular, the dimension of
R" is equal to n and every proper subspace of R” has dimension smaller
than n. Note that one-dimensional suospaces are lines through the origin;
two-dimensional subspaces are planes through the origin. Finally, the set
{0} is a subspace and its dimension is defined to be zero.
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If S is a proper subspace of R", then there exists a nonzero vector a
which is orthogonal to S, that is, a’x = 0 for every x € 5. More generally,
if § has dimension m < n, there exist n — m linearly independent vectors
that are orthogonal to S.

The result that follows provides some important facts regarding bases
and linear independence.

Theorem 1,3 Suppose that the span § of the vectorsx',. . .,x¥ has

dimension m. Then:
(a) There exists a basis of S consisting of m of the vectorsx*, ..., x¥.
‘(b) Ifk <mandx!,...,x* are linearly independent, we can form a
basis of § by starting with x', ..., %%, and choosing m —k of the

vectors xF+1, L 2K,

Proof. We only prove part {b), because (a) is the special case of part
(b) with k = 0. If every vector x*+1 .., x¥ can be expressed as a linear
combination of %!, ...,x* , then every vector ‘n the span of x!,...,x* is
also a linear combination of x!,...,x*, and the latter vectors form a basis.
(In particular, m = k.) Otherwise, at least one of the vectors xk+L L xK
is linearly independent from x!,. ..,x". By picking one such vector, we
now have k + 1 of the vectors x!, ..., x¥ that zre linearly independent. By
repeating this process m — k times, we end up with the desired basis of S.

O

Let A be a matrix of dimensions m x n. The column space of A
is the subspace of ™ spanned by the columns of A. The row space of
A is the subspace of #" spanned by the rows of A. The dimension of
the column space is always equal to the dimension of the row space, and
this number is called the rank of A, Clearly, rank(A) < min{m,n}. The
matrix A is said to have full rank if rank(A) = min{m, n}. Finally, the set
{x € R" | Ax = 0} is called the nullspace of A; it is a subspace of R™ and
its dimension is equal to n — rank(A).

Affine subspaces

Let S, be a subspace of R™ and let x° be some vector. If we add x? to
every element of Sy, this amounts to translating Sp by x?. The resulting
set S can be defined formally by

S=8+x"={x+x"|x€ S5}

In general, S is not a subspace, because it does not necessarily contain
the zero vector, and it is called an affine subspace. The dimension of S is
defined to be equal to the dimension of the underlying subspace So.
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As an example, let x°, x?, ..., x* be some vectors in ", and consider
the set S of all vectors of the form

x4 ax 44 At

where X, ..., A are arbitrary scalars. For this case, Sp can be identified
with the span of the vectors x!,.. .,x*, and S is an affine subspace. If
the vectors x!,...,x"* are linearly independent, their span has dimension
k, and the affine subspace S also has dimension k.

For a second example, we are given an m X n matrix A and a vector
b € ®™, and we consider the set

§={xe®"|Ax=b},

which we assume to be nonempty. Let us fix some x® such that Ax® = b.
An arbitrary vector x belongs to § if and only if Ax = b = Ax?, or
A(x — x%) = 0. Hence, x € § if and only if x — x° belongs to the subspace
So = {y | Ay = 0}. We conclude that § = {y +x” | y € Sp}, and
S is an affine subspace of ®". If A has m linearly independent rows, its
nullspace Sy has dimension n — m. Hence, the affine subspace S also has
dimension n — m. Intuitively, if a} are the rows of A, each one of the
constraints ajx = b; removes one degree of freedom from x, thus reducing
the dimension from n to n — m; see Figure 1.7 for an illustration.

45
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Figure 1.7: Consider a set S in ®° defined by a single equality
constraint a’x = b. Let x” be an element of . The vector a is
perpendicular to 8. If x! and x* are linearly independent vectors
that are orthogonal to a, then every x € § is of the form x =
*0 + Ax! + Agx?. In particular, § is a two-dimensional affine
subspace.



xew'uoneziwndo Jeaul|

32 Chap. 1  Introduction

1.6 Algorithms and operation counts

Optimization problems such as linear programming and, more generally,
all computational problems are solved by algorithms. Loosely speaking, an
algorithm is a finize set of instructions of the type used in common pro-
gramming languages (arithmetic operations, conditional statements, read
and write statements, etc.). Although the running time of an algorithm
may depend substantially on clever programming or on the computer hard-
ware available, we are interested in comparing algorithms without having
to examine the deails of a particular implementation. As a first approx-
imation, this can be accomplished by counting the number of arithmetic
operations {additions, multiplications, divisions, comparisons) requirad by
an algorithm. This approach is often adequate even though it ignores the
fact that adding or multiplying large integers or high-precision fleating
point numbers is more demanding than adding or multiplying single-digit
integers. A more refined approach will be discussed briefly in Chapter 8.

Example 1.9

(a) Let a and b be vectors in ®". The natural algorithm for computing a'b
requires n multiplications and n—1 additions, for a total of 2n—1 aritkmetic
operations.

(b) Let A and B be matrices of dimensions n X n. The traditional way of
computing AB forms the inner product of a row of A and a column of B
to obtain an entry of AB. Since there are n’ entries to be evaluated, a
total of (2n — 1)n? arithmetic operations are involved.

In Example 1.9, an exact operation count was possible. However,
for more complicased problems and algorithms, an exact count is usually
very difficult. For this reason, we will settle for an estimate of the rate of
growth of the number of arithmetic operations, as a function of the problem
parameters. Thus, in Example 1.9, we might be content to say that the
number of operations in the computation of an inner product increases
linearly with n, and the number of operations in matrix multiplication
increases cubically with n. This leads us to the order of magnitude notation
that we define next.

Definition 1.2 Let f and g be functions that map positive numbers

to positive numbers.

(a) We write f(n) = O(g(n)) if there exist positive numbers ng and
¢ such that f{n) < ¢g(n} for all n > ng.

(b} We write [{n) = Q(g(n)) if there exist positive numbers ng and
¢ such that f(n) > cg(n) for all n > nq.

(c) We write f(n) = ©(g(n}) if both f(n) = O(g(n)) and f(n) =
(g(n)) hold.
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For example, we have 3n® + n% 4 10 = ©'n?), nlogn = O(n?), and
nlogn = Q(n).

While the running time of the algorithms considered in Example 1.9 is
predictable, the running time of more complicated algorithms often depends
on the numerical values of the input data. In such cases, instead of trying
to estimate the running time for each possible choice of the input, it is
customary to estimate the running time for the worst possible input data of a
given “size.” For example, if we have an algorithm for linear programming,
we might be interested in estimating its worst-case running time over all
problems with a given number of variables and constraints. This emphasis
on the worst case is somewhat conservative and, in practice, the “average”
running time of an algorithm might be more relevant. However, the average
running time is much more difficult to estimate, or even to define, and for
this reason, the worst-case approach is widely used.

Example 1.1¢ (Operation count of linear system solvers and matrix
inversion) Consider the problem of solving a system of n linear equations in n
unknowns. The classical method that eliminates one variable at a time (Gaussian
elimination} is known to require O(n?) arithmetic aperations in order to either
compute a solution or to decide that no solution exists. Practical methods for
matrix inversion also require O(n®) arithmetic operations. These facts will be of
use later on.

Is the O{n?) running time of Gaussian elimination good or bad? Some
perspective into this question is provided by the following observation: each
time that technological advances lead to computer hardware that is faster
by a factor of 8 (presumably every few years), we can solve problems of twice
the size than earier possible. A similar argument applies to algorithms
whose running time is O(n*} for some positive integer k. Such algorithms
are said to run in pelynomial time.

Algorithms also exist whose running time is Q(2°"), where n is a
parameter representing problem size and c is a constant; these are said to
take at least exponential ifme. For such algorithms and if ¢ = 1, each time
that computer hardware becomes faster by a factor of 2, we can increase
the value of n tha: we can handle only by 1. It is then reasonable to expect
that no matter how much technology improves, problems with truly large
values of n will always be difficult to handle.

Example 1.11 Suppose that we have a choice of two algorithms. The running
time of the first is 10™/100 (exponential) and the running time of the second
is 10n® (polynomiel). For very small n. e.g., for n = 3, the exponential time
algorithm is preferable. To gain some perspective as to what happens for larger
n, suppose that we have access to a workstation that can execute 107 arithmetic
operations per second and that we are willing to let it run for 1000 seconds.
Let us figure out what size problems can each algorithm handle within this time
frame. The equaticn 10™ /100 = 107 x 1000 yields n = 12, whereas the equation



xew'uoneziwndo Jeaul|

34 Chap. 1  Introduction

10n® = 107 x 1000 vields n = 1000, indicating that the polynomial time algorithm
allows us to sclve much larger problems.

The point of view emerging from the above discussion is that, as a first
cut, it is useful to juxtapose polynomial and exponential time algorithms,
the former being viewed as relatively fast and efficient, and the latter as
relatively slow. This point of view is justified in many - but not all —
contexts and we will be returning to it later in this book.

1.7 Exercises

Exercise 1.1* Suppose that a function f : R" +— Ris both concave and convex.
Prove that f is an affine function.

Exercise 1.2 Suppose that fi,..., fm are convex functions from R" into £ and
let flx) =31, fi(x).
(a) Show that if each f; is convex, so is f.

{b) Show that if each f; is piecewise linear and convex, so is f.

Exercise 1.3 Consider the problem of minimizing a cost function of the form
¢'x + f(d'x), subject to the linear constraints Ax > b. Here, d is a given
vector and the function f : R — R is as specified in Figure 1.8. Provide a linear
programming formulation of this problem.

f=)

Figure 1.8: The function f of Exercise 1.3.

Exercise 1.4 Consider the problem

minimize 2z + 3|z — 10|
subject to |z + 2} + |x2| <5,

and reformulate it as a linear programming problem.
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Exercise 1.5 Consider a linear optimization problem, with absolute values, of
the following form:

minimize cx+d'y
subject to Ax+ By <b
ys = |z, Vi

Assume that all entries of B and d are nonnegative.

(a) Provide two different linear programming formulations, along the lines dis-
cussed in Section 1.3.

(b) Show that the original problem and the two reformulations are equivalent
in the sense that either all three are infeasible, or all three have tke same
optimal cost

(c) Provide an example to show that if B has negative entries, the problem
may have a local minimum that is not a global minimum. (It will be seen
in Chapter 2 that this is never the case in linear programming problems.
Hence, in the presence of such negative entries, a linear programming re-
formulation is implausible.)

Exercise 1.6 Provide linear programming formulations of the two variants of
the rocket contrel problem discussed at the end of Section 1.3.

Exercise 1.7 (The moment problem) Suppose that Z is a random variable
taking values in the set 0,1,..., K, with probabilities po, p1, ..., px, respectively.
We are given the values of the first two moments E[Z] = EkK:u kp. and E[Z%] =
Z:;O k*pi of Z and we would like to obtain upper and lower bounds on the value

of the fourth moment E[Z?] = Ef:o k'pi of Z. Show how linear programming
can be used to approach this problem.

Exercise 1.8 (Road lighting) Consider a road divided into n segments that is
illuminated by m lamps. Let p; be the power of the jth lamp. The illumination I,
of the ith segment is assumed to be E;“: a;;p;, where a;; are known coefficients.
Let I} be the desired illumination of road i.

We are interested in choosing the lamp powers p; so that the illuminations
1I; are close to the desired illuminations I. Provide a reasonable linear program-
ming formulation of this problem. Note that the warding of the problem is loose
and there is more than one possible formulation.

Exercise 1.9 Consider a school district with 1 neighborhoods, J schools, and
7 grades at each school. Each school j has a capacity of Cjg for grade g. In each
neighborhood 4, the student population of grade i is Si,. Finally, the distance
of school j from neighborhood i is d;;. Formulate a linear programining problem
whose objective is to assign all students to schools, while minimizing the total
distance traveled by all students. (You may ignore the fact that numbers of
students must be integer.)

Exercise 1.10 (Production and inventory planning) A company must de-
liver d; units of its product at the end of the ith month. Material produced during
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a month can be delivered either at the end of the same month or can be stored
as inventory and delivered at the end of a subsequent month; however, there is
a storage cost of ¢ dollars per month for each unit of product held in invertory.
The vear begins with zero inventory. If the company produces x; units in month
i and ;41 units in month ¢+ 1, it incurs a cost of 2|2, — x| dollars, reflecting
the cost of switching to a new production level. Formulate a linear programming
problem whose objective is to minimize the total cost of the production and in-
ventory schedule over a period of twelve months. Assume that inventory left at
the end of the year has no value and does not incur any storage costs.

Exercise 1.11 (Optimal currency conversion) Suppese that there are N
available currencies, and assume that one unit of currency 4 can be exchanged for
ri; units of currency j. (Naturally, we assume that ri; > 0.) There also certain
regulations that impose a limit u; on the total amount of currency i that can be
exchanged on any given day. Suppose that we start with B units of currency 1 and
that we would like to maximize the number of units of currency N that we end up
with at the end of the day, through a sequence of currency transactions. Provide
a linear programming formulation of this problem. Assume that for any seqience
i1,... ik of currencies, we have 7y ipTigis " Fip_q4,Tueiy < 1, which meane that
wealth cannot be multiplied by going through a cycle of currencies.

Exercise 1.12 (Chebychev center) Consider a set P described by linear
inequality constrainis, that is, P = {x € R" | ajx < b;, i = 1,...,m}. A ball
with center y and radius r is defined as the set of all points within (Euclidean)
distance r from y. We are interested in finding a ball with the largest possible
radius, which is entirely contained within the set P. {The center of such a ball is
called the Chebychev center of P.) Provide a linear programming formulation of
this problem.

Exercise 1.13 {Linear fractional programming) Consider the problem

. dx+d
minimize
fix+g
subject to Ax <b
fx+g>0.

Suppose that we have some prior knowledge that the optimal cost belongs to an
interval [K, L]. Provide a procedure, that uses linear programming as a subrou-
tine, and that allows us to compute the optimal cost within any desired accuracy.
Hint: Consider the problem of deciding whether the optimal cost is less than or
equal to a certain number.

Exercise 1.14 A company produces and sells two different products. The de-
mand for each product is unlimited, but the company is constrained by cash
availability and machine capacity.

Each unit of the first and second product requires 3 and 4 machine hours,
respectively. There are 20,000 machine hours availatle in the current production
period. The production costs are $3 and $2 per unit of the first and second
product, respectively. The selling prices of the first and second product are $6
and $5.40 per unit, respectively. The available cash is $4,000; furthermore, 45%
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of the sales revenues from the first product and 30% of the sales revenues ftom the
second product will be made available to finance operations during the current
period.

(a) Formulate a linear programming problem that aims at maximizing net in-
come subject to the cash availability and machine capacity limitations.

(b) Solve the problem graphically to cbtain an optimal solution.

(c} Suppose that the company could increase its available machine hours by
2,000, after spending $400 for certain repairs. Should the investment be
made?

Exercise 1.15 A company produces two kinds of products. A product of the
first type requires 1/4 hours of assembly labor, 1,8 hours of testing, and $1.2
worth of raw materials. A product of the second type requires 1/3 hours of
assembly, 1/3 hours of testing, and $0.9 worth of raw materials. Given the current
personnel of the company, there can be at most 30 hours of assembly labor and
80 hours of testing, each day. Products of the first and second type have a market
value of $9 and $8. respectively.

(a) Formulate alinear programming problem that can be used to maximize the
daily profit of the company.

(b) Comnsider the following two modifications to the original problem:

(i) Suppese that up to 50 hours of overtime assembly labor can be sched-
uled, at a cost of $7 per hour.

(ii) Suppose that the raw material supplier provides a 10% discount if
the daily bill is above $300.

Which of th2 above two elements can be easily incorporated into the lin-
ear programming formulation and how? If one or both are not easy to
incorporate, indicate how you might nevertheless solve the problem.

Exercise 1.16 A manager of an oil refinery has 8 million barrels of crude oil A
and 5 million barrels of crude oil B allocated for production during the coming
month. These rescurces can be used to make either gasoline, which sells for $38
per barrel, or home heating oil, which sells for $33 per barrel. There are three
production processes with the following characteristics:

Process 1  Process 2 Process 3
Input crude A 3 1 5
Input crude B 5 1 3
Output gasoline 4 1 3
Output heating oil 3 1 4
Cost $51 $L1 $40

All quantities are in barrels. For example, with the first process, 3 barrels of
crude A and 5 barrels of crude B are used to produce 4 barrels of gasoline and
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3 barrels of heating oil. The costs in this table refer to variable and allocated
overhead costs, and there are no separate cost items for the cost of the crades.
Formulate a linear programming problem that would help the manager maximize
net revenue over the next month.

Exercise 1,17 (Investment under taxation) An investor has a portfolio of
n different stocks. He has bought s; shares of stock ¢ at price p;, i = 1,...,n.
The current price of one share of stock 7 is 4;. The investor expects that the price
of one share of stock 7 in one year will be r;. If he sells shares, the investor pays
transaction costs at the rate of 1% of the amount transacted. In addition, the
investor pays taxes at the rate of 30% on capital gains. For example, suppose that
the investor sells 1,000 shares of a stock at $50 per share. He has bought these
shares at $30 per share. He receives $50,000. However, he owes 0.30x (50,000 —
30,000) = $6,000 on capital gain taxes and 0.01x(50,000) = $500 on transaction
costs. So, by selling 1,000 shares of this stock he nets 50,000 — 6,000 — 500 =
$43,500. Formulate the problem of selecting how many shares the investor needs
to sell in order to raise an amount of money K, net of capital gains and transaction
costs, while maximizing the expected value of his portfolio next year.

Exercise 1.18 Show that the vectors in a given finite collection are linearly
independent if and only if none of the vectors can be expressed as a linear com-
bination of the others.

Exercise 1.19 Suppose that we are given a set of vectors in ®" that form a
basis, and let y be an arbitrary vector in ®". We wish to express y as a linear
combination of the basis vectors. How can this be accomplished?

Exercise 1.20

(a) Let § = {Ax | x € R"}, where A is a given matrix. Show that S is a
subspace of R".

(b) Assume that S is a proper subspace of R". Show that there exists a matrix
B such that $ = {y € R" | By = 0}. Hint: Use vectors that are orthogonal
to § to form the matrix B.

(c) Suppcse that V is an m-dimensional affine subspace of ®", with m <
n. Show that there exist linearly independent vectors aj,...,an_m, and
scalars b1,...,bn—m, such that

V={ylaly=b, i=1,...,n—m}.

1.8 History, notes, and sources

The word “programming” has been used traditionally by planners to de-
scribe the process of operations planning and resource allocation. In the
1940s, it was realized that this process could often be aided by solving op-
timization problems involving linear constraints and linear objectives. The
term “linear programming” then emerged. The initial impetus came in the
aftermath of World War II, within the context of military planning prob-
lems. In 1947, Dantzig proposed an algorithm, the simples method, which
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made the solution of linear programming problems practical. There fol-
lowed a period of intense activity during which many important problems in
transportation, economics, military operations, scheduling, etc., were cast
in this framework. Since then, compurer techno.ogy has advanced rapidly,
the range of applications has expanded, new powerful methods have been
discovered, and the underlying mathematical understanding has become
deeper and more comprehensive. Today, linear programming is a routinely
used tool that can be found in some spreadsheet software packages.

Dantzig’s development of the simplex method has been a defining
moment in the history of the field, because it came at a time of grow-
ing practical needs and of advances in computing technology. But, as is
the case with most “scientific revolutions,” the history of the field is much
richer. Barly work goes back to Fourier, who in 1824 developed ar algo-
rithm for solving systems of linear inequalities. Fourier's method is far less
efficient than the simplex method, but this issue was not relevant at the
time. In 1910, de la Vallée Poussin developed a method, similar to the sim-
plex method, for minimizing max; |b; — ajx|, a problem that we discussed
in Section 1.3.

In the late 1930s, the Soviet mathematician Kantorovich became in-
terested in problems of optimal resource allocation in a centrally planned
economy, for which he gave linear programming formulations. He also pro-
vided a solution method, but his work did not become widely known at the
time. Around the same time, several models arising in classical, Walrasian,
economics were studied and refined, and led to formulations closely related
to linear programming. Koopmans, an economisr, played an importaat role
and eventually (in 1975) shared the Nobel Prize in econcmic science with
Kantorovich.

On the theoretical front, the mathematical structures that under-
lie linear programming were independently studied, in the period 1870-
1930, by many prominent mathematicians, such as Farkas, Minkowski,
Carathéodory, and others. Also, in 1928, von Neumann developed an im-
portant result in game theory that would later prove to have strong con-
nections with the deeper structure of linear programming.

Subsequent to Dantzig’s work, there has been much and important
research in areas such as large scale optimization, network optimization,
interior point methods, integer progremming, and complexity theory. We
defer the discussion of this research to the notes and sources sections of later
chapters. For a more detailed account of the history of linear programming,
the reader is referred to Schrijver (1986), Orden (1993), and the volume
edited by Lenstra, Rinnooy Kan, and Schrijver (1991) (see especially the
article by Dantzig in that volume).

There are several texts that cover the gereral subject of linear pro-
gramming, starting with a comprehensive one by Dantzig (1963). Scme
more recent texts are Papadimitriou and Steiglitz (1982), Chvdtal (1983),
Murty (1983), Luenberger (1984), Bazaraa, Jarvis, and Sherali (1990). Fi-
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nally, Schrijver (1986} is a comprehensive, but more advanced reference on
the subject.

1.1.
1.2.

1.3.

1.5.
1.6.

1.7,

The formulation of the diet problem is due to Stigler (1945).

The case study on DEC’s production planning was developed by Fre-
und and Shannahan (1992). Methods for dealing with the nurse
scheduling and other cyclic problems are studied by Bartholdi, Orlin,
and Ratliff (1980). More information on pattern classification can be
found in Duda and Hart (1973), or Haykir (1994).

A deep and comprehensive treatment of convex functions and their
properties is provided by Rockafellar (1970). Linear programming
arises in control problems, in ways that are more sophisticated than
what is described here; see, e.g., Dahleh and Diaz-Bobillo (1995).
For an introduction to linear algebra, see Strang (1988).

For a more detailed treatment of algorithms and their computational
requirements, see Lewis and Papadimitriou (1981), Papadimitriou
and Steiglitz (1982), or Cormen, Leiserson, and Rivest (1990).
Exercise 1.8 is adapted from Boyd and Vandenberghe (1995). Ex-
ercises 1.9 and 1.14 are adapted from Bradley, Hax, and Maznanti
(1977). Exercise 1.11 is adapted from Ahuja, Magnanti, and Orlin
(1993).
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In this chapter, we define a polyhedron as a set described by a finite number
of linear equality and inequality constraints. In particular, the feasible set
in a linear programming problem is a polyhedron. We study the basic
geometric properties of polyhedra in some detail, with emphasis on their
“corner points” (vertices). As it turns out, common geometric intuition
derived from the familiar three-dimensional polyhedra is essentially correct
when applied to higher-dimensional polyhedra. Another interesting sspect
of the development in this chapter is that certain concepts (e.g., the concept
of a vertex) can be defined either geometrically cr algebraically. While the
geometric view may be more natural, the algebraic approach is essential for
carrying out computations. Much of the richness of the subject lies in the
interplay between the geometric and the algebraic points of view.

Our development starts with a characterization of the corner points
of feasible sets in tne general form {x | Ax > b}. Later on, we focus on the
case where the feasible set is in the standard form {x | Ax = b, x > 0},
and we derive a simple algebraic characterization of the corner points. The
latter characterization will play a central role in the development of the
simplex method in Chapter 3.

The main results of this chapter state that a nonempty polyhedrcn has
at least one corner point if and only if it does not contain a line, and if this
ig the case, the search for optimal solutions to linear programming probletns
can be restricted to corner points. These resuits are proved for the most
general case of linear programming problems using geometric arguments.
The same results will also be proved in the next chapter, for the case of
standard form problems, as a corollary of our development of the simplex
method. Thus, the reader who wishes to focus on standard form problems
may skip the proofs in Sections 2.5 and 2.6. Finally, Sections 2.7 and 2.8 can
also be skipped during a first reading; any results in these sections that are
needed later on will be rederived in Chapter 4, using different techniques.

2.1 Polyhedra and convex sets

In this section, we introduce some important concepts that will be nsed
to study the geometry of linear programming, including a discussion of
convexity.

Hyperplanes, halfspaces, and polyhedra

We start with the formal definition of a polyhedron.

Definition 2.1 A polyhedron is a set that ean be described in the
form {x € " | Ax > b}, where A is an m X n matrix and b i a

vector in ®™.
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As discussed in Section 1.1, the feasible set of any linear programming
problem can be described by inequality constraints of the form Ax > b,
and is therefore a polyhedron. In particular, a set of the form {x € ®" |
Ax = b, x > 0} isalso a polyhedron and will be referred to as a polyhedron
in standard form.

A polyhedron can either “extend to infinity,” or can be confined in a
finite region. The definition that follows refers to this distinction.

»

Deﬂnitiml 5.2 A'set S ¢ R" is bounded if there exists & constant
K. such’that the absolute value of every component of every element
of 8 is less than or equal to K.

The next definition deals with polyhedra determined by a single .inear
constraint.

Definition 2.3 Let a be a nonzero vector in 8" and let b be a scalar.
(a) The set {x € R" | a'x = b} is called a hyperplane.
{b) The set {x € ®" | a'x > b} is called a halfspace.

Note that a hyperplane is the boundary of a corresponding halfspace.
In addition, the vector a in the definiticn of the hyperplane is perpendicular
to the hyperplane itself. [To see this, note that if x and y belong to the
same hyperplane, then a’x = a'y. Hence, a’'(x — y) = 0 and therefore a
is orthogonal to any direction vector confined to the hyperplane.] Finally,
note that a polyhedron is equal to the intersection of a finite number of
halfspaces; see Figure 2.1.

Convex Sets

We now define the important notion of a convex set.

Definition 2.4 A set § C R™ is convex if for any x,y € 5, and any
A€ 10,1], we have Ax + (1— A)y € 5.

Note that if A € [0,1], then Ax + (1 — A)y is a weighted average of
the vectors x, ¥, and therefore belongs to the line segment joining x and
¥. Thus, a set is convex if the segment joining any two of its elements is
contained in the set; see Figure 2.2.

Our next definition refers to weighted averages of a finite number of
vectors; see Figure 2.3.
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Figure 2.1: (a) A hyperplane and two halfspaces. (b) The poly-
hedron {x |ajx > b;, i=1,...,5} is the intersection of five halfs-
paces. Note that each vector a; is perpendicular to the hyperplane
{x | ajx = b}

Definition 2.5 Let x!,...,x* be vectors in ®" and let A;,...,\; be

nonnegative scalars whose sum is unity.

(a) The vector TF | A\ix* is said to be a convex combination of
the vectors x!, ... x¥.

1

(b) The convex hull of the vectors x?, .. .,x" is the set of all convex

combinations of these vectors.

The result that follows establishes some important facts related to

convexity.

Theorem 2.1
(a) The intersection of convex sets is convex.
(b) Every polyhedron is a convex set.

(c) A convex combination of a finite number of elements of a convex
set also belongs to that set.

(d) The convex hull of a finite number of vectors js a convex set.
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Figure 2.2: The set S is convex, but the set ) is not, because
the segment joining x and y is not contained in ¢J.

Figure 2.3: The convex hull of seven points in R%.

Proof.

(a) Let S;, ¢ € I, be convex sets where I is some index set, and suppose
that x and y belong to the intersection M;=;S;. Let A € [0,1]. Since
each S; is convex and contains x,y, we have Ax+(1—A)y € 5;, which
proves that Ax + (1 — A)y also belongs to the intersection of the sets
S,. Therefore, N;e;S; is convex.

(b) Let a be a vector and let b a scalar. Suppose that x and y satisfy
a’x > b and a’y > b, respectively, and therefore belong to the same
halfspace. Let A € [0,1]. Then, a’(Ax+(1-A)y) = M+ (1-A)b=1b,
which proves that Ax 4 (1 — A)y also belongs to the same halfspace.
Therefore a halfspace is convex. Since a polyhedron is the intersection
of a finite number of halfspaces, the result follows from part {(a).

(c) A convex combination of two elements of a convex set lies in that
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set, by the definition of convexity. Let us assume, as an induction
hypothesis, that a convex combination of k elements of a convex set
belongs to that set. Consider k + 1 elements x!,...,x**1 of a convex
set S and let Aq,...,Ag41 be nonnegative scalars that sum to 1. We
assume, without loss of generality, that Ary1 7 1. We then have

k+1
3 oxt = Aepx 4+ (1 /\k+1)z )‘k : x'. (2.1)
i=1

The coefficients A;/(1 — Ak41), ¢ =1,..., k, are nonnegative and sum

10 unity; using the induction hypothesis, Zf L xt /(1= Agq1) € S.
Then, the fact that S is convex and Eq. (2.1) imply that Y, 7} kL uxi €
S, and the induction step is complete.

(d) Let S be the convex hull of the vectors x!,...,x* and let y =
Zle Gxtz= Zle 0;x* be two elements of S, where ¢; > 0, §; > 0,
and 3 ¢, =% 6, = 1. Let A € [0,1]. Then,

k

Ay +(1—A z—)\zgx +(1~)\)Zﬂx =) (AG+(1-08:)x’

=1 i=1

We note that the coefficients A¢; + (1 — A)8;, ¢ = 1,...,k, are non-
negative and sum to unity. This shows that Ay + (1 — A\)z is a convex
combination of x1,...,x* and, therefore, belongs to S. This estab-
lishes the convexity of S. O

2.2 Extreme points, vertices, and basic
feasible solutions

We observed in Section 1.4 that an optimal solution to a linear programming
problem tends to occur at a “corner” of the polyhedron over which we are
optimizing. In this section, we suggest three different ways of defining the
concept of a “corner” and then show that all three definitions are equivalent.

Our first definition defines an extreme point of a polyhedron as a point
that cannot be expressed as a convex combination of two other elements of
the polyhedron, and is illustrated in Figure 2.4. Notice that this definition
is entirely geometric and does not refer to a specific representation of a
polyhedron in terms of lirear constraints.
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Figure 2.4: The vector w is not an extreme point because it is a
convex combination of v and u. The vector x is an extreme point:
ifx=MAy+(1—-XA)zand X € 0,1}, then either y ¢ P, orz ¢ P, or

X=Yy,0r X=2.

An alternative geometric definition defines a vertex of a polyhedron
P as the unique optimal solution to some linear programming problem with
feasible set P.

Deﬁnition 2.7 Let F be a polyhedron. A vector x e P is avertex
of P if there eousts some ¢ such tbat c x < cy for &H y satzsfymg
y € P aad y 7& x.

In other words, x is a vertex of P if and only if P is on one side of
a hyperplane (the hyperplane {y | ¢y = ¢/x}) which meets P only at the
point x; see Figure 2.5.

The two geometric definitions that we have given so far are not easy
to work with from an algorithmic point of view. We would like to have a
definition that relies on & representation of a polyhedron in terms of linear
constraints and which reduces to an algebraic test. In order to provide such
a definition, we need some more terminology.

Consider a polyhedron P C R" defined in terms of the linear equality
and inequality constraints

a; > b, 1 € M,
a: < bi» i€ M2:
aix = b, 1 € M3,

where M;, M,, and M3 are finite index sets, each a; is a vector in ®", and
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Figure 2.5: The line at the bottom touches P at a single point
and x is a vertex. On the other hand, w is not a vertex because
there is no hyperplane that meets P only at w.

each b; is a scalar. The definition that follows is illustrated in Figure 2.6.

Definition 2.8 If a vector x* satisfies ajx* = b; for somei in My, M,
or M3, we say that the corresponding constraint is active or binding
at x*.

If there are n constraints that are active at a vector x*, then x* satis-
fies a certain system of n linear equations in n unknowns. This system has a
unique solution if and only if these n equations are “linearly independent.”
The resuls that follows gives a precise meaning to this statement, together
with a slight generalization.

Theorem 2.2 Let x* be an element of R® and let I = {i| ajx* = b;}
be the set -of indices of constraints that are active at x*. Then; the
following are equivalent:

(a) There exist n vectors in the set {a; | i € I}, which are_ linearly
independent.

(b) The span of the vectors.a;, i € I, is all of X", that is, every
element of R™ can be expressed as a linear combination of the
vectors a;, i € I.

(¢)  The system of equations a;x = b,, 1 € I, has a unique solution.

Proof. Suppose that the vectors a;, ¢ € I, span R™. Then, the span of
these vectors has dimension n. By Theorem 1.3(a) in Section 1.5, n of
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2 )

1

Figure 2.6: Let P = {(zl,xz,x;;) | z1+z24+z3 =1, 21,22, 23 >
0}. There are three constraints that are active at each one of the
points A, B, C and D. There are only two constraints that are
active at point E, namely z1 +z2 + 3 =1 and z2 = 0.

these vectors form a basis of R™, and are therefore linearly independent.
Conversely, suppose that n of the vectors a;, ¢ € I, are linearly independent.
Then, the subspace spanned by these n vectors is n-dimensional and must
be equal to R". Hence, every element of R™ is a linear combination of the
vectors a;, i € I. This establishes the equivalence of (a) and (b).

If the system of equations a;x = b;, ¢ € I, has multiple solutions, say
x! and x2, then the nonzero vector d = x! — x? satisfies ajd = 0 for all
i € I. Since d is orthogonal to every vector a;, i € I, d is not a linear
combination of these vectors and it follows that the vectors a;, ¢ € I, do
not span R". Conversely, if the vectors a;, ¢ € I, do not span R"™, choose
a nonzero vector d which is orthogonal to the subspace spanned by these
vectors. If x satisfies ajx = b; for all ¢ € I, we also have aj(x + d) = b; for
all i € I, thus obtaining mulsiple solutions. We have therefore established
that (b) and (c) are equivalent. O

With a slight abuse of language, we will often say that certain con-
straints are linearly independent, meaning that the corresponding vectors
a; are linearly independent. With this terminology, statement (a) in The-
orem 2.2 requires that there exist n linearly independent constraints that
are active at x*.

We are now ready to provide an algebraic definition of a corner point,
as a feasible solution at which there are n linearly independent active con-
straints. Note that since we are interested in a feasible solution, all equality
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constraints must be active. This suggests the following way of looking for
corner points: first impose the equality constraints and then require that
enough additional constraints be active, so that we get a total of n linearly
independent active constraints. Once we have n linearly independent active
constraints, a unique vector x* is determined (Theorem 2.2). However, this
procedure has no guarantee of leading to a feasible vector x*, because some
of the inactive constraints could be violated; in the latter case we say that
we have a basic (but not basic feasible) solution.

Definition 2.9 Consider a polyhedron P defined by linear equality
and inequality constraints, and let x* be an element of ®”.

(a) The vector x* is a basic solution if:
(i) Al equality constraints are active;
(ii) Out of the constraints that are active at x*, there are n of
them that are linearly independent.

(b) If x* is a basic solution that satisfies all of the constraints, we
say that it is a basic feasible solution.

In reference to Figure 2.6, we note that points A, B, and U are
basic feasible solutions. Point D is not a basic solution because it fails to
satisfy the equality constraint. Point E is feasible, but not basic. If the
equality constraint z; + x5 + 3 = 1 were to be replaced by the constraints
1+ To+ 23 < 1and z; + 22 + 23 > 1, then D would be a basic solution,
according to our definition. This shows that whether a point is a basic
solution or not may depend on the way that a polyhedron is represented.
Definition 2.9 is also illustrated in Figure 2.7.

Note that if the number m of counstraints used to define a polyhedron
P C R" is less than n, the number of active constraints at any given point
must also be less than n, and there are no basic or basic feasible solutions.

We have given so far three different definitions that are meant to cap-
ture the same concept; two of them are geometric (extreme point, vertex)
and the third is algebraic (basic feasible solution). Fortunately, all three
definitions are equivalent as we prove next and, for this reason, the three
terms can be used interchangeably.

Theorem 2.3 Let P be a nonempty polyhedron and let x* € P.
Then, the following are equivalent:

{a) x* is a vertex;
(b) x* is an extreme point;

(¢) x" is a basic feasible solution.
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Figure 2.7: The points A, B, C, D, E, F are all basic solutions
because at each one of them, there are two linearly independent
constraints that are active. Points , D, F, F are basic feasible
solutions.

Proof. For the purposes of this proof and without loss of generality, we
assume that P is represented in terms of constraints of the form ajx > b;
and alx = b,.

Vertex = Extreme point

Suppose that x* € P is a vertex. Then, by Definition 2.7, there exists
some ¢ € R such that ¢’x* < &y for every y satisfying y € P and
y#x* fyeP ze P y#xz#x,and0 < A <1, then
¢'x* < ¢’y and ¢'x* < ¢z, which implies that c'x* < ¢'(Ay + (1 - A)z)
and, therefore, x* £ Ay+{1—A)z. Thus, x* cannct be expressed as a convex
combination of two other elements of P and is, therefore, an extreme point
(cf. Definition 2.6).

Extreme point = Basic feasible solution

Suppose that x* € P is not a basic feasible solution. We will show that x*
is not, an extreme point of P. Let I = {i | alx™ = b;}. Since x” is not a
basic feasible solution, there do not exist n linearly independent vectors in
the family a;, ¢ € I. Thus, the vectors a;, 7 € I, lie in a proper subspace
of ", and there exists some nonzero vector d £ R™ such that ajd = 0,
for all i € I. Let € be a small positive number and consider the vectors
¥ = x" +ed and z = x* —ed. Notice that aly = alx* = b;, for i € I.
Furthermore, for ¢ ¢ I, we have aix* > b; and, provided that ¢ is small, we
will also have ajy > b;. (It suffices to choose € so that ¢jajd| < ajx* —b; for
all 4 ¢ I.) Thus, when ¢ is small enougt, y € P and, by a similar argument,
2z € P. We finally notice that x* = (y + =z)/2, wkich implies that x* ‘s not
an extreme point.
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Basic feasible solution = Vertex

Let x* be a basic feasible solution and let 1 = {i | alx* = &} Let
¢=3,.;a;. Wethen have

cx* = E ax* = E b;.

el i€l

Furthermeore, for any x € P and any i, we have a/x > b;, and

cx = Z ax > Z b;. (2.2)

iel iel

This shows that x* is an optimal solution to the problem of minimizing ¢’x
over the set P. Furthermore, equality holds in (2.2) if and only if alx = b,
for all 1 € I. Since x* is a basic feasible solution, there are n linearly
independent constraints that are active at x*, and x* is the unique solution
to the system of equations aix = b;, ¢ € I (Theorem 2.2). It follows that x*
is the unique minmizer of ¢’x over the set P and, therefore, x* is a vertex

of P, a

Since a vector is & basic feasible solution if and only if it is an extreme
point, and since the definition of an extreme point does not refer o any
particular representation of a polyhedron, we conclude that the property
of being a basic feasible solution is also indeperdent of the representation
used. (This is in contrast to the definition of a basic solution, which is
representation dependent, as pointed out in the discussion that followed
Definition 2.9.)

We finally note the following important fact.

Corollary 2.1 Given a finite number of lineer inequality constraints,
there can only be a finite number of basic or basic feasible solutions.

Proof. Consider a system of m linear inequality constraints imposed on
a vector x € R™. At any basic solution, there are n linearly independent
active constraints. Since any n linearly independent active constraints de-
fine a unique point, it follows that different basic solutions correspond to
different sets of n linearly independent active constraints. Therefore, the
number of basic solutions is bounded above by the number of ways that we
can choose n constraints out of a total of m, which is finite. L]

Although the number of basic and, therefore, basic feasible solutions
is guaranteed to be finite, it can be very large. For example, the unit cube
{x eR0<x;€1,i=1,... ,n} is defined in terms of 2n constraints,
but has 2™ basic feasible solutions.
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Adjacent basic solutions

Two distinct basic solutions to a set of linear constraints in R™ are said to
be adjacent if we can find n — 1 linearly independent constraints that are
active at both of them. In reference to Figure 2.7, D and E are adjacent
to B; also, A and € are adjacent to D. If two adjacent basic solutions are
also feasible, then the line segment tha: joins them is called an edge of the
feasible set (see also Exercise 2.15).

2.3 Polyhedra in standard form

The definition of a basic solution {Definition 2.9} refers to general palyhe-
dra. We will now specialize to polyhedra in standard form. The definitions
and the results in this section are central to the development of the simplex
method in the next chapter.

Let P = {x € ®" | Ax = b, x > 0} be a polyhedron in standard
form, and let the dimensions of A be m x n, where m is the number of
equality constraints. In most of our discussion of standard form problems,
we will make the assumption that the m rows of the matrix A are lin-
early independent. (Since the rows are n-dimensional, this requires that
m < n.) At the end of this section, we show that when P is nonempty,
linearly dependent rows of A correspond to redundant constraints that can
be discarded; therefore, our linear independence assumption can be made
without loss of generality.

Recall that at any basic solution, there must be n linearly indepen-
dent constraints that are active. Furthermore, every basic solution must
satisfy the equality constraints Ax = b, which provides us with m active
constraints; these are linearly independent because of our assumption on
the rows of A. In order to obtain a total of n active constraints, we need
to choose n — m of the variables z; and set them to zero, which makes the
corresponding nonnegativity constraints z; > 0 active. However, for the
resulting set of n active constraints to be linearly independent, the choice
of these n — m variables is not entirely arbitrary, as shown by the following
result.

Theorém 2.4 Consider the constraints Ax = b and x > 0 and as-
sume that the mxn matrix A has linearly independent rows. A vector
x € R* is a basic solution if and only if we have Ax =b, and there
exist indices B(1),...,B{m} such that:

(a) The columns Apy,...,Ap(my are linearly independent;

(b) Ifis B(1),..., B(m), then z; = 0. :

Proof. Censider some x € £ and suppose that there are indices B(1},...,
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B(m) that satisfy (a) and (b) in the statement of the theorem. The active
constraints z; = 0, ¢ # B(1),...,B{m), and Ax = b imply that

m n
ZAB(i)-’BB(i) = ZAzI’ =Ax=Dh.
i=1

=1

Since the columns Ap;), i = 1,...,m, are linearly independent, TB(Ys -,
TB(m) are uniquely determined. Thus, the system of equations formed by
the active constraints has a unique solution. By Theorem 2.2, there are n
linearly independent active constraints, and this implies that x is a basic
solution.

For the converse, we assume that x is a basic solution and we will
show that conditions (a) and (b) in the statement of the theorem are satis-
fied. Let EB(1),- -, LRk be the components of x that are nonzero, Since
x is a basic solution, the system of equations formed by the active con-
straints 3.1 ; A;z; = b and 2; = 0,4 # B(1),...,B(k), have a unique
solution (cf. Theorem 2.2); equivalently, the equation ZLI Apze =b
has a unique solution. It follows that the columns A B()s- -, Apix) are
linearly independent. [If they were not, we could find scalars Xj,..., Ag,
not all of them zero, such that Zle A g = 0. This would imply that
Zle Api)(Ts@) + M) = b, contradicting the uniqueness of the solution.]

‘We have shown that the columns A B{1):- -1 Ap(k) are linearly inde-
pendent and this implies that k < m. Since A has m linearly independent
rows, it also has m linearly independent columns, which span ®™. It follows
icf. Theorem 1.3(k) in Section 1.5] that we can find m—k additional columns
Ay, Apm) so that the colurns Apuy, it =1,...,m, are linearly
independent. In addition, if ¢ # B(1),..., B(m), then i # B(1),..., B(k)
(because k < m), and x; = 0. Therefore, both conditions {a) and (b) in
the statement of the theorem are satisfied.

In view of Theorem 2.4, all basic solutions to a standard form poly-
hedron can be constructed according to the following procedure.

Procedure for constructing basic solutions
1. Choose m linearly independent columns A B(1): -+ Ap(
2. Let z; =0 for all i £ B(1),..., B(m).
8. Solve the system of m equations kAx = b for the unknowns B(1))
- o+ sy TB(m)- '

If a basic solution constructed according to this procedure is nonneg-
ative, then it is feasible, and it is a basic feasible solution. Conversely, since
every basic feasible solution is a basic solution, it can be obtained from this
procedure. If x is a basic solution, the variables ¢ B(1)1- -1 TB(m) are called
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basic variables; the remaining variables are called nonbasic. The columns
Apays-. ., ABm) are called the basic columns and, since they are linearly
independent, they form a basis of R™. We will sometimes talk about two
bases being distinet or different, our convention is that distinct bases in-
volve different sets {B(1),..., B{m)} of basic indices; if two bases involve
the same set of indices in a different order, they will be viewed as one and
the same basis.

By arranging the m basic columns next to each other, we obtain an
m x m matrix B, called a basis matriz. (Note that this matrix is invertible
because the basic columns are required to be linearly independent.} We can
similarly define a vector xp with the values of the basic variables. Thus,

\ | [ TBu
B=| Apmy Appm - Apm | Xp = :
o | i

The basic variables are determined by solving the equation Bxg = b whose
unique solution is given by

Xg = Bilb.
Example 2.1 Let the constraint Ax = b be of the form
1 1 2 1 0 00 8
0160100/ _|1m2
1 0 00 0 1 0 - 4
01 00 0 01 6

Let us choose A4, As, Ag, A7 as our basic columns. Note that they are linearly
independent and the corresponding basis matrix is the identity. We then obtain
the basic solution x = (0,0,0,8,12,4,6) which is nonnegative and, therefore,
is a basie feasible solution. Another basis is obtained by choosing the columns
A, A5, Ag, A7 (note that they are linearly independent). The corresponding
basic solution is x = (0,0,4,0, —12,4,6), which is not feasible because zs =
12 < Q.

Suppose now that there was an eighth column Ag, identical to A;. Then,
the two sets of columns {As,As, Ag, A7} and {As, As, Ag, As} coincide. Cn
the other hand the corresponding sets of basic indices, which are {3,5,6,7} and
{3,5,6,8}, are different and we have twe different bases, according to our con-
ventions.

For an intuisive view of basic solutions, recall our interpretation of
the constraint Ax =b, or 3| A;z;, = b, as a requirement to synthesize
the vector b € R™ using the resource vectors A; (Section 1.1). In a basic
solution, we use only m of the resource vectors, those associated with the
basic variables. Furthermore, in a basic feasible solution, this is accom-
plished using a nonnegative amount of each basic vector; see Figure 2.8.




xew'uoneziwndo Jeaul|

56 Chap. 2 The geometry of linear programming

i

sawt nwd
s R

Ag=—A

Figure 2.8: Consider a standard form problem with n = 4 and
m = 2, and let the vectors b, Ay, ..., A4 be as shown. The vectors
A, A; form a basis; the corresponding basic solution is infeasible
because a negative value of z2 is needed to synthesize b from A,
A; The vectors Ay, Az form another basis; the corresponding
basic solution is feasible. Finally, the vectors Ay, A4 do not form
a basis because they are linearly dependent.

Correspondence of bases and basic solutions

‘We now elaborate on the correspondence between basic sclutions and bases.
Different basic solutions must correspond to different bases, because a basis
uniquely determines a basic solution. However, two different bases may lead
to the same basic solution. (For an extreme example, if we have b = 0,
then every basis matrix leads to the same basic solution, namely, the zero
vector.) This phenomenon has some important algorithmic implicazions,
and is closely related to degeneracy, which is the subject of the next section.

Adjacent basic solutions and adjacent bases

Recall that two distinct basic solutions are said to be adjacent if there are
n — 1 linearly independent constraints that are active at both of them.
For standard form problems, we also say that two bases are adjacent if
they share all but one basic column. Then, it is not hard to check that
adjacent basic solutions can always be obtained from two adjacent bases.
Conversely, if two adjacent bases lead to distinct basic solutions, then the
latter are adjacent.

Example 2.2 In reference to Example 2.1, the bases {A4, As, As, A7} and
{A3, As,As, A7} are adjacent because all but one columns are the same. The
corresponding basic solutions x = (0,0, 0,8,12,4,6) and x = (0,0,4,0,—12,4,6)
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are adjacent: we have n = 7 and a total of six common linearly independent
active constraints; these are z; > 0, z» > 0, and the four equality constraints.

The full row rank assumption on A

We close this section by showing that the full row rank assumption on the
matrix A results in no loss of generality.

Theorem 2.5 Let P = {x | Ax =b, x > 0} be a nonempty polyhe-
dron, where A is a matrix of dimensions m X n, with rows al,..., .
Suppose that rank(A) = k < m and that the rows a,...,a] are
linearly independent. Consider the polyhedron

Q={x|ax=b,...a x=b, x>0}
Then Q = P.

Proof. We provide the proof for the case where i, = 1,...,i; = k, that
is, the first k rows of A. are linearly independent. The general case can be
reduced to this one by rearranging the rows of A.

Clearly P C () since any element of P automatically satisfies the
constraints defining (. We will now show that Q C P.

Since rank(A} = k, the row space of A has dimension k and the rows
ay, ..., a, form a basis of the row space. Therefore, every row a’ of A can
be expressed in the form a) = Z;;l Ay, for seme scalars ;. Let x be
an element of P and note that

k k
/ I .
bj=ax= 2 )\Ua]-x= E Asjby, i=1,...,m.
i=1 =1

Consider now an element y of Q. We will show that it belongs to P. Indeed,

for any 1,
k k
a:y = Z )\ija;y = Z /\ijbj = bi,
i=1 i=1
which establishes that y € P and Q C P. ]

Notice that the peolyhedron @ in Theorem 2.5 is in standard form;
namely, @ = {x | Dx = f, x > 0} where D is 2 k x n submatrix of A,
with rank equal to &, and f is a k-dimensional subvector of b. We conclude
that as long as the feasible set is nonempty, a linear programming problem
in standard form can be reduced to an equivalent standard form problem
(with the same feasible set) in which the equality constraints are linsarly
independent.
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Example 2.3 Consider the (nonempty) polyhedron defined by the constraints

211 + w2 + T3 = 2

Ty + T2 =1
1 4+ x3.=1
E],mz,zazﬂ‘

The corresponding matrix A has rank two. This is because the last two rows
(1,1,0) and (1,0,1) are linearly independent, but the first row is equal to the
sum of the other two. Thus, the first constraint is redundant and after it is
eliminated, we still have the same polyhedron.

2.4 Degeneracy

According to our definition, at a basic solution, we must have n lirearly
independent active constraints. This allows for the possibility that the
number of active constraints is greater than n. (Cf course, in n dimensions,
no more than n of them can be linearly independent.) In this case, we say
that we have a degenerate basic solution. In other words, at a degenerate
basic solution, the number of active constraints is greater than the minimum
necessary.

Definition 2.10 A basic solution x € R is said to be degenerate if -
more than n of the constraints are active at x.

In two dimensions, a degenerate basic solution is at the intersection
of three or more lines; in three dimensions, a degenerate basic solution is at
the intersection of four or mare planes; see Figure 2.9 for an illustration. It
turns out that the presence of degeneracy can strongly affect the behavior
of linear programming algorithms and for this reason, we will now develop
some more intuition.

Example 2.4 Corsider the polyhedron P defined by the constraints

T+ z2+ 223 < 8
r2+ 653 £ 12
o < 4
72 <
x1,Z2,23 2> 0.

The vector x = (2,6,0) is a nondegenerate basic feasible solution, because there
are exactly three active and linearly independent constraints, namely, =1 + 22 +
2z3 < 8, 3 < 6, and x5 > 0. The vector x = (4,0,2) is a degenerate basic
feasible solution, because there are four active constraints, three of them linearly
independent, namely, z; + x2 + 273 < 8, 22 + 623 <12, £; < 4, and z2 > 0.
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Figure 2.9: The points 4 and C are degenerate basic feasible
solutions. The points B and F are nondegenerate basic feasible
solutions. The point D is a degenerate basic solution.

Degeneracy in standard form polyhedra

At a basic solution of a polyhedron in standard form, the m equality con-
straints are always active. Therefore, having more than n active constraints
is the same as having more than n — m variables at zero level. This leads
us to the next definition which is a special case of Definition 2.10.

Definition 2.11 Consider the standard form polyhedron P = {x €
R* | Ax = b, x > 0} and let x be a basic solution. Let m be the
number of rows of A. The vector x is a degenerate basic solution if
more than n — m of the components of x are zero.

Example 2.5 Consider once more the polyhedron of Example 2.4. By intro-
ducing the slack variables x4, ..., 7, we can transform it into the standard form
P= {x: (#1,...,27) | Ax=b, x > 0},Where

112100 0 8
|0 160100 | o2
A=li1 00001 0} =1y

¢ 100001 6

Consider the basis consisting of the linearly independent columns Ai, A,, As,
A, To calculate the corresponding basic solution, we first set the nonbasic
variables x4, x5, and x¢ to zero, and tken solve the system Ax = b for the
remaining variables. to obtain x = (4,0,2,0,0,0,6). This is a degenerate basic
feasible solution, because we have a total of four variables that are zero, whereas
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n—m =7 —4=3. Thus, while we initially set only the three nonbasic variables
to zero, the solution to the system Ax = b turned out to satisfy one more of
the constraints (namely, the constraint zz; > 0) with equality. Consider ncw the
basis consisting of the linearly independent columns A, Az, Ay, and Ay. The
corresponding basic feasible solution is again x = (4,0,2,0,0,0,6).

The preceding example suggests that we can think of degeneracy in
the following terms. We pick a basic solution by picking n linearly indepen-
dent constraints to be satisfied with equality, and we realize that certain
other constraints are also satisfied with equality. If the entries of A or
b were chosen at random, this would almost never happen. Also, Figure
2.10 illustrates that if the coefficients of the active constraints are slightly
perturbed, degeneracy can disappear (cf. Exercisz 2.18). In practical prob-
lems, however, the entries of A and b often have a special (nonracdom)
structure, and degeneracy is more common than the preceding argument
would seem to suggest.

Figure 2.10: Small changes in the constraining inequalities can
remove degeneracy.

In order to visualize degeneracy in standard form pelyhedra, we as-
sume that n — m = 2 and we draw the feasible set as a subset of the
two-dimensional szt defined by the equality constraints Ax = b; see Fig-
ure 2.11. At a nondegenerate basic solution, exactly n—m of the constraints
x; > 0 are active; the corresponding variables are nonbasic. In the case of
a degenerate basic solution, more than n — m of the constraints z; > 0 are
active, and there are usually several ways of choosing which n —m variables
to call nonbasic; in that case, there are several bases correspending to that
same basic soluticn. (This discussion refers to the typical case. However,
there are examples of degenerate basic solutions to which there corresponds
only one basis.)

Degeneracy is not a purely geometric property

We close this section by pointing out that degeneracy of basic feasible solu-
tions is not, in general, a geometric (representation independent) preperty,
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Figure 2.11: An (n — m)-dimensional illustration of degener-
acy. Here, n = 6 and m = 4. The basic feasible solution A is
nondegenerate and the basic variables are z:,x2, 23, zs. The ba-
sic feasible solution B is degenerate. We car. choose 1, xs as the
nonbasic variables, Other possibilities are to choose 21,5, or to
choose x5, x5. Thus, there are three possible bases, for the same
basic feasible solution B.

but rather it may depend on the particular representation of a polyhedron.
To illustrate this point, consider the standard form polyhedron {cf. Figure
2.12)

P= {(wl,xz,ws) |21 — 22 =0, 21+ 22+ 223 = 2, @, 29,23 > 0}_
We have n = 3, m = 2 and n—m = 1. The vector (1, 1,0} is nondegenerate

because only one variable is zero. The vector (0,0,1) is degenerate because
two variables are zero. However, the same polyhedron can also be described

3
(0,0,1)

Ty

(1,1,09)

x.

Figure 2.12: An example of degeneracy in a standard form problem.
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Figure 2.13: The polyhedron P contains a line and does not

have an extreme point, while @ does not contain a line and has
extreme points.

in the (nonstanderd) form
P= {(931@2@3) | Z1—22=0, 21+ 22+ 205 =2, 2, > 0, z3 20}-

The vector (0,0,1) is now a nondegenerate basic feasible solution, because
there are only three active constraints.

For another example, consider a nondegenerate basic feasible solution
x* of a standard form polyhedron P = {x | Ax = b, x > 0}, where A
is of dimensions m x n. In particular, exactly n — m of the variables ]
are equal to zero. Let us now represent P in the form P = {x | Ax >
b, —Ax > —b, x > 0}. Then, at the basic feasible solution x*, we have
n — m variables set to zero and an additional 2m inequality constraints are
satisfied with equality. We therefore have n + m active constraints and x*
is degenerate. Hence, under the second representation, every basic feasible
solution is degenerate,

We have established that a degenerate basic feasible solution under
one representation could be nondegenerate under another representation.
Still, it can be shown that if a basic feasible solution is degenerate under one
particular standard form representation, then it is degenerate under every
standard form representation of the same polyhedron (Exercise 2.19).

2.5 Existence of extreme points

We obtain in this section necessary and sufficient conditions for a polyhe-
dron to have at least one extreme point. We first observe that not every
polyhedron has this property. For example, if n > 1, a halfspace in ®" is a
polyhedron without extreme points. Also, as argued in Section 2.2 (cf. the
discussion after Definition 2.9), if the matrix A has fewer than n rows, then
the polyhedron {x € ®" | Ax > b} does not have a basic feasible solution.
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It turns out that the existence of an extreme point depends on whether
a polyhedron contains an infinite line or not; see Figure 2.13. We need the
following definition.

Definition 2.12 A polyhedron P ¢ R" contains a line if there exists
a vector x € P and a nonzero vector d € R"™ such that x+ Xd € P for
all scalars \. :

We then have the following result.

Theorem 2.6 Suppose that the polyhedron P = {x ¢ R" | alx >
b;, i =1,...,m} is nonempty. Then, the following are equivalent:
(a) The polyhedron P has at least one extreme point.

(b) The polyhedron P does not contain a line.

(c) There exist n vectors out of the family ai,...,a,,, which are
linearly independent.

Proof.
(b) = (a)

We first prove that if P does not contain a line, then it has a basic feasible
solution and, therefore, an extreme point. A geometric interpretation of
this proof is provided in Figure 2.14.

Let x be an element of P and let I = {i | alx = b;}. Ifn of the vectors
a;, i € I, corresponding to the active constraints are linearly independent,
then x is, by definition, a basic feasible solution and, therefore, a basic
feasible solution exists. If this is not the case, then all of the vectors a;,
i € I, lie in a proper subspace of R™ and therz exists a nonzero vector
d € ®" such that ajd = 0, for every i € I. Let us consider the line
consisting of all points of the form y = x + Ad, where A is an arbitrary
scalar, For i € I, we have ajy = a/x + Aa/d = ajx = b;. Thus, those
constraints that were active at x remain active at all points on the line.
However, since the polyhedron is asstumed to contain no lines, it follows
that as we vary ), some constraint will be eventually violated. At the
point where some eonstraint is about to be violated, a new constraint must-
become active, and we conclude that there exists some A* and some j ¢ I
such that al(x + A*d) = b;.

We claim that a; is not a linear combination of the vectors a;, i € I.
Indeed, we have alx # b; (because j ¢ I) and aj(x + A*d) = b; (by the
definition of A*). Thus, aid # 0. On the other hand, ald = 0 for every
i € I (by the definition of d) and therefore, d is orthogonal to any linear
combination of the vectors a;, 7 € I. Since d is not orthogonal to a;, we
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Figure 2.14: Starting from an arbitrary point of a polyhedron,
we choose a direction along which all currently active constraints
remain active. We then move along that direction until a new
constraint is about to be violated. At that point, the number of
linearly incependent active constraints has increased by at least
one. We repeat this procedure until we end up with n linearly
independent, active constraints, at which point we have a basic
feasible solution.

conclude that a; is a not a linear combination of the vectors ai, iel
Thus, by moving from x to x 4+ A*d, the number of linearly independent
active constraints has been increased by at least one. By repeating the same
argument, as many times as needed, we eventually end up with a point at
which there are n linearly independent active constraints. Such a point is,
by definition, a basic solution; it is also feasible since we have stayed within
the feasible set.

(a) = (¢)

If P has an extreme point X, then x is also a basic feasible solution (cf. The-
orem 2.3), and there exist n constraints that are active at x, with the
corresponding vectors a; being linearly independent.

(c) = (b)
Suppose that n of the vectors a; are linearly independent and, without
loss of generality, let us assume that a;,...,a, are linearly independent.

Suppose that P contains a line x + Ad, where d is a nonzero vector. We
then have a(x +Ad) > b; for all ¢ and all A. We conclude that ajd = 0 for
all i. (If atd < 0, we can violate the constraint by picking A very large; a

symmetric argument applies if ajd > 0.) Since the vectors a;, i =1,...,1,
are linearly independent, this implies that d = 0. Thisis a contradiction
and establishes that P does not contain a line, [l

Notice that a bounded polyhedron does not contain a line. Similarly,
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the positive orthant {x | x > 0} does not contain a line. Since a polyhedron
in standard form is contained in the positive orthant, it does not contain a
line either. These observations establish the following important corollary
of Theorem 2.6.

Corollary 2.2 Every nonempty bounded polyhedron and every
nonempty polyhedron in standard form has at least one basic feasi-
ble sclution.

2.6 Optimality of extreme points

Having established the conditions for the existence of extreme points, we
will now confirm -he intuition developed in Chapter 1: as long as a linear
programming problem has an optimal solution and as long as the feasible
set has at least one extreme point, we can always find an optimal solution
within the set of extreme points of the feasible set. Later in this section,
we prove a somewhat stronger result, at the expense of a more complicated
proof.

Theorem 2.7 Consider the linear programring problem of minimiz-
ing ¢'x over a polyhedron P. Suppose that P has at least one extreme
point and that there exists an optimal solution. Then, there exists an
optimal solution which is an extreme point of P.

Proof. {See Figure 2.15 for an illustration.) Let @ be the set of all optimal
solutions, which we have assumed to be nonempty. Let P be of the form
P = {x € ®" | Ax > b} and let v be the optimal value of the cost c’x.
Then, § = {x € ®* | Ax = b, ¢’x = v}, which is also a polyhedron. Since

o
&
»

fasiny

Figure 2.15: Tlustration of the proof of Theorem 2.7. Here, G
is the set of optimal solutions and an extreme point x* of Q is alsc
an extreme point of P.
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@ C P, and since P contains no lines (¢f. Theorem 2.6),  contains no lines
either. Therefore, [ has an extreme point.

Let x* be an extreme point of Q. We will show that x* is also an
extreme point of P. Suppose, in order to derive a contradiction, that x*
is not an extreme point of P. Then, there exist y € P, z € P, suck that
y # x*, & # x*, and some A € [0, 1] such that x* = Ay + (1 - A)z. It follows
that v = ¢'x* = Ac'y + (1 - A)c’z. Furthermore, since v is the optimal
cost, ¢'y > v and ¢’z > v. This implies that ¢’y = ¢’z = v and therefore
z € Q and y € (). But this contradicts the fact that x* is an extreme point
of Q. The contradiction establishes that x* is an extreme point of P. In
addition, since x* belongs to @, it is optimal. i

The above theorem applies to polyhedra in standard form, as well as
to bounded polyhedra, since they do not contain a line.

Qur next result is stronger than Theorem 2.7. It shows that the
existence of an optimal solution can be taken for granted, as long as the
optimal cost is finite.

Theorem 2.8 Consider the linear programming problem of minimiz-
ing ¢'x over a polyhedron P. Suppose that P has at least one extreme
point. Then, either the optimal cost is equal to —co, or there exists
an extreme point which is optimal.

Proof. The proof is essentially a repetition of the proof of Theorem 2.6.
The difference is that as we move towards a basic feasible solution, we will
also make sure that the costs do not increase. We will use the following
terminology: an element x of P has renk k if we can find k, but not more
than k, linearly independent constraints that are active at x.

Let us assume that the optimal cost is finite. Let P = {x ¢ R" |
Ax > b} and consider some x € P of rank k < n. We will show that there
exists some y € P which has greater rank and satisfies ¢’y < ¢’x. Let
I = {i|aix =}, where al is the ith row of A. Since k¥ < n, the vectors
a;, ¢ € I, lie in a proper subspace of R, and we can choose some nonzero
d € ®” orthogonal to every a;, ¢ € I. Furthermore, by pessibly taking the
negative of d, we can assume that ¢’d < 0.

Suppose that ¢’d < 0. Let us consider the half-line y = x + Ad,
where ) is a positive scalar. As in the proof of Theorem 2.6, all points
on this half-line satisfy the relations aly = b;, i € I. If the entire half-
line were contained in P, the optimal cost woud be —oo, which we have
assumed not to be the case. Therefore, the half-line eventually exits P.
When this is about to happen, we have some A* > 0 and j & I such that
aj(x 4+ Ad) = b;. We let y = x + 1*d and note that 'y < ¢’x. Asin the
proof of Theorem 2.6, a; is linearly independernt from a;, ¢ € I, and the
rank of y is at least & + 1.
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Suppose now that ¢’d = 0. We consider the line y = x + Ad, where
A is an arbitrary scalar. Since P contains no lines, the line must eventually
exit P and when that is about to happen, we are again at a vector y of rank
greater than that of x. Furthermore, since ¢’d = 0, we have ¢’y = c¢'’x.

In either case, we have found a new point y such that ¢’y < ¢'x, and
whose rank is greater than that of x. By repeating this process as many
times as needed, we end up with a vector w of rank n {thus, w is a basic
feasible solution) such that ¢’'w < ¢'x.

Let wl,...,w" be the basic feasible solut:ons in P and let w* be a
basic feasible solution such that c¢'w* < ¢'w® for all i. We have already
shown that for every x there exists some i such that ¢’w* < ¢’x. It follows
that ¢'w* < ¢’x for all x € P, and the basic feasible solution w* is optimal.

d

For a general linear programming problem, if the feasible set has
no extreme points, then Theorem 2.8 does not apply directly. On the
other hand, any linear programming problem can be transformed into an
equivalent problem in standard form to which Theorem 2.8 does apply.
This establishes the following corollary.

Corollary 2.3 Consider the linear programming problem of minimiz-
ing ¢'x over a ronempty polyhedron. Then, either the optimal cost is
equal to —oo or there exists an optimal solution.

The result in Corollary 2.3 should be contrasted with what may hap-
pen in optimization problems with a ronlinear cost function. For example,
in the problem of minimizing 1/z subject to z > 1, the optimal cost is not
—o0, but an optimal solution does not exist.

2.7 Representation of bounded polyhedra*

So far, we have been representing polyhedra in terms of their defining in-
equalities. In this section, we provide an alternative, by showing that a
bounded polyhedron can also be represented as the convex hull of its ex-
treme points. The proof that we give here is elementary and constructive,
and its main idea is summarized in Figure 2.16. There is a similar repre-
sentation of unbounded polyhedra involving extreme points and “extreme
rays” (edges that extend to infinity). This representation can be developed
using the tools that we already have, at the expense of a more complicated
proof. A more elegant argument, based on duality theory, will be presented
in Section 4.9 and will alse result in an alternative proof of Theorem 2.9
below.
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Figure 2.16: Given the vector z, we express it as a convex com-
bination of y and u. The vector u belongs o the polyhedron Q
whose dimension is lower than that of P. Using induction on di-
mension, we can express the vector u as a convex combination of
extreme poirts of Q. These are also extreme points of P.

Theorem 2.9 A norempty and bounded palyhedron is the convex
hull of its extreme points.

Proof. Every convex combination of extreme points is an element of the
polyhedron, since polyhedra are convex sets. Thus, we only need to prove
the converse result and show that every element of a bounded polyhedron
can be represented as a convex combination of extreme points.

We define the dimension of a polyhedron P C R™ as the smallest
integer k such that P is contained in some k-dimensional affine subspace
of #*. (Recall from Section 1.5, that a k-dimensional affine subspace is a
translation of a k-dimensional subspace.) Our proof proceeds by induction
on the dimension of the polyhedron P. If P is zero-dimensional, it consists
of a single point. This point is an extreme point of P and the result is true.

Let us assume that the result is true for all polyhedra of dimension less
than k. Let P = {x € ®" | alx > b;, ¢ = 1,...,m} be a nonempty bounded
k-dimensional polyhedron. Then, P is contained in a k-dimensional affine
subspace S of " which can be assumed to be of the form

S:{x0+,\1x1+-~+)§kxkU\],---,/\kem},

where x!,. .., x¥ are some vectors in R*. Let f;,...,f,_r be n -k lirearly

independent vectors that are orthogonal to x!,...,x*. Let g; = £/x?, for
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i=1,...,n — k. Then, every element x of S satisfies
f{ngiv Z=1,,‘ﬂ*k (23)

Since P C S, the same must be true for every element of P.

Let z be an element of P. If z is an extreme point of P, then z
is a trivial convex combination of the extreme points of P and ttere is
nothing more to be proved. If Z is not an extreme point of P, let us choose
an arbitrary extreme point y of P and form the half-line consisting of all
points of the form z + A(z — y), where A is a nonnegative scalar. Since
P is bounded, this half-line must eventually exit P and violate cne of the
constraints, say the constraint al,x > b;-. By considering what happens
when this constraint is just about to be violated, we find some A* > 0 and
u € P, such that

u=z+ XNz —y),
and
a,fi- u= bit .
Since the constraint aj.x > b;- is violated if X grows beyond X*, it follows
that al,(z — y) < 0.
Let @ be the polyhedron defined by

Q= {xePl|a.x=b-}
= {xE?R“[anZbi, i=1,...,m, aL.x=bh.}.

Since z,y € P, we have fz = g; = f/y which shows that z—y is orthogonal
to each vector f;, for ¢ = 1,...,n—k. Onthe other hand, we have shown that
al.(z—y) < 0, which implies that the vector a;. is not a linear combination
of, and is therefore linearly independent from, the vectors f;. Note that

QC{xeR ax=0b, fx=g;, i=1,...,n—k},

since Eq. (2.3) holds for every element of P. The set on the right is defined
by n— k41 linearly independent equality constraints. Hence, it is an affine
subspace of dimension k — 1 (see the discussion at the end of Section 1.5).
Therefore, () has dimension at most k — 1.

By applying the induction hypothesis to Q and u, we see that u can
be expressed as a convex combination

u= Z)\ivi

of the extreme points v? of @, where A; are nonnegative scalars that sum
to one. Note that at an extreme point v of @, we must have alv=bforn
linearly independent vectors a;; therefore, v must also be an extreme point
of P. Using the definition of A*, we also have

zfu—&-)\*y
Tl A
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Therefore,

)‘*y /\12 i
2EIE A *;1+A*V’

which shows that z is a convex combination of the extreme points of P. [J

Example 2.6 Consider the polyhedron
P= {(11,I27$3) | x1 + 22+ &3 S 1, X1,%2,T3 > 0}

It has four extreme points, namely, x* = (1,0,0), x* = (0,1,0), x* = (0,0, 1), and
x* = (0,0,0). The vector x = (1/3,1/3,1/4) belongs to P. It can be represented
as

There is a converse to Theorem 2.9 asserting that the convex hull of
a finite number of points is a polyhedron. This result is proved in the next
section and again in Section 4.9.

2.8 Projections of polyhedra:
Fourier-Motzkin elimination*

In this section, we present perhaps the oldest method for solving linear pro-
gramming problems. This method is not practical because it requires a very
large number of steps, but it has some interesting theoretical corollaries.

The key to this method is the concept of a projection, defined as
follows: if x = (a1,...,2,) is a vector in R™ and k < n, the projection
mapping 7; : R — R* projects x onto its first k¥ coordinates:

Trk(x) = Wk(xl" .- azn) = (3:17 e ’I'k)'
We also define the projection II;(S) of a set S C R™ by letting
T (S) = {me({x) | x € S};

see Figure 2.17 for an illustration. Note that S is nonempty if and only if
I1(S) is nonempty. An equivalent definition is

.{(S) = {(xl,...,zk) I there exist T41,...,2n 8.t (Z1,. .., Tn) ES}.

Suppose now that we wish to decide whether a given polyhedron
P C R" is nonenpty. If we can somehow eliminate the variable z, and
construct the set [I,,_;(P} C R* !, we can instead consider the presum-
ably easier problem of deciding whether II,,_;(P) is nonempty. If we keep
eliminating variables one by one, we eventually arrive at the set I, (P) that

Sec. 2.8  Projections of polyhedra: Fourier-Motzkin elimination* 71

£

Figure 2.17: The projections II;(S) and II2(S) of a rotated

three-dimersional cube.

involves a single variable, and whose emptiness is easy to check. The main
disadvantage of this method is that while each step reduces the dimension
by one, a large number of constraints is usually added. Exercise 2.20 deals
with a farily of examples in which the number of constraints increases
exponentially with the problem dimension.

‘We now describe the elimination method. We are given a polyhedron
P in terms of linear inequality constraints of the form

n
E aijzjzbi, i:l,.,.,m.
=1

We wish to eliminate z,, and construct the projection II,_;(P).
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Elimination algorithm

1. Rewrite each constraint 3°7_, a;;z; > b; in the form' -

n—1 ;
ﬂinng—ijEj-Fbi, i=1,...,m;
J=1

if @i, 3 0, divide both sides by o;,. By letling X = {T1,. -+ 1 Tn-1),
we obtain an equivalent representation of P involving the follow-
ing constraints:

z, 2 di+ fi’i, if ayn > 0, (24)
di + f,’-i 2 T, if aj <0, (2.5)
0 > dp + X, if ggn = 0. (2.6)

Here, each d;, d;, dx is a scalar, and each f;, f;, fi is a vector in
R""'l. N
2. Let Q be the polyhedron in 8"~ defined by the constraints

dj”r‘".ﬂsf 2z di+£% ~ if aim >0and a; <0, (27)
0.2 d+EX, i axn =0 (2.8)
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—1+z1/4 > 1-(22:/3)
—5—2z;+72 > 1—(21/2) — (22/2)
—5—2x14+x2 > 1—(21:1/3).

Theorem 2.10 The polyhedron @ constructed by the elimination al-
gorithm is equal to the projection Il,,_(P) of P.

Example 2.7 Consider the polyhedron defined by the constraints

T +x2 > 1

1 +xa+223 2 2
2oy +3z3 > 3
1 — 4z > 4
—2r14+22 -3 > 5

We rewrite these constraints in the form

0

vV

z1l-z1—z
x5 > 1—(1/2) — (£2/2)
z3 > 1-(221/3)
—14 (21/4) >
521 +22 2

X3

3.
Then, the set @ is cefined by the constraints

02 1-x1—2
—1+4+z1/4 > 1—(21/2) — (22/2)

Proof. If X € IL,_;(P), there exists some x,, such that (X,z,) € P. In
particular, the vector x = (X,z,) satisfies Egs. (2.4)-(2.6), from which it
follows immediately that X satisfies Eqs. (2.7)-(2.8), and X € ). This shows
that IT,_1(P) C Q.

We will now prove that @ < 1I,_(P). Let X € Q. It follows from
Eq. (2.7) that

min _(d; + £iX) > max (d; + £/x).
{j\ajn-((])( J 7 ) {z{am>0}( )
Let z, be any number between the two sides of the above inequality. It
then follows that (X, x,) satisfies Eqs. (2.4)-(2.6) and, therefore, belongs to

the polyhedron P. O
Notice that ‘or any vector x = (r;,..., =, ), we have
Tno2(Tn_1(X)) = (T1,.. ., Tn_2) = Tp_2(x).

Accordingly, for any polyhedron P, we also have
Hn—2(Hn—1(P)) = HH—Q(P)'

By generalizing this observation, we see that if we apply the elimination al-
gorithm k times, we end up with the set IL,,_x (P); if we apply it n—1 times,
we end up with IT; (P). Unfortunately, each application of the elimination
algorithm can increase the number of constraints substantially, leading to
a polyhedron II; (P) deseribed by a very large number of constraints. Of
course, since I1; (P) is one-dimensional, almost all of these constraims will
be redundant, but this is of no help: in order to decide which ones are
redundant, we must, in general, enumerate thern.

The elimination algorithm has an important theoretical consequence:
since the projection II;(P) can be generated by repeated application of the
elimination algorithm, and since the elimination algorithm always produces
a polyhedron, it follows that a projection II;(P) of a polyhedron is also a
polyhedron. This fact might be considered obvious, but a proof simpler
than the one we gave is not apparent. We now restate it in somewhat
different language.
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(5:;'

Corollary 24 Let PC %"”" be a polyhedmn Then, the set

Cx eR | there ‘exists y e Rk such that (x,¥) € P}

is also a pojyhedron

b

A variation of Corollary 2.4 states that the image of a polykedron
under a linear mapping is also a polyhedron.

Corollary 2.5 Let PC R" bea polyhedmn and let A beanmXxn.
matrix. Then, the set Q@ = {Ax | x € P} is also a polyhedron.

Erwn e gy

Proof. We have Q = {y € R™ | there exists x € R" such that Ax =
¥, X € P}. Therefore, @ is the projection of the polyhedron {(x,y) €
R+ | Ax =y, x € P} onto the y coordinates. |

Corollary 2.6 The convex hull of a finite number of vectors is a poly- :
" hedroz. ot '

Proof. The convex hull

k k
{Z)\ixl dhi=1 A2 0}

i=1 i=1

of a finite number of vectors x', ..., x" is the image of the polyhedron

k
{(,\},...,,\k) | Sa=1, ,\120}
i=1

under the linear mapping that maps (A1,...,Ax) to Ele Aix*' and is, there-
fore, a polyhedron. ]

We finally indicate how the elimination algorithm can be used to
solve linear programming problems. Consider the problem of minimizing
¢’'x subject to x belonging to a polyhedron P. We define a new variable zo
and introduce the constraint ¢ = ¢'x. If we use the elimination algorithm
n times to eliminate the variables x1,...,x,, we are left with the set

Q = {xo | there exists x € P such that xo = ¢'x},

and the optimal cost is equal to the smallest element of ¢J. An optimal
solution x can be recovered by backtracking (Exercise 2.21).

Sec. 2.9  Summary 75

2.9 Summary

We summarize our main conclusions so far regarding the solutions to linear
programming problems.
(a) If the feasible set is nonempty and bounded, there exists an optimal
solution. Furthermore, there exists an optimal solution which is an
extreme point.

(b) If the feasible set is unbounded, there are the following possibilities:
(i) There exists an optimal sclution which is an extreme point.

(ii) There exists an optimal sclution, but no optimal solution is an
extreme point. (This can only happen if the feasible set has
no exireme points; it never happens when the problem is in
standard form.)

(iti} The optimal cost is —oo.

Suppose now that the optimal cost is finite and that the feasible set
contains at least one extreme point. Since there are only finitely many
extreme points, tae problem can be solved in a finite number of steps, by
enumerating all extreme points and evaluating the cost of each one. This
is hardly a practical algorithm because the number of extreme poirts can
increase exponentially with the number of variables and constraints. In the
next chapter, we will exploit the geometry of the feasible set and develop
the simplex method, a systematic procedure that moves from one extreme
point to another, without having to enumerate all extreme points.

An interesting aspect of the material in this chapter is the distinction
between geometric (representation independent) properties of a polyhedron
and those properties that depend on a particular representation. In that
respect, we have established the following:

(a) Whether or not a point is an extreme point (equivalently, vertex, or
basic feasible solution) is a geometric property.

{b) Whether or not a point is a basic solution may depend on the way
that a polyhedron is represented.

(¢} Whether or not a basic or basic feasible solution is degenerate may
depend on the way that a polyhedron is represented.

2.10 Exercises

Exercise 2.1 For each one of the following sets, determine whether it is a poly-
hedron.

(a) The set of all (z,y) € R* satisfying the constraints

rcosf+ysing < 1, V9 e0,m/2
x> {0,
y 2 0
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(b) The set of all z € R satisfying the constraint £Z — 82 + 15 < 0.
(c) The empty set.

Exercise 2.2 Let f: ®" 1> R be a convex function and let ¢ be some constant.
Show that the set § = {x € R* | f(x) < ¢} is convex.

Exercise 2.8 (Basic feasible solutions in standard form polyhedra with
upper bounds) Consider a polyhedron defined by the constraints Ax = b and
0 £ x < u, and assume that the matrix A has linearly independent rows. Provide
a procedure analogous to the one in Section 2.3 for constructing basic solutions,
and prove an analog of Theorem 2.4.

Exercise 2.4 We know that every linear programming problem can be con-
verted to an equivalent problem in standard form. We also know that nonempty
polyhedra in standard form have at least one extreme point. We are then tempted
o conclude that every nonempty polyhedron has at least one extreme point. Ex-
plain what is wrong with this argument.

Exercise 2.5 (Extreme points of isomorphic polyhedra) A mapping f is
called affine if it is of the form f(x) = Ax + b, where A is a matrix and b is a
vector. Let P and @} be polyhedra in ®” and R™, respectively. We say that P
and Q are isomorpiic if there exist affine mappings f : P+ Qand g: Q — P
such that g(f(x)) =x for all x € P, and f(g(y)) =y forall y € Q. (Intuitively,
isomorphic polyhedra have the same shape.)

(a) If P and Q are isomorphic, show that there exists a one-to-one corraspon-
dence between their extreme points. In particular, if f and g are as above,
show that x is an extreme point of P if and only if f(x) is an extreme point
of Q.

(b) (Introducing slack variables leads to an isomorphic polyhedron)
Let P={x € R" | Ax > b, x > 0}, where A is a matrix of dimensions
kxn Let @={(x,z) e R"** | Ax—2=b, x>0, z > 0}. Show that P
and @ are isomorphic.

Exercise 2.6 (Carathéodory’s theorem) Let A;,..., A, be a collection of

vectors in R™.
C= {Z,\Ai Aoy e > o}.
i=1

(a) Let
Show that any element of C' can be expressed in the form 37 | A:A;, with
Ai 2 0, and with at most m of the coeficients A; being nonzero. Hint:
Consider the polyhedron

A= {(A],...,An) eR”

Zn:AiA.i=y, )\1,.,.,Xn20}.

=1

(b) Let P be the convex hull of the vectors A;:

b= {i*i—"ﬁ il/\i=1, ,\1....,,\"20},
=1 i=
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Show that any element of P can be expressed in the form 57| \; A;, where
> Ai=1land A; > 0 for all i, with at most m + 1 of the coefficients A;
being nonzero.

Exercise 2.7 Suppose that {x € ®" |alx > b;, i = 1,...,m} and {x € R" |
gix = hi, i =1,..., k} are two representztions of the same nonempty polyhedron.
Suppose that the vectors ai, ..., a,, span #*. Show that the same must be true
for the vectors g,...,2x.

Exercise 2.8 Consider the standard form polyhedron {x | Ax = b, x > 0},
and assume that the rows of the matrix A are linearly independent. Let x be a
basic solution, and let J = {| z; # 0}. Show that a basis is associated with the
basic solution x if and only if every column A;, i € J, is in the basis.

Exercise 2.9 Consider the standard form polyhedron {x | Ax = b, x > 0},
and assume that the rows of the matrix A are linearly independent.
(a) Suppose that two different bases lead to the same basic solution. Show
that the basiz solution is degenerate.
{b) Consider a degenerate basic solution. Is it true that it corresponds to two
or more distinct bases? Prove or give a counterexample.
(c) Suppose that a basic solution is degenerate. Is it true that there exists an
adjacent basic solution which is degenerate? Prove or give a counterexam-
ple.

Exercise 2.10 Consider the standard form polyhedron P={x | Ax=h, x >
0}. Suppose that the matrix A has dimensions m x n and that its rows are
linearly independent. For each one of the following statements, state whether it
is true or false. If t-ue, provide a proof, else, provide a counterexample.

{(a) Ifn=m+1,then P has at most two basic feasible solutions.

{b) The set of all optimal sclutions is bounded.

(c) At every optimal solution, no more than m variables can be positive.

(d) 1If there is more than one optimal solution, then there are uncountably
many optimal solutions.

(e) If there are several optimal solutions, then there exist at least twe basic
feasible solutions that are optimal.

(f) Consider the problem of minimizing max{c'x,d'x} over the set P. If this
problem has an optimal solution, i must have an optimal solution which
is an extreme point of P.

Exercise 2.11 Let P = {x € R" | Ax > b}. Suppose that at a particular
basic feasible solution, there are & active constraints, with & > n. Is it true
that there exist exactly (1':) bases that lead to this basic feasible solution? Here
(i) = k!/(n!(k — n)!) is the number of ways that we can choose n out of k given
items.

Exercise 2.12 Consider a nonempty polyhedron P and suppose that for each
variable x; we have either the constraint z; > 0 or the constraint z; <0 Isit
true that P has at least one basic feasible solution?
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Exercise 2.13 Consider the standard form polyhedron P = {x | Ax=b, x >
0}. Suppose that the matrix A, of dimensions m x n, has linearly independent
rows, and that all basic feasible solutions are nondegenerate. Let x be an element
of P that has exactly m positive components.

(a) Show that x is a basic feasible solution.

{b) Show that the result of part (a) is false if the nondegeneracy assumption is
removed.

Exercise 2.14 Let P be a bounded polyhedron in R™, let a be a vector in 7,
and let b be some scalar. We define

Q={xeP\a’x=b}.

Show that every extreme point of ) is either an extreme point of P or a convex
combination of two adjacent extreme points of P.

Exercise 2.15 (Edges joining adjacent vertices) Consider the polyhedron
P={xe® |ax>b, it =1, ..,m} Suppos: that u and v are distinct
basic feasible solutions that satisfy alu = ajv = &, i = 1,...,n — 1, and that
the vectors a,...,an,_1 are linearly independent. {In particular, u and v are
adjacent.) Let L = {Au+ (1 — A)v | 0 <X < 1} be the segment that joins u and
v. Provethat L={z€ P |ajz=0b;, i=1,...,n— 1}

Exercise 2.16 Consider theset (x € R |71 ==z, 1 =0, 0 <z < 1}
Could this be the feasible set of a problem in standard form?

Exercise 2.17 Consider the polyhedron {x € ®* | Ax < b, x > 0} and a
nondegenerate basic feasible solution x*. We introduce slack variables z and
construct a corresponding polvhedron {(x,z) | Ax+2z=b, x>0, z 2 0} in
standard form. Show that (x*,b— AX") is a nondegenerate basic feasible solution
for the new polyhedron.

Exercise 2.18 Consider a polyhedron P = {x | Ax > b}. Given any ¢ > 0,
show that there exists some b with the following two properties:

(a) The absolute value of every component of b — b is bounded by e.
(b) Every basic feasible solution in the polyhedron P = {x | Ax > b} is
nondegenerate.

Exercise 2.19* Let P C R" be a polyhedron in standard form whose definition
involves m linearly independent equality constraints. Its dimension is defined as
the smallest integer k such that P is contained in some k-dimensional affine
subspace of R".

(a) Explain why the dimension of P is at most n—m.

(b) Suppose that P has a nondegenerate basic feasible solution. Show that the
dimension of P is equal to n — m.

(c) Suppose that x is a degenerate basic feasible solution. Show that x isdegen-
erate under every standard form representaticn of the same polyhedron (in
the same space ®"). Hint: Using parts (&) and (b), compare the number of
equality constraints in two representations of P under which x is degenerate
and nondegenerate, respectively. Then, count active constraints.
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Exercise 2.20* Consider the Fourier-Motzkin elimination algorithm.

{a) Suppose that the number m of constraints defining a polyhedron P is even.
Show, by means of an example, that the elimination algorithm may produce
a description of the polyhedron I,_(P) involving as many as m?/4 linear
constraints, but no more than that.

(b) Show that the elimination algorithm produces a description of the one-
dimensional polyhedron IT; (P) involving no more than 1rn,2n71/22n'2 con-
straints.

(c) Letn = 2P +p+2, where p is a nonnegative integer. Consider a polyhedron
in R™ defined by the 8(3) constraints

ta ta ko, <1, 1<i<j<k<n,

where all possible combinations are present. Show that after p eliminations,

we have at least
22P+2

constraints. (Note that this number increases exponentialy with n.)

Exercise 2.21 Suppose that Fourier-Motzkin elimination is used in the manner
described at the end of Section 2.8 to find the optimal cost in a linear programming
problem. Show how this approach can be augmented to obtain an optimal selution
as well.

Exercise 2.22 Let P and Q be polyhedra in R*. Let P+ Q@ = {x+y|x €
P yeq}
{a) Show that P + @Q is a polyhedron.

(b) Show that every extreme point of P + @Q is the sum of an extreme point of
P and an ext-eme point of ).

2.11 Notes and sources

The relation between algebra and geometry goes far back in the history of
mathematics, but was limited to two and three-dimensional spaces. The
insight that the same relation goes through in higher dimensions only came
in the middle of the nineteenth century.

2.2, Our algebraic definition of basic (feasible) solutions for general poly-
hedra, in terms of the number of linearly independent active con-
straints, is not common. Newvertheless, we conmsider it to be quite
central, because it provides the main bridge between the algebraic
and geometric viewpoint, it allows for a unified treatment, and shows
that there is not much that is special abous standard form problems.

2.8. Fourier-Motzkin elimination is due to Fourier (1827}, Dines (1918),
and Motzkin (1936).
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We saw in Chapter 2, that if a linear programming problem in standard
form has an optimal solution, then there exists a basic feasible solution that
is optimal. The simplex method is based on this fact and searches for an op-
timal solution by moving from one basic feasible solution to another, along
the edges of the feasible set, always in a cost reducing direction. Eventu-
ally, a basic feasible solution is reached at which none of the available edges
leads to a cost reduction; such a basic feasible solution is optimal aad the
algorithm terminates. In this chapter, we provide a detailed development
of the simplex method and discuss a few different implementations, includ-
ing the simplex tableau and the revised simplex method. We also address
some difficulties that may arise in the presence of degeneracy. We provide
an interpretation of the simplex method in terms of column geometry, and
we conclude with a discussion of its running :ime, as a function of the
dimension of the problem being solved.

Throughout this chapter, we consider the standard form problem

minimize c¢'x
subject to Ax
x

b
07

vl

and we let P be the corresponding feasible set. We assume that the dimen-
sions of the matrix A are m x n and that its rows are linearly independent.
We continue using our previous notation: A, is the ¢th column of the matrix
A, and a is its ith row.

3.1 Optimality conditions

Many optimization algorithms are structured as follows: given a feasible
solution, we search its neighborhood to find a nearby feasible solution with
lower cost. If no nearby feasible solution leads to a cost improvement, the
algorithm terminates and we have a locally optimal solution. For general
optimization preblems, a locally optimal solusion need not be (globally)
optimal. Fortunately, in linear programming, local optimality implies global
optimality; this is because we are minimizing a convex function over a
convex set (cf. Exercise 3.1). In this section, we concentrate on the problem
of searching for a direction of cost decrease in a neighborhood of a given
basic feasible solution, and on the associated optimality conditions.

Suppose that we are at a point x € P and that we contemplate moving
away from x, in the direction of a vector d € ™. Clearly, we should only
consider those choices of d that do not immediately take us outside the
feasible set. This leads to the following definition, illustrated in Figure 3.1.
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Figure 3.1: Feasible directions at different points of a polyhedron.

Deﬁnitio.n 3.1 Let x be an element of a polyhedron P. A vector
d € R" is said to be a feasible direction at x, if there exists a
positive scalar 8 for which x + 6d € P.

Let x be a -basic feasible solution to the standard form problem,
let B(1),...,B{m} be the indices of the basic variables, and let B =
[A 1) - - A ggmy) be the corresponding basis matrix. In particular, we have
x; = 0 for every nonbasic variable, while the vector xg =

, B = (Zp1)s. .-, T
of basic variables is given by ey B(m))

Xp = B 'b.

We consider the possibility of moving away from x, to a new vector
x +60d, by selecting a nonbasic variable =; {which is initially at zero level),
and increasing it to a positive vatue 6, while keeping the remaining nonbasic
‘_fariables at zero. Algebraically, d; = 1, and d; = 0 for every nonbasic index
i other than j. At the same time, the vector xz of basic variables changes
to xg +f0dg, where dpg = (dB(l),dB(Q), RN dg(m;) is the vector with those
components of d that correspond to the basic variables.

Given that we are only interested in feasible solutions, we require
A(x +0d) = b, and since x is feasible, we also have Ax = b. Thus, for the
equality constraints to be satisfied for # > 0, we need Ad = 0. Recal now
that d; = 1, and that d; = 0 for all other nonbasic indices i. Then,

n m
0= Ad = ZAidi = ZA‘B(i)dB(Z) +AJ = BdB+ AJ.

i=1 i=1

Since the basis masrix B is invertible, we obtain

dg=-B7'A;. (3.1
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The direction vector d that we have just constructed will be referred
to as the jth basic direction. We have so far guaranteed that the equality
constraints are respected as we move away from x along the basic direction
d. How about the nonnegativity constraints? We recall that the variable
z; is increased, and all other nonbasic variables stay at zero level. Thus,
we need only worry about the basic variables. We distinguish two cases:

{a) Suppose that x is a nondegenerate basic feasible solution. Then,
xg > 0, from which it follows that xg + 68dp > 0, and feasibility is
maintained, when 6 is sufficiently small. In particular, d is a feasible
direction.

(b) Suppose now that x is degenerate. Then, d is not always a feasible di-
rection. Indeed, it is possible that a basic variable 2 5(;) is zero, while
the corresponding component dg(;) of dg = —B*IA]' is negative. In
that case, if we follow the jth basic direction, the nonnegativity con-
straint for £p(;) is immediately violated, and we are led to infeasible
solutions; see Figure 3.2.

We now study the effects on the cost function if we move along a basic
direction. If d is the jth basic direction, then the rate c¢'d of cost change
along the direction d is given by ¢zdp +¢;, where cg = (cB(1), - - - :CB(m))-
Using Eq. (3.1), this is the same as ¢; — ¢gB™'A;. This quantity is im-
portant enough to warrant a definition. For an intuitive interpretation, c;
is the cost per unit increase in the variable x4, and the term —cpB A is
the cost of the compensating change in the basic variables necessitated by
the constraint Ax = b.

Definition 3.2 Let x be a basic solution, let B be an associated basis
matrix, and let cp be the vector of costs of the basic variables. For
each j, we define the reduced cost T; of the variable z; according to
the formula

Ej =Cj — C’BB_lA.j‘.

Example 3.1 Consider the linear programming problem

minimize ¢i1T1 + Ca®2 + C3¥3 + CsTq

subject to z + ®2 + Xz 4+ x4 = 2
211 + 3z3 + dxy = 2
1,32, %3, %4 = 0.

The first two columns of the matrix A are A; = (1,2) and Az = (1,0). Since
they are linearly independent, we can choose x1 and x2 as our basic variables.
The corresponding basis matrix is

[y 2]
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N

Figure 3.2: Let n = 5, n—m = 2. As discussed in Section 1.4, we
can visualize the feasible set by standing on the two-dimensional
set defined by the constraint Ax = b, in which case, the edges of
the feasible set are associated with the nonnegativity constraints
x; > 0. At the nondegenerate basic feasible solution E, the vari-
ables 1 and T3 are at zero level [nonbasic) and za, z4, 5 are
positive basic variables. The first basic direction is obtained by
increasing x1, while keeping the other nonbasic variable x3 at zero
level. This is the direction corresponding to the edge EF. Con-
sider now the degenerate basic feasible solution F and let z3, x5
be the nonbasic variables. Note that x4 is a basic variable at zero
level. A basic direction is obtained by increasing z3, while keeping
the other nonbasic variable x5 at zero level. This is the direction
corresponding to the line F'G and it takes us outside the feasible
set. Thus, this basic direction is no: a feasible direction.

We set 3 = x4 = 0, and solve for x;, 72, to obtain - = 1 and 22 = 1. We have
thus obtained a noncegenerate basic feasible solution.

A basic direction corresponding to an increase in the nonbasic variable x3,
is constructed as follows. We have ds = 1 and dy = 0. The direction of change of
the basic variables is obtained using Eq. (3.1):

d) _ dB(l) _ _ _n-t _ 0 1,2 1) -3/2-‘
{d2:|_[dB(2) =dg =-B" Ay =- 1 1,2 3| = 12 |

The cost of moving along this basic direction is ¢’'d = —3e1/2 + €2/2 + e3. This
is the same as the reduced cost of the variable 3.

Consider now Definition 3.2 for the case of a basic variable. Since B
is the matrix [A gy -+ Apem), we have BTHAgq) -+ Apgmy] = I, where
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Iis the m x m identity matrix. In particular, B~ Ay is the ith eolumn
of the identity matrix, which is the ith unit vector e;. Therefore, for every
basic variable zg;), we have

Ta(i) = CB() — 5B Ap) = cpiy — Cpei = ey — o =9,

and we see that the reduced cost of every basic variable is zero.

Our next result provides us with optimelity conditions. Given our
interpretation of the reduced costs as rates of cost change along certain
directions, this result is intuitive.

Theorem 3.1 Consider a basic feasible solution x associated with a
basis matrix B, and let T be the corresponding vector of reduced costs.

(a) If T©> 0, then x is optimal
{b) Ifx is optimal and nondegenerate, thea € > 0.

Proof.

(a) We assume that € > 0, we let y be an arbitrary feasible solution, and
we define d = y — x. Feasibility implies that Ax = Ay = b and,
therefore, Ad = 0. The latter equality can be rewritten in the form

Bds+ ) A, =0,
iEN
where N is the set of indices corresponding to the nonbasic variables
under the given basis. Since B is invertible, we obtain

dg=-3Y BlAd;
iEN

and

C’d = C!BdB + ZCidi = Z(Ci - C,BB_IAi)di = Zﬁid,’.

WEN iEN iEN

For any nonbasic index i € N, we must have z; = 0 and, since y
is feasible, y; > 0. Thus, d; > 0 and ¢d; > 0, for all i € N. We
conclude that ¢’(y — x) = ¢/d > 0, and since y was an arbitrary
feasible solution, x is optimal.

(b) Suppose that x is a nondegenerate basic feasible solution end that
z; < 0 for some j. Since the reduced cost of a basic variable is always
zero, x; must be a nonbasic variable and ¢; is the rate of cos; change
along the jth basic direction. Since x is nondegenerate, the jth basic
direction is a feasible direction of cost decrease, as discussed earlier.
By moving in that direction, we obtain feasible solutions whose cost
is less than that of x, and x is not optimal. O
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Note that Theorem 3.1 allows the possibility that x is a (degenerate)
optimal basic feasible solution, but that ¢; < 0 for some nonbasic index j.
There is an analog of Theorem 3.1 that provides conditions under which
a basic feasible solution x is a unique optimal solution; see Exercise 3.6.
A related view of the optimality conditions is developed in Exercises 3.2
and 3.3.

According to Theorem 3.1, in order to decid= whether a nondegenerate
basic feasible soluiion is optimal, we need only check whether all reduced
costs are nonnegative, which is the same as examining the n — m basic
directions. If x is a degenerate basic feasible solution, an equally simple
computational test for determining whether x is optimal is not available
(see Exercises 3.7 and 3.8). Fortunately, the simplex method, as developed
in subsequent sections, manages to get around this difficulty in an effective
manner.

Note that in order to use Theorem 3.1 and assert that a certain ba-
sic solution is optimal, we need to satisfy two conditions: feasibility, and
nonnegativity of the reduced costs. This leads us to the following definition.

Definition 3.3 A basis matrix B is said to be optimal if:
(a) B~!'b>0, and
(b) =c —czB A0

Clearly, if an optimal basis is found, the corresponding basic solution
is feasible, satisfies the optimality conditions, and is therefore optimel. On
the other hand, in the degenerate case, having an optimal basic feasible
solution does not necessarily mean that the reduced costs are nonnegative.

3.2 Development of the simplex method

We will now comglete the development of the simplex method. Qur main
task is to work out the details of how to move to a better basic feasible
solution, whenever a profitable basic direction is discovered.

Let us assume that every basic feasible solution is nondegenerate.
This assumption will remain in effect until it is explicitly relaxed later
in this section. Suppose that we are at a basic feasible solution x and
that we have computed the reduced casts €; of the nonbasic variables. If
all of them are nonnegative, Theorem 3.1 shows that we have an optimal
solution, and we stop. If on the other hand, the reduced cost ¢; of a nonbasic
variable z; is negative, the jth basic direction d is a feasible direction of
cost decrease. [This is the direction obtained by letting d; = 1, d; = 0
for { #£ B(1),...,B(m),j, and dp = -B7'A;] While moving along this
direction d, the nonbasic variable z; becomes positive and all other noubasic
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variables remain at zero. We destribe this situation by saying that z; (or
A;) enters or is brought into the basis.

Once we start moving away from x along the direction d, we are
tracing points of the form x + #d, where & > 0. Since costs decrease along
the cirection d, it is desirable to move as far as possible. This takes us to
the point x + #*d, where

8* = max {¢ > 0| x+6d € P}.

The resulting cost change is 8*¢’d, which is the same as 8°T;.

We now derive a formula for @*. Given that Ad = 0, we have A(x +
8d) = Ax = b for all 8, and the equality ccnstraints will never be violated.
Thus, x + 0d can become infeasible only if one of its components becomes
negative. We distinguish two cases:

(a) If d > 0, then x +6d > 0 for all ¢ > (¢, the vector x + #d never
becomes infeasible, and welet 6 = co.
{b) If d; < 0 for some i, the costraint z;+ 0d; = 0 becomes 0 < —x;/d;.

This constraint on § must be satisfiel for every ¢ with d; < 0. Thus,

the largest possible value o 8 is

" . { 331)
= min ——].
{ilds <0} \ d;

Recall that if z; is a nonbasic variable, then either z; is the entering
variable and d; = 1, or else d; = 0. In either case, d; is nonnegative.

Thus, we only need to consider the basic variables and we have the A

equivalent formula

rgr;
6 = min ()i@)) . (3.2
{i=1...,m|dp(i) <0} dB:i)
Note that * > 0, because zg;; > 0 for all 4, as a consequence of

nondegeneracy.

Example 3.2 This is a continuation of Example 3.1 from the previous section,
dealing with the linear programmirg problem

minimize c¢1x1 + C3T2 + Cakyz + CiZ4

subject to r; - 2+ T3 + xg =
2 + 3xmz + dxg
T1,T2,%3,7T4 20

I
[CEN

Let us again consider the basic feasble solutim x = (1,1,0,0) and recall that the
reduced eost & of the nonbasic variable z3 was found to be —3e1/2 +¢2/2 + c3.
Suppose that ¢ = (2,0,0,0), in which case, we have & = —3. Since €3 is negative,
we form the corresponding basic direction, which is d = (—3/2,1/2,1,0), and
consider vectors of the form x+8d, with @ > 0. As ¢ increases, the only component
of x that decreases is the first one (because & < 0). The largest possible value
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of 8 is given by 8* = —(x1/d1) = 2/3. This takes us to the point y =x+2d/3 =
{0,4/3,2/3,0). Note that the columns Az and Aj corresponding to the nonzero
variables at the new vector y are (1,0) and (1, 3), respectively, and are linearly
independent. Therefore, they form a basis and the vector y is a new basic feasible
solution. In particular, the variable 3 has entered the basis and the variable x;
has exited the basis.

Once #* is chosen, and assuming it is finite, we move to the new
feasible solution y = x+6*d. Sincez; = 0andd; =1, wehavey; = 8* > 0.
Let £ be a minimizing index in Eq. (3.2), that is,

_Tee _ o (_IB(:‘)) — o~
dpy  {i=L..mldaw <0} \ dpg ’

in particular,
dg(g) < 0,

and

Tpiey + e*da(g) = 0.
We observe that the basic variable z3(; has become zero, whereas the
nonbasic variable =; has now become positive, which suggests that &; should
replace Tz in the basis. Accordingly, we take the old basis matrix B and
replace A gy with A;, thus obtaining the matrix

- | | | | |
B=| Agy -+ Ape1y A; Apery - Apm |- (33)
| |

Equivalently, we are replacing the set {B(1),...,B(m)} of basic indices by

a new set {B(1),...,B(m)} of indices ziven by

mn={fm’2i? (3.4)

Theorem 3.2

(a) The colum_ris Apy, 1 # £, and A; are linearly independent and,
therefore, B is a basis matrix.

(b) The vector y = x +6*d is a basic feasible solution associated
with the basis matrix B.

Proof,
{a) If the vectors Ag(i), i=1,...,m, are linearly dependent, then there
exist coefficients Aq,..., A, not all of them zero, such that

m
DN, =0,
i=1
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which implies that

i)\iB‘lAgm =0,

i=1

and the vectors BflAE(i» are also linearly dependent. To show that

this is not the case, we will prove that the vectors B 1A gy, i # 4, 1
and B~1A; are linearly independent. We have B™'B = L. Since §
Apyyis the ith column of B, it fdlows that the vectors B~ 1AB(,), -’
i & £, are all the unit vectors except for she fth unit vector. In §
partlcular they are linearly independent and their £th component is
zero. On the other hand, B™'A; is equal to —dg. Its fth entry,
—dpg(g, is nonzero by ths deﬁmtlon of £. Thus, B7'A; is linearly
independent from the unit vectors B~ 1A B 1 # L. ]

(b) Wehavey >0, Ay = b, and y; = 0 for i # B(1),...,B(m). Fur-}
thermore, the columns AB(U, e AB( ) have just been shown to be
linearly independent. It follows that y is a basic feasible solution §
associated with the basis matrix B. O ;

Since 0" is positive, the new basic feasible solution x + 0*d is distinet §
from x; since d is a direction of cost decrease, the cost of this new basic §
feasible solution is strictly smaller. We have therefore accomplished our §
objective of moving to a new basic feasible solution with lower cost. We
can now summarize & typical iteration of the simplex method, also known 3
as a pivot (see Section 3.6 for & discussien of the origins of this term). For |
our purposes, it is convenient to define avector u = (w1, ... 1) by letting

u=-dg =B A,

where A; is the column that enters the basis; in particular, u; = —dp(i)s
fori=1,...,m.

An iteration of the simplex metlod 1

1. In a typical iteration, we start with a basis consisting of the @E

basic columns A gy, - - , AB(m), and an associated basic feasible
solution x.

2. Compute the reduced costs ¢; = ¢; — ¢B~ A for all nonbasic
indices j. If they are all nonnegative, the current basic feasible- 2
solution is optimal, and the algorithm terminates; else, choose !
some j for which &; <0. 1

3. Compute u=B~!A;. If no conponent of u is positive, we have :
#* = oo, the optimal cost is —o0, and the algorithm terminates. -3
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4. If some component of u is positive, let

. ; 2B

min
{i=1,.,m|u; >0} Uy

5. Let £ be such that 8* =z /ue. Form a new basis by replacing
Apg with A;. If y is the new basic feasible solution, the values
of the new basic variables are y; = 8" and ypu) = Ty — 0 u;,

i£ L

The simplex method is initialized with an arbitrary basic feasible
solution, which, for feasible standard form problems, is guaranteed to exist.
The following theorem states that, in -he nondegenerate case, the simplex
method works correctly and terminates after a finite number of iterations.

Theorem 3.3 Assume that the feasible set is nonempiy and that ev-

ery basic feasible solution is nondegenerate. Then, the simplex method

terminates after a finite number of iterations. At termination, there

are the following two possibilities:

(a) We have an optimal basis B and an associated basic feasible
solution which is optimal.

(b) We have found a vector d satisfying Ad=0,d > 0, and ¢/d < 0,
and the optimal cost is —o0.

Proof. If the algorithm terminates due to the stopping criterion in Step
2, then the optimality conditions in Theorem 3.1 have been met, B is an
optimal basis, and the current basic feasible solution is optimal.

If the algoritkm terminates because the criterion in Step 3 has been
met, then we are at a basic feasible solution x and we have discovered a
nonbasic variable z; such that £; < 0 and such that the corresponding basic
direction d satisfies Ad = 0 and d > 0. In particular, x 4 dd € P for all
§ > 0. Since ¢'d =, < 0, by taking # arbitrarily large, the cost can be
made arbitrarily negative, and the optimal cost is —co.

At each iteration, the algorithm moves by a positive amount ¢* along
a direction d that satisfies ¢’d < 0. Therefore, the cost of every successive
asic feasible solution visited by the algorithm is strictly less than the cost
of the previous one, and no basic feasible solution can be visited twice.
Bince there is a finite number of basic feasible solutions, the algorithm
must eventually terminate. Ll

Theorem 3.3 provides an independent proof of some of the results
of Chapter 2 for nondegenerate standard form problems. In particular,
it shows that for feasible and nondegenerate problems, either the optimal




xew'uoneziwndo Jeaul|

92 Chap. 3  The simplex method

cost is —oo, or there exists a dasic feasible solution which is optimal (cf.

Theorem 2.8 in Section 2.6). While the proof given here might appear more

elementary, its extension to th: degenerate case is not as simple.

The simplex method for degenerate problems

We have been working so far under the assumption that all basic feasible

solutions are nondegenerate. Suppose now that the exact same algcrithm
is used in the presence of degeneracy. Taen, the following new possibilities
may be encountered in the cotrse of the algorithm.

(a) If the current basic feasible soluticn x is degenerate, 0* can be equal
to zero, in which case, thz new basic feasible solution y is the seme as ‘
x. This happens if some basic variable g is equal to zero and the ]

corresponding componert dgy of the direction vector d is negative.

Nevertheless, we can stil define ¢ new basis B, by replacing A B(&)
with A; [cf. Egs. (3.3)-(3.4)], and Theorem 3.2 is still valid.

{b) Evenif #* is positive, it may happen that more than one of the original

basic variables becomes sero at the new point x+60*d. Since only one |
of them exits the basis, the others remain in the basis at zerc level, |

and the new basic feasible solution is degenerate.

Basis changes while staying at tke same basic feasible solution are ;
not in vain. As illustrated in Figure 3.5, a sequence of such basis changes |
may lead to the eventual discovery of a cost reducing feasible direction. On |
the other hand, a sequence of basis changes might lead back to the initial |
basis, in which case the algorithm may loop indefinitely. This undesirable |

phenomenon is called cyeling. An example of cycling is given in Section 3.3,

after we develop some bookkeeping took for carrying out the mechanics of
the algorithm. It is sometimes maintained that cycling is an exceptionally |
rare phenomenon. However, for many highly structured linear program- 3
ming problems, most basic feasible solutions are degenerate, and cycling

is a real possibility. Cycling can be avoided by judiciously choosing the

variables that will enter or exit the basis (see Section 3.4). We now discuss |

the freedom available in this 1espect.

Pivot Selection

The simplex algorithm, as we describec it, has cartain degrees of freedom:
in Step 2, we are free to choose any j whose reduced cost €; is negative;
also, in Step 5, there may be several indices £ that attain the minimum in
the definition of #*, and we are free to choose any one of them. Rules for
making such choices are called pivoting rules.

Regarding the choice of the entering column, the following rules are |

some natural candidates:
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Figure 3.3: We visualize a problem in standard form, with
n —m = 2, by standing on the two-dimensional plane defined by
the equality constraints Ax = b. The basic feasible solution x is
degenerate. If x4 and z; are the nonbasic variables, then the two
corresponding basic directions are the vectors g and f. For either of
these two basic directions, we have 8" = 0. However, if we perform
a change of basis, with z4 entering the basis and z¢ exiting, the
new nonbasic variables are zs and zg, and the two basic directions
are h and —-g. (The direction —g is the one followed if zs is in-
creased while x5 is kept at zero.} In particular, we can now follow
direction h to reach a new basic feasible solution y with lower cost.

(a) Choose a column A;, with ¢; < 0, whose reduced cost is the most
negative. Since the reduced cost is the rate of ckange of the cost
function, this rule chooses a direction along which costs decrease at
the fastest rate. However, the actual cost decrease depends on how
far we move along the chosen direction. This suggests the next rule.

(b) Choose a column with ¢; < 0 for which the corresponding cost de-
crease 0*|¢;| is largest. This rule offers the possibility of reaching
optimality after a smaller number of iterations. On the other hand,
the computational burden at each iteration is larger, because we need
to compute #* for each column with & < 0. The available empirical
evidence suggests that the overall running time does not improve.

For large problems, even the rule that chooses the most negative ¢;
can he computationally expensive, because it requires the computation of
the reduced cost of every variable. In practice, simpler rules are sometimes
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used, such as the smallest subseript rule, that chooses the smallest j for 1
which ¢; is negative. Under this rule, once a negative reduced cost is j

discovered, there is no reascn to compute the remaining reduced costs.

Other criteria that have been found to improve the overall running time §
are the Devex (Harris, 1973) and the stzepest edge rule (Goldfarb and Reid, ]
_977). Finally, there are methods based on candidate lists whereby one 3
examines the reduced costs of nonbasic variables by picking them one at 1
a time from a prioritized list. There are different ways of maintaining

such prioritized lists, depending on the rule used for adding, removing, or
reordering elements of the list.

Regarding the choice of the exiting column, the simplest option is §
again the smallest subscript rule: out of all variables eligible to exit the 4
basis, choose one with the smallest subscript. It turns out that by following §
the smallest subscript rule for both tke entering and the exiting column, $

eycling can be avoided (cf. Section 3.4).

3.3 Implementations of the simplex method

In this section, we discuss some ways of carrying out the mechanics of the

simplex method. It should be clear from the statement of the algorithm

that the vectors B-'A; play a key role. If these vectors are available, }
the reduced costs, the direction of motion, and the stepsize £* are easily }
computed, Thus, the main difference between alternative implementations j
lies in the way that the vectors B*IAj are computed and on the amount §

of related information that is carried from one iteration to the next.

When comparing different implementations, it is important to keep ‘
the following facts in mind (¢f. Section 1.6). If B is a given m x m matrix
and b € R™ is a given vector, computing the inverse of B or solving a linear

system of the form Bx = b takes O(m?) arithmetic operations. Computing

a matrix-vector product Bb takes O(m?) operations. Finally, computing “

an inner product p’b of two m-dimensional vectors takes O(m) arithmetic
operations.

Naive implementation

We start by describing the most straightforward implementation in which
no auxiliary information is carried from one iteration to the next. At the
beginning of a typical iteration, we have the indices B(1),...,B(m) of
the current basic variables. We form the basis matrix B and compute
p’ = ¢z BL, by solving the linear system p’B = c/g for the unknown vector
P (This vector p is called the vector of simplex multipliers associated with
the basis B.} The reduced cost &5 = ¢; — ¢gB71A; of any variable z; is
then obtained according to the formula

= L 1 )
i =ci — DA
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Depending on the pivoting rule employed, we may have to computeall of the
reduced costs or we may compute them one at a time until a variable with
a megative reduced cost is encountered. Once a column A; is selected to
enter the basis, we solve the linear system Bu= A, in order to determine
the vector u = B_lAj. At this point, we can form the directibn along
which we will be moving away from the current basic feasible solution. We
finally determine #* and the variable that will 2xit the basis, and tonstruct
the new basic feasible solution.

We note that we need O{m?) arithmetic operations to solve the sys-
tems p'B = ¢z and Bu = A;. In addition, computing the reduced costs of
all variables requires Q(mn) arithmetic operations, because we need to form
the inner product of the vector p with each one of the nonbasic columns A ;.
Thus, the total computational effort per iteration is O(m? + mn) We will
see shortly that alternative implementations require only O{m? +rrn) arith-
metic operations. Therefore, the implementation described here is rather
inefficient, in general. On the other hand, for certain problems with a spe-
cial structure, the linear systems p'B = ¢ and Bu = A; can be solved
very fast, in which case this implementation zan be of practical interest.
We will revisit this point in Chapter 7, when we apply tae simplex method
to network flow problems.

Revised simplex method

Much of the computational burden in the naive implementation is due to
the need for solving two linear systems of equations. In an alkernative
implementation, the matrix B~! is made available at the beginning of each
iteration, and the vectors ¢;B~! and B™1A; are computed by 1 matrix-
vector multiplication. For this approach to be practical, we need an efficient
method for updating the matrix B—' each time that we effect a change of
basis. This is discussed next.
Let

B= [AB(I) "'AB(m)]

be the basis matrix at the beginning of an iteration and let
B= [AB(l) ~-Apre—1y A; Appiny- "AB(m)]

be the basis matrix at the beginning of the next iteration. These two basis
matrices have the same columns except that tte £th column A g (the one
that exits the basis) has been replaced by A ;. I: is then reasonableto expect
that B! contains information that can be exploited in she computation of
B After we develop some needed tools and terminology, we wil see that
this is indeed the case. An alternative explanation and line of devzlopment
is outlined in Exercise 3.13.
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 Definition 3.4  Given a mstiix, nof necessarily square, the operatiof
_of adding a constant multiple.of one row to the same o to anOther 1o
‘9 called an elementary Tow OPETAtION. . . o

g

e
23

The example that follows indicates that performing an elementary row
operation on a matrix C is equivalent to forming the matrix QC, where Q
is a suitably constructed square matrix.

Example 3.3 Let

10 2 1 2
Q=101 0y, C=|3 4},
001 5 6

1 14
QC = 3 4.
5 6

In particular, multiplication from the left by the matrix Q has the effect of mul-
tiplying the third row of C by two and adding it to the first row.

and note that

Generalizing Example 3.3, we see that pltiplying the jth. oW by 3
and adding it to the ith row (for ¢ # j) is the same as 1eft-mu}t1plymg by
+he matrix Q@ = I 4+ Dy;, where D; is a matrix with all entries ejqual to
zero, except for the {¢,7)th entry which is equal to 3. The determinant of
such a matrix Q is equal to . and, therefore, Q is invertible.

Suppose now that we apply a sequence of K elementary row Oper-
ations and that the kth such operation corresponds to left-multiplication
by a certain invertible matrix Qy. Then, the sequence of Fhese .elementar'y
row operations is the same as left-multiplication by the invertible matrix
QrQx_1--Q2Q1. We conclude that performing a sequence of .elemen-
tary row operations on a given matrix is equivalent to left-multiplying that
matrix by a certain invertible matrix.

Since B-1B = I, we see that B~'A g is the ith unit vector e,
Using this observation, we bave

[ o |
BAIE — e er_1 u ngrl €m
o ol |
[ 1 1%
= k173 )
L L
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where u = B_lAj. Let us apply a sequence of elementary row operations
that will change the above matrix to the identity matrix. In particular,
consider the following sequence of elementary row operations.

(a) For each i 3 £, we add the fth row t'mes —u;/u; to the ith row.

{Recall that up > 0.) This replaces u; by zero.

{b) We divide the fth row by u,. This repleces 4, by one.

In words, we are adding to each row a multiple of the fth row to
replace the fth column u by the fth unit vector e;. This sequence of ele-
mentary row operations is equivalent to left-multiplying B~!B by a certain
invertible matrix Q. Since the result is the icentity, we have QBB =1,

. : =1 . .
which yields QB~! = B . The last equation shows that if we apply
the same sequence of row operations to the matrix B~! (equivalently, left-

multiply by Q}, we obtain B We conclude that all it takes to generate

-1, .
B , is to start with B~? and apply the sequence of elementary row oper-
ations described above.

Example 3.4 Let

1 2 3 —4
B'=|-2 3 1|, u= 2 |,
4 -3 -2 2

and suppose that £ = 3. Thus, our objective is to transform the vector u to the
unit vector e = (0,0,1). We multiply the third row by 2 and add it to the first
row. We subtract the third row from the second row. Finally, we divide the third

row by 2. We obtain
- 9 —4 -1
B =] -6 5] 3 1.
2 -15 -1
When the matrix B~! is updated in the manner we have describad, we ob-

tain an implementation of the simplex method known as the revisad simples
method, which we summarize below,

An iteration of the revised simplex method

1. In a typical iteration, we start with a basis consistiﬁg of the basic
columns A g1y, - .., Apg(n), an associsted basic feasible solution
x, and the inverse B~! of the basis matrix.

2. Compute the row vector p’ = ¢’ B! and then compute the re-
duced costs & = ¢; — p’A;. If they are all nonnegative, the
current basic feasible solution is optimal, and the algorithm ter-
minates; else, choose some j for which &; < €.~

3. Compute u = B7'A;. If no component of u is positive, the

“optimal cost is —co, and the algorithn terminates.
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4. U some component of u is positive, let

+ . ZB(s)

fis=1,...,mlu; >0} %

5. Let £ be such that 8* = x5 /us. Form a new basis by replacing -
A with A;. If y is the new basic feasible solution, the values
of the new basic variables are y; = 6* and yp(;y = Tpa) — uy,
i #L. )

6. Form the m x (m + 1) matrix (B~ | ul. Add to each one of -
its rows a multiple of the fth row to make the last column equal ..
to the unit vector e,. The first m columns of the result is the

W eh et b

. =1
matrix B .

The full tableau implementation

We finally describe the implementation of simplex method in terms of the
so-called full tableau. Here, inssead of maintaining and updating the matrix
B!, we maintain and update the m x (n + 1) matrix

B[b | A]

with columns B~ !'b and B !A;4,...,B~1A,. This matrix is called the
simplex tablear. Note that the column B~'b, called the zeroth column,
contains the values of the basic variables. The column B~1A; is called the
ith column of the tableau. The column u = B~!A; corresponding to the
variable that enters the basis is called the pivot column. If the £th basic
variable exits the basis, the £th row of the tableau is called the pivet row.
Finally, the element belonging to both the pivot row and the pivot column
is called the pivot element. Note that the pivot element is 1, and is always
positive (urless u < 0, in which case the algorithm has met the termination
condition in Step 3).

The information contained in the rows of the tableau admits the fol-
lowing interpretation. The equality constraints are initially given to us
in the form b = Ax. Given the current basis matrix B, these equality
constraints can also he expressed in the equivalent form

B 'b =B lAx,

which is precisely the information in the tableau. In other words, the rows
of the tableau provide us with the coefficients of the equality constraints
B 'b=B"'Ax.

At the end of each iteration, we need to update the tableau B~1[b | A]
and compute B~ [b | A]. This can be accomplished by left-multiplying the
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gimplex tableau with a matrix Q satisfying QB! = B ' As axplained
earlier, this is the same as performing those elementary row operasions that
turn B! to E—l; that is, we add to each row a multiple of the pivot row to
set, all entries of the pivot column to zero, with the exception of the pivot
element which is set to one.

Regarding the determination of the exiting column A gy and the
stepsize 8%, Steps 4 and 5 in the summary of the simplex method amount
to the following: xp(;y/u; is the ratio of the ith entry in the zeroth column
of the tableau to the ¢th entry in the pivot column of the tableau We only
consider those i lor which w; is positive. The smallest ratio is equal to 6*
and determines &,

Tt is customary to angment the simplex tableau by including a top
row, to be referred to as the zeroth row. The entry at the top L:ft corner
contains the value —c/yx g, which is the negative of the current cst. {The
reason for the minus sign is that it allows for a simple update rule, as will
be seen shortly.) The rest of the zeroth row is the row vector of reduced
costs, that is, the vector T = ¢’ — ¢zgB 1A Thus, the structure of the
tableau is:

—cgB7b | ¢/ —c,B A

B 'b B 'A
or, in more detail,
—CgXxp T e T
Tp | |
B-'A, ... Bla,

The rule for updating the zercth row turns out to be identical to the
rule used for the other rows of the tableau: add a multisle of the pivot row
to the zeroth row to set the reduced cost of the entering variabk to zero.
We will now verify that this update rule produces the correct results for
the zeroth row.

At the beginning of a typical iteration, the zeroth row is of the form

[0]c]-g'b] Al

where g’ = ¢3;B~!. Hence, the zeroth row is equal to [0 | ¢/] plus a linear
combination of the rows of [b | A]. Let column j be the pivot column, and
row £ be the pivot row. Note that the pivot row is of the form a'[b | A],
where the vector h’ is the fth row of B~!. Hence, after a multizle of the
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pivot row is added to the zeroth row, that row is again equal to [¢ | ¢'] plus
a (different) linear combination of the rows of [b| A], and is of the form

0]<]—p'b] Al

for some vector p. Recall that our update rule is such that the pivot column
entry of the zeroth row becomes zero, that is,

¢Be ~PABy =6 —PA; =0

Consider now the B(i)th column for i # £. (This is a column corresponding
to a basic variable that stays in the basis.) The zeroth row entry of that
column is zero, before the change of bagis, since it is the reduced cost of
a basic variable. Because B~1A By 18 the ith unit vector and i # £, the
entry in the pivot row for that column is also equal to zero. Hence, adding
a multiple of the pivot row to the zeroth row of the tableau does not affect
the zeroth row entry of that column, which is left at zero. We conclude
that the vector p satisfies e,y — P Az, = 0 for every column Az, in

the new basis. This implies that ¢ —p’ B=0,andp' = c’Eﬁ_l. Hence,
with our update rule, the updated zeroth row of the tableau is equal to
=1
[0]c]—c5B "[b]A]

as desired.
We can now summarize the mechanics of the full tableau implemen-
tation.

An iteration of the full tableau implementation

1. A typical iteration starts with the tableau associated with a basis
matrix B and the corresponding basic feasible solution x.

2. Examine the reduced costs in the zeroth row of the tablean. If
they are all nonnegative, the current basic feasible solution is
optimal, and the algorithm terminates; else, choose some j for
which €; < 0.

3. Consider the vector u = B~1A;, which is the jth column (the
pivot column) of the tableau. ¥ no component of u is positive,
the optimal cost ig --co, and the algorithm terminates.

4. -For each ¢ for which u; i positive, compute the ratio zp)/u;.
Let £ be the index of a row that corresponds to the smallest ratio.
The column A gs) exits the basis and the column A; enters the

B basis. - _
*°5. Add to each row of the tablean a constant multiple of the £th
* row (the pivot Tow) so that us {the pivot element) becomes one
~ -~ and all other entries of the pivot column become zero. :
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N\ C= (0,100

D=(100,0) ' \\

Ty

]

Figure 3.4: The feasible set in Example 3.5. Note that we
have five extreme points. These are A = (0,0,0) with cost 0,
B = (0,0,10) with cost —120, C = (0,10,0) with cost —120,
D = (10,0,0) with cost 100, and E = (4,4, 4) with cost —136. In
particular, E' is the unique optimal solution.

Example 3.5 Consider the problem

minimize —10zx; — 12x; — 12x3

subject to 1 + 2x2 + 23 < 20
2z + T3 + 2wz <20
221 + 22 + T3 < 20

X1,T2,T3 2 0.

The feasible set is shown in Figure 3.4.
After introducing slack variables, we obtain the following staniard form
problem:

minimize —10x; — 12z — 12x3

subject to 1+ 222 + 2z3 + x4 = 2
2r; + T2 + 2ma + x5 =20
2r1 + 22 + &3 + 26 = N
L1y, Te Z 0.

Note that x = (0,0, 0,20, 20,20) is a basic feasible solution and can be used to
start the algorithm. Let accordingly, B(1) = 4, B(2) = 5, and B(3) = 6. The
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corresponding basis matrix is the identity matrix I. To obtain the zeroth row of
the initial tableau, we note that c¢p = 0 and, therefore, cgxp = 0 and € = c.
Hence, we have the following in‘tial tableau:

T1 2 T3 X4 ITs Ts

g | 10 -12 -12 0 0 0
Ty = | 20 1 2 2 1 0 0
T5 = | 20 2* 1 2 0 1 0
T = | 20 2 2 1 0 0 1

‘We note a few conventions in the format of the above tableau: the label x;
on top of the ith column indicates the variable associated with that column. The
labels “z; =" to the left of the tableau tell us which are the basic variables and in
what order. For example, the first basic variable zp; is x4, and its value is 20.
Similarly, 25(2) = s = 20, and x g = x5 = 20. Strictly speaking, these labels
are not quite necessary. We know that the column in the tablean associated with
the first basic variable must be the first unit vector. Once we observe that the
column associated with the variable x4 is the first unit vector, it follows that x4
is the first basic variable.

We continue with our example. The reduced cost of z; is negative and we
let that variable enter the basis. The pivot column is u = (1,2,2). We form the
ratios zg(;)/us, ¢ = 1,2, 3; the smallest ratio corresponds to { = 2 and 1 = 3. We
break this tie by choosing ¢ = 2. This determines the pivot element, which we
indicate by an asterisk. The second basic variable z B(2), which is s, exits the
basis. The new basis is given by B(1) = 4, B(2) = 1, and B(3) = 6. We multiply
the pivot row by 5 and add it to the zeroth row. We multiply the pivot row by
1/2 and subtract it from the first row. We subtract the pivot row from the third
row. Finally, we divide the pivo: row by 2 This leads us to the new tableau:

¥ Xz X3 T4 T5 Te

100 0 -7 =2 0 5 0
ra=| 10 0D 15 1* 1 -05 0
Ty =| 10 1 05 1 0 05 0
Ts = 0 0 1 -1 0 -1 1

The corresponding basic feasible solution is x = (10,0,0,10,0,0). In terms
of the original variables x,, z2, w3, we have moved to point D = (10,0, 0) in
Figure 3.4. Note that this is a degenerate basic feasible solution, because the
basic variable x¢ is equal to zero. This agrees with Figure 3.4 where we cbserve
that there are four active constraints at peint D.

We have mentioned earlier that the rows of the tableau (other than the
zeroth row) amount to a representation of the equality constraints B 'Ax =
B~ 'b, which are equivalent to the original constraints Ax = b. In our current
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example, the tableau indicates that the equality constraints can be written in the
equivalent form:

1 = 1.520 + 3 + x4 — 0.5xs
1IC = =1 + 0.5z2 + x3 + 0.5z5
¢ = ro — I3 - rs + s

We now return to the simplex method. With the current tableau, the
variables x2 and i3 have negative reduced costs. Let us choose x3 to be the one
that enters the basis. The pivot column is u = (1,1, —1). Since uz <0, we only
form the ratios @g(;)/u:, for i = 1,2. There is again a tie, which we break by
letting £ = 1, and the first basic variable, z4, exits the basis. The pivotelement is
again indicated by an asterisk. After carrying out the necessary elementary row
operations, we obtain the following new tableau:

2 Ty Tq s e

120 0 —4 0 2 4 0
I3 = 10 0 15 1 1 -05 0
T = 0 I | 0 -1 1 0
T = 10 0 2.5* 0 1 -15 1

In terms of Figure 3.4, we have moved to point B = (0,0, 10), aad the cost
has been reduced to —120. At this point, x3 is she only variable with negative
reduced cost. We bring #2 into the basis, z¢ exits, and the resulting tableau is:

1 T2 I3 a4 Ts T6

136 V] 0 0 36 1.6 1.6

Ty = 4 0 0] 1 04 04 -—06
Ty = 4 1 ¢ 0 -08 0.4 04
T2 = 4 0 1 0 04 -—-06 0.4

We have now reached point E in Figure 3.4. Its optimality is confirmed by
observing that all reduced costs are nonnegative.

In this example, the simplex method took three changes of bads to reach
the optimal solution, and it traced the path A — D — B — F in Figure 3.4, With
different pivoting rules, a different path would have been traced. Could the
simplex method have solved the problem by tracing the path A — D - E, which
involves only two edges, with only two iterations? The answer is no. The initial
and final bases differ in thres columns, and thereiore at least three basis changes
are required. In particular, if the method were totrace the path A— D— E, there
would be a degenerate change of basis at peint D (with no edge being traversed),
which would again bring the total to three.
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Example 3.6 This example shows that the simplex method can indeed cycle.
We consider a problem described in terms of the following initial tableau.

Sec. 3.3

Ty x2 X3 T4 X Te T

3 | -3/4 20 -1/2 6 0 0 0
=10 1/4* -8 -1 9 1 0 O
g = |0 1/2 -12 -12 3 0 1 0
zr=|1 0 0 1 0 0 0 1

We use the following pivoting rules:

(a} We select a nonbasic variable with the most negative reduced cost ¢; to be
the one that enters the basis.

{b) Out of all basic variables that are eligible to exit the basis, we select the
one with the smallest subscript.

We then obtain the following sequence of tableaux (the pivot element is indicated
by an asterisk):
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I g T3 Ta Ts re 7
3 | -1/2 16 0 0 -1 1 0
z3=|0 | -6/2 5 1 0 2 —6 0
ca=|0 | -1/4 16/3 0 1 1/3 -2/3 0
zr=|1 5/2 -5 0 0 =2 6 1
T Tz X3 4 Ty e T
3|-7/4 4 12 0 0 -2 0
zz;=10 | -5/4 28 1/2 0 1 -3 0
za= |0 | 1/6 —4 —-1/6 1 0 1/3* 0
zr=|1 0 0 1 0 90 0 1
I T2 rz Ta s Te 7
3|-3/4 20 -1/2 6 0 0 0
zs=]0 | 1/4 -8 -1 9 1 0 0
=0 | 1/2 —12 -1/2 3 0 1 0
zr= |1 0 0 1 0 0 o0 1

T T2 T3 Ty TE5 Te D7
3 0 -4 -7/2 33 3 0 0
=0 1 -32 —4 36 4 0 0
ze = |0 0 4* /2 -15 -2 1 0
zr= |1 0] 0 1 o o 0 1
Ty X2 T3 Tq Ts e It
3 o 0 -2 18 1 1 0
;= |0 1 0 8* -84 12 g8 0
=10 0 1 3/8 -15/4 -1/2 1/4 O
z7=|1 0 o 1 0 0 0 1
xy *2 T3 T4 5 T T7
3 1/4 0 90 -3 -2 3 0
3= |0 1/8 0 1 -21/2 =-3/2 1 0
za=|01)-3/64 1 0 3/16% 1/16 -1/8 0
zr=]1 -1/8 0 0 21/2 3/2 -1 1

After six pivots, we have the same basis and the same tableau that we started
with. At each basis change, we had 8° = 0. In particular, for each interme-
diate tableau, we had the same feasible solution and the same cost. The same

sequence of pivots can be repeated over and over, and the simplex method never
terminates.

Comparison of the full tableau and the revised simplex
methods

Let us pretend that the problem is changed to

minimize c¢'x 4 0y
subject to Ax+Iy=Db
xy 2 0.

We implement the simplex method on this new problem, except that we
never allow any of the components of the vector y to become basic. Then,
the simplex method performs basis changes as if the vector y were entirely
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absent. Note also that the vector of reduced costs in the augmented problem
is
[ 0] —cyB A 1] =[¢ | —csB ']

Thus, the simplex tableau for the augmented problem takes the form

' p—1 i ' B—1
-cxB™'b c —-cpB

B-'b BlA B!

In particular, by following the mechanics of the full tableau method on the
above tableau, the inverse basis matrix B™! is made available at each iter-
ation. We can now think of the revised simplex method as being essentially
the same as the full tableau method applied to the above augmented prob-
lem, except that the part of the tablean containing B~ A is never formed
explicitly; instead, once the entering variable x; is chosen, the pivot column
B~!A, is computed on the fly. Thus, the revised simplex method is just
a variant of the full tableau method, with more efficient bookkeeping. If
the revised simplex method also updates the zeroth row entries that lie on
top of B™! (by the usual elementary operations), the simplex multipliers
p’ = c¢gB~! become available, thus eliminating the need for solving the
linear system p’'B = ¢ at each iteration.

We now discuss the relative merits of the two methods. The full
tableau method requires a constant (and small) number of arithmetic op-
erations for updating each entry of the tableaun. Thus, the amount of com-
putation per iteration is proportional to the size of the tableau, which is
O(mn). The revised simplex method uses similar computations to update
B! and ¢);B!, and since ony O(m?) entries are updated, the compu-
tational requirements per iteration are O(m?). In addition, the reduced
cost of each variable x; can be computed by forming the inner product
p'A;, which requires O(m) operations. In the worst case, the reduced cost
of every variable is computed, for a total of O(mn) computations per it-
eration. Since m < n, the worst-case computational effort per iteration is
O(mn+m?) = O(mn), under either implementation. On the other hand, if
we consider a pivoting rule that evaluates one reduced cost at a time, until
a negative reduced cost is found, a typical iteration of the revised simplex
method might require a lot less work. In the best case, if the first recuced
cost computed is negative, and the corresponding variable is chosen to en-
ter the basis, the total computational effort is only G(m?). The conclusion
is that the revised simplex method cannot be slower than the full tableau
method, and could be much faster during most iterations.

Another important element in faver of the revised simplex method
is that memory requirements are reduced from O(mn) to O(m?). As n is
often much larger than m, this effect can be quite significant. It could be
counterargued that the memory requirements of the revised simplex method
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are also O(mn) because of the need to store the matrix A. However, in
most large scale problems that arise in applications, the matrix A is very
sparse (has many zero entries) and can be stored compactly. (Note that the
sparsity of A does not usually help in the storage of the full simplex tablean
because even if A and B are sparse, B~ A is nat sparse, in general.)

We summarize this discussion in the following table:

Full tableau | Revised simplex
Memory O(mn) O(m?)
Worst-case time O(mn) Olmn)
Best-case time Of(mn) o(m?)

Table 3.1: Comparison of the full tableau method and revised
simplex. The time requirements refer to a single iteration.

Practical performance enhancements

Practical implementations of the simplex method aimed at solving problems
of moderate or large size incorporate a number of additional ideas from
numerical linear algebra which we briefly mention.

The first idea is related to reinversion. Recall that at each iteration
of the revised simplex method, the inverse basis matrix B~! is updated
according to certain rules. Each such iteration may introduce roundoff
or truncation errors which accumulate and may eventually lead to highly
inaccurate results. For this reason, it is customary to recompute the matrix
B~ from scratch once in a while. The efficiency of such reinversions can be
greatly enhanced by using suitable data structures and certain techniques
from computational linear algebra.

Another set of ideas is related to the way that the inverse basis matrix
B! is represented. Suppose that a reinversion has been just carried oui
and B~! is available. Subsequent to the current iteration of the revised
simplex method, we have the option of generating explicitly and storing
the new inverse basis matrix B . An alternative that carries the same
information, is to store a matrix Q such that QB! =B . Note that Q
basically prescribes which elementary row operations need to be applied to
B! in order to produce B 1tis not a full matrix, and can be completely
specified in terms of m coefficients: for each row, we need to know what
multiple of the pivot row must be acded to it.

Suppose now that we wish to solve the system Bu = A ; for u, where
A; is the entering column, as is required by the revised simplex method.

We have u = E_lAJ- = QB 'A;, which shows that we can first compute
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absent. Note also that the vector of reduced costs in the augmented problem
is
[¢ 0] -cEB A |I]=[¢'| —csB™'].

Thus, the simplex tableau for she augmented problem takes the form

' -1 =t r -1
—cgB™'b € —c5B

B~!b BlA B!

In particular, by following the mechanics of the full tableau method on the
above tableau, the inverse basis matrix B~ is made available at each iter-
ation. We can now think of the revised simplex method as being essentially
the same as the full tableau method applied to the above augmented prob-
lem, except that the part of the tableau containing B! A is never formed
explicitly; instead, once the entering variable x; is chosen, the pivot column
B 'A; is computed on the fly. Thus, the revised simplex method is just
a variant of the full tableau method, with more efficient bookkeeping. If
the revised simplex method also updates the zeroth row entries that lie on
top of B~! (by the usual elementary operations), the simplex multipliers
p’ = czgB~! become available, thus eliminating the need for solvirg the
linear system p’B = c; at each iteration.

We now discuss the relative merits of the two methods. The full
tablean method requires a corstant (and small) number of arithmetic op-
erations for updating each entry of the tableau. Thus, the amount of com-
putation per iteration is proportional to the size of the tableau, wkich is
O{mn). The revised simplex method uses similar computations to update
B! and ¢z B!, and since oaly Q(m?) entries are updated, the compu-
tational requirements per iteration are O(m?). In addition, the reduced
cost of each variable x; can be computed by forming the inner product
p'A;, which requires O(m) operations. In the worst case, the reduced cost
of every variable is computed. for a total of O(mn) computations per it-
eration. Since m < n, the worst-case computational effort per iteration is
O(mn+m?) = Of{mn), under either implementation. On the other hand, if
we consider a pivoting rule that evaluates one reduced cost at a time, until
a negative reduced cost is found, a typical iteration of the revised simplex
method might require a lot less work. In the best case, if the first reduced
cost computed is negative, and the corresponding variable is chosen to en-
ter the basis, the total computational effort is only O(m?). The conclusion
is that the revised simplex method cannot be slower than the full tableau
method, and could be much fester during most iterations.

Another important element in favor of the revised simplex method
is that memory requirements are reduced from O(mn) to O(m?). As n is
often much larger than m, this effect can be quite significant. It could be
counterargued that the memory requirements of the revised simplex method
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are also O(mn) because of the need to store the matrix A. However, in
most large scale problems that arise in applications, the matrix A is very
sparse (has many zero entries) and can be stored compactly. (Note that the
sparsity of A does not usually help in the storage of the full simplex tableau
because even if A and B are sparse, B~ A is not sparse, in gene:al.)

We summarize this discussion in the folbwing table:

Full tableau | Revised simplex
Memory O(mn) o(m?)
Worst-case time O(mn) O(mn)
Best-case time Ofmn) O(m?)

Table 3.1: Comparison of the full tableau method and revised
simplex. The time requirements refer to asingle iteration.

Practical performance enhancements

Practical implemsntations of the simplex method aimed at solving problems
of moderate or large size incorporate a numbder of additional ideas from
numerical linear algebra which we briefly mention.

The first idea is related to reinversion. Recall that at each iteration
of the revised simplex method, the inverse tasis matrix B~ is updated
according to certain rules. Each such iteration may introduce roundoff
or truncation errors which accumulate and mway eventually lead to highly
inaccurate results. For this reason, it is customary to recompute tie matrix
B! from scratch once in a while. The efficiency of such reinversicns can be
greatly enhanced by using suitable data structures and certain tzchniques
from computational linear algebra.

Another set of ideas is related to the way that the inverse basis matrix
B! is represented. Suppose that a reinversion has been just cerried out
and B7! is available. Subsequent to the cument iteration of tte revised
simplex method, we have the option of generating explicitly and storing
the new inverse basis matrix B . An alteriative that carries the same
informetion, is to store a matrix Q such that QB-! =B . Nose that Q
basically prescribes which elementary row operations need to be applied to
B~ in order to produce B_ . It is not a full matrix, and can be completely
specified in terms of m coefficients: for each row, we need to know what
multiple of the pivot row must be added to it.

Suppose now that we wish to solve the system Bu = A ; foru, where
A; is the entering column, as is required by the revised simplex method.

We have u = E_lAj = QBflAj, which shows that we can first compute
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absent. Note also that the vector of reduced costs in the augmented problem
is
[¢|0]—cpB AT =[¢| —csB'].

Thus, the simplex tableau for the augmented problem takes the form

7 —1 =/ / -1
—cgB™'b c —cpB

B~ !b B~!A B!

In particular, by following the mechanics of the full tableau method on the
above tableay, the inverse basis matrix B! is made available at each iter-
ation. We can now think of the revised simplex metnod as being essentially
the same as the full tableau method applied to the above augmented prob-
lem, except that the part of the tableau containing B 'A is never formed
explicitly; instead, once the entering variable x; is chosen, the pivot column
B!A; is computed on the fly. Thus, the revised simplex method is just
a variant of the full tableau method, with more efficient bookkeeping. If
the revised simplex method also updates the zeroth row entries that lie on
top of B! (by the usual elementary operations), the simplex multipliers
p’ = c)zB~! become available, thus eliminating the need for solving the
linear system p'B = ¢ at each iteration.

We now discuss the relative merits of the two methods. The full
tableau method requires a constant (and small) number of arithmetic op-
erations for updating each entry of the tableau. Thus, the amount of com-
putation per iteration is proportional to the size of the tableau, which is
O(mn). The revised simplex method uses similar computations to update
B! and ¢3B?, and since only O(m?) entries are updated, the compu-
tational requirements per iteration are O(m?). In addition, the reduced
cost of each variable z; can be computed by forming the inner product
p’A;, which requires O{m) operations. I the worst case, the reduced cost
of every variable is computed, for a total of O(mn) computations per it-
eration. Since m < n, the worst-case computational effort per iteration is
O(mn+m?} = O(mn), under either implementation. On the other hand, if
we consider a pivoting rule that evaluates one reduced cost at a time, until
a negative reduced cost is found, a typical iteration of the revised simplex
method might require a lot less work. In the best case, if the first reduced
cost computed is negative, and the corresponding variable is chosen to en-
ter the basis, the total computational effort is only O(m?). The conclusion
is that the revised simplex method cannot be siower than the full tableau
method, and could be much faster during most iterations.

Another important element in favor of the revised simplex method
is that memory requirements are reduced from O(mn) to O(m?). Asn is
often much larger than m, this effect can be quite significant. It could be
counterargued that the memory requirements of the revised simplex method
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are also O(mn) because of the need to store the matrix A. However, in
most large scale problems that arise in applications, the matrix A is very
sparse (has many zero entries) and can be stored compactly. (Note that the
sparsity of A does not usually help in the storage of the full simplex tableau
because even if A and B are sparse, B~'A is not sparse, in general.)

We summarize this discussion in the following table:

Full tableau Revised éimplex
Memory O(mn) : O(m?)
Worst-case time O(mn) O{mn}
Best-case time O(mn) O(m?)

Table 3.1: Comparison of the full tableau method and revised
simplex. The time requirements refer to a single iteration.

Practical performance enhancements

Practical implementations of the simplex method aimed at solving problems
of moderate or large size incorporate a number of additional ideas from
numerical linear algebra which we briefly mention.

The first idea is related to reinversion. Recall that at each iteration
of the revised simplex method, the inverse basis matrix B™! is updated
according to certain rules. Each such iteration may introduce roundoff
or truncation errors which accumulate and may eventually lead to highly
inaccurate results. For this reason, it is customary to recompute the matrix
B! from scratch once in a while. The efficiency of such reinversions can be
greatly enhanced by using suitable data structures and certain techniques
from computational linear algebra.

Another set of ideas is related to the way that the inverse basis matrix
B! is represented. Suppose that a reinversion has been just carried out
and B~! is available. Subsequent to the current iteration of the revised
simplex method, we have the option of generating explicitly and storing
the new inverse basis matrix B *. An alternative that carries the same
information, is to store a matrix Q such that QB! = B’ Note that Q
basically prescribes which elementary row operations need to be epplied to
B! in order to produce B ' It is not a full matrix, and can be completely
specified in terms of m coefficients; for each row, we need to know what
multiple of the pivot row must be added to it.

Suppose now that we wish to solve the system Bu = A for u, where
A, is the entering column, as is required by the revised simplex method.

We have u = EilA]- = QB 'A;, which shows that we can first compute
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B'A; and then left-multiply by Q (equivalently, apply a sequence of el-
ementary row operations) to produce u. The same idea can also be used
to represent the inverse basis matrix after several simplex iterations, as a
product of the initial inverse basis matrix and several sparse matrices like
Q.

The last idea we mention is the following. Subsequent to a “rein-
version,” one does not usually compute B~! explicitly, but B~ is instead
represented in terms of sparse triangular matrices with a special structure.

The methods discussed in this subsection are designed to accomplish
two objectives: improve numerical stability (minimize the effect of roundoff
errors) and exploit sparsity in the problem data to improve both running
time and memory requirements. These methods have a critical effect in
practice. Besides having a better chance of producing numerically trust-

worthy results, they can also speed up considerably the running time of ]

the simplex method. These techniques lie much closer to the subject of
numerical linear algebra, as opposed to optimization, and for this reason
we do not pursue them in any greater depth.

3.4 Anticycling: lexicography and Bland’s
rule

In this section, we discuss anticycling rules under which the simplex method
is gnaranteed to terminate, thus extending Theorem 3.3 to degenerate prob-
lems. As an important corollary, we conclude that if the optimal cost is fi-
nite, then there exists an optimal basis, that is, a basis satisfying B-'b > 0
and @ =c¢' ~czFB A >0,

Lexicography

We present here the lexicographic pivoting rule and prove that it prevents
the simplex method from cycling. Historically, this pivoting rule was de-
rived by analyzing the behavior of the simplex method on a nondegenerate
problem obtained by means of a small perturbation of the right-hand side
vector b. This connection is pursued in Exercise 3.15.

We start with a definition.

Deﬁnition 3. 5 A vector u £ w Js saxd to be le:ucographwajly
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For example,
L
(0,23 0} > (0,21, 4),

©, 4,50 < (1,2 1, 2).

1. Choose an entenng column A arb1tmr11y, as ong as its reduced

‘cost ¢; 1s negative. Lét u = B- 'A; be the jth column of the
tablegy.

2. For each i with w; > 0 divide the ith row: of the tableau (mclud-
ing” t.he entry in the zeroth column) by u., a.nd choose the iexlco-

Example 3.7 Consider the following tableau {the zeroth row is omitted), and
suppose that the pivot column is the third one (5 = 3).

1 5 3

0
214 6 -1
3|0 7 9

Note that there is a tie in trying to determine the exiting variable because
zr)/ur = 1/3 and zp(s)/us = 3/9 = 1/3. We divide the first and third rows of
the tableau by u1 = 3 and us = 9, respectively, to obtain:

¥3 10 53 1

* * * *

3 o 79 1

The tie between the first and third rows is resolved by performing a lexicographic
comparison. Since 7/9 < 5/3, the third row is chosen to be the pivot row, and
the variable zp(3) exits the basis.

We note that the lexicographic pivoting rule always leads to a unique
choice for the exiting variable. Indeed, if this were not the case, two of the
rows in the tableau would have to be proportional. But if two rows of the
matrix B~ A are proportional, the matrix B—!A has rank smaller than m
and, therefore, A also has rank less than m, which contradicts our standing
assumption that A has linearly independent rows.
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Theorem 3.4 Suppose that the simplex algorithm starts with all the

rows'in. the s,iz"nﬂplex ta,bleau, other tha.u tbe zemth row, !exzcograpm»

Then:

(a) Every row.of the sunp]ex tableau, other than the zeroth row;
remains lexicographically positive throughout the algorithm.

(b) The zeroth row strictly increases lexicographically st each iter:
tion. :

{c) The simplex method terminates after a finite number of iter
tions.

Proof.
(a) Suppose that all rows of the simplex tableau, other than the zeroth

row, are lexicographically positive at the beginning of a simplex iter- '\.
ation. Suppose that x; enters the basis and that the pivot row is the
£th row. According to the lexicographic pivoting rule, we have 1 > 0

and
(¢th row) é (ith row)

Ug Uy

To determine the new tableau, the £th row is divided by the positive }
pivot element u; and, therefore, remains lexicographically positive. §
Consider the ith row and suppose that u; < 0. In order to zero the {
(i,5)th entry of the tableau, we need to add a positive multiple of
the pivot row to the ith row. Due to the lexicographic positivity of :

both rows, the ith row will remain lexicographically positive after this
addition. Finally, consider the ith row for the case where u; > 0 and

1 # £. We have
(new ith row) = (old sthrow) — %(old £th row).
¢

Because of the lexicographic inequality (3.5}, which is satisfied by the
old rows, the new ith row is also lexicographically positive.

(b) At the beginning of an iteration, the reduced cost in the pivot calumn
is negative. In order to make it zero, we need to add a positive
multiple of the pivot row. Since the latter row is lexicographically
positive, the zeroth row increases lexicographically.

(¢) Since the zeroth row increases lexicographically at each iteration, it
never returns to a previous value. Since the zeroth row is determined
completely by the current basis, no basis can be repeated twice and
the simplex method must terminate after a finite number of iterations.

a

The lexicographic pivoting rule is straightforward to use if the simplex
method is implemented in terms of the full tableau. It can also be used

. ifiFfandu;>0.  (35) |
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in conjunction with the revised simplex method, provided that the inverse
basis matrix B~ is formed explicitly (see Exercise 3.16}. On the other
hand, in sophisticated implementations of the revised simplex method, the
matrix B~! is never computed explicitly, and the lexicographic rule is not
really suitable.

We finally note that in order to apply the lexicographic pivoring rule,
an initial tableau with lexicographically positive rows is required. Let us
assume that an initial tableau is available (methods for obtaining an initial
tableau are discussed in the next section). We can then rename the vari-
ables so that the basic variables are the first m ones. This is equivalent
to rearranging the tableau so that the first m columns of B~ 1A are the m
unit vectors. The resulting tableau las lexicographically positive rows, as
desired.

Bland’s rule

The smallest subscript pivoting rule, also known as Bland's rule, is as fol-
lows.

Smallest subscript pivoting rule

1. Find the smallest j for which the reduced cost %; is negatlve and
have the column A; enter the basis. :

2. Out of all variables x; that are tied in the test for choosing an
exiting variable, select the one with the smallest value of .

This pivoting rule is compatible with an implementation of the re-
vigsed simplex method in which the reduced costs of the nonbasic variables
are computed one at a time, in the natural order, until a negative one is
discovered. Under this pivoting rule, it is known that cycling never occurs
and the simplex method is guaranteed to terminate after a finite number
of iterations.

3.5 Finding an initial basic feasible solution

In order to start the simplex method, we need to find an initial basic feasibie
solution. Sometimes this is straightforward. For example, suppose that we
are dealing with a problem involving constraints of the form Ax < b, where
b > 0. We can then introduce nomnegative slack variables s and rewrite
the constraints in the form Ax + s =b. The vector (x,s) defined by x = 0
and s = b ig a basic feasible solution and the corresponding basis matrix is
the identity. In general, however, finding an initial basic feasible solution
is not easy and requires the solution of an auxiliary linear programming
problem, as will be seen shortly.
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Consider the problem

minimize ¢'x
subject to Ax = b
x > 0

By possibly multiplying some of the equality constraints by —1, we can |
assume, without loss of generality, that b > 0. We now introduce a vector |
y € R™ of artificial variables and use the simplex method to solve the |

auxiliary problem

minimize y1+y2 + 4+ Ym

subjectto Ax+y = b
x>0
y=>0

Initialization is easy for the auxiliary problem: by letting x = 0 and §
y = b, we have a basic feasible solution and the corresponding basis matrix §

is the identity.

If x is a feasible solution to the original problem. this choice of x }
together with y = 0, yields a zero cost solution to the auxiliary problem. j
Therefore, if the optimal cost in the auxiliary problem is nonzero, we con- 1
clude that the original problem is infeasible. If on the other hand, we cbtain §
a zero cost solution to the auxiliary problem, it must satisfy y = 0, and x §

is a feasible solution to the criginal problem.

At this point, we have accomplished our objectives only partially. We }
have a method that either detects infeasibility or finds a feasible solution to
the original problem. However, in order to initialize the simplex method for |

the original problem, we need a basic feasible solution, an associated basis

matrix B, and — depending on the implementation — the corresponding |
tableau. All this is straightforward if the simplex method, applied to the ;

auxiliary problem, terminates with a basis matrix B consisting exclusively
of columns of A. We can simply drop the columns that correspond to the
artificial variables and continue with the simplex method on the original
problem, using B as the starting basis matrix.

Driving artificial variables out of the basis

The situation is more complex if the criginal problem is feasible, the simplex
method applied to the auxiliary problem terminates with a feasible solution
x* to the original problem, but some of the artificial variables are in the
final basis. (Since the final value of the artificial variables is zero, this
implies that we have a degenerate basic feasible solution to the auxiliary
problem.) Let k be the number of columns of A that belong to the final basis
(k < m) and, without loss of generality, assume that these are the columns
Agpuy,-..,Apwy). (In particular, zpy,...,zpk) are the only variables
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that can be at nonzero level.) Note that the columns A pyy,. .., Ag) must
be linearly independent since they are part of a basis. Under our standard
assumption that the matrix A has full rank, the columns of A span R™,
and we can choose m — k additional columns Ap(ky1y,- - Appm) of A, to
obtain a set of m linearly independent columns, that is, a basis consisting
exclusively of columns of A. With this basis, all nonbasic components of
x* are at zero level, and it follows that x* is the basic feasible solution
associated with this new basis as well. At this point, the artificial variables
and the corresponding columns of the tableau can be dropped.

The procedure we have just described is called driving the artificial
variables out of the basis, and depends crucially on the assumption that the
matrix A has rank m. After all, if A has rank less than m, constructing a
basis for R™ using the columns of A is impossible and there exist redundant
equality constraints that must be eliminated, as described by Theorem 2.5
in Section 2.3. All of the above can be carried out mechanieally, in terms
of the simplex tableau, in the following manner.

Suppose that the £th basic variable is an artificial variable, which is
in the basis at zero level. We examine the £th row of the tableau and find
some j such that the ¢th entry of B-1A; is nonzero. We claim that A;
is linearly independent from the columns Apiy,..., Agny. To see this,
note that B~'Ap,;, = e;, i = 1,... .k, and since k < /, the ¢th entry of
these vectors is zero. It follows that the £th entry of any linear combination
of the vectors B~'Ag(),...,B 1A, is also equal to zero. Since the
#th entry of B~'A; is nonzero, this vector is not a linear combination
of the vectors B‘IAB(U, . ..,B‘lAB(;ﬂ). Equivalently, A; is not a linear
combination of the vectors Ag(yy,..., Apx), which proves our claim. We
now bring A; into the basic and have the £th basic variable exit the basis.
This is accomplished in the usual manner: perform those elementary row
operations that replace B~'A; by the £th nnit vector. The only difference
from the usual mechanics of the simplex method is that the pivot element
(the £th entry of B™1A ;) could be negative. Because the £th basic variable
was zero, adding a multiple of the £th row to the other rows does not change
the values of the basic variables. This means thLat after the change of basis,
we are still at the same basic feasible solution to the auxiliary problem,
but we have reduced the number of basic artificial variables by one. We
repeat this procedure as many times as needed until all artificial variables
are driven out of the basis.

Let us now assume that the #th row of B-1A is zero, in which case
the above described procedure fails. Note that the £th row of B~1A is
equal to g'A, where g’ is tne £th row of B™!. Hence, g’A = 0’ for some
nonzero vector g, and the matrix A has linearly dependent rows. Since we
are dealing with a feasible problem, we must also have g’b = 0. Thus, the
constraint g’ Ax = g'b is redundant and can be eliminated (cf. Theorem 2.5
in Section 2.3). Since this constraint is the information provided by the £th
row of the tableau, we can eliminate that row and continue from there.
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Example 3.8 Consider the linear programming problem:

minimize 3 + T2+ z3
subject to 1 + 2x2 + 3z3 =3
—21 + 2z + 6x3 =2
41'2 + 91‘3 =5
3z + x4 = 1
Il,...,Z420.

In order to find a feasible solution, we form the auxiliary problem

minimize s + ¢ + 7 + T8
subject to xr1 + 2z + 33 + x5 = 3
—zr1 + 222 + 623 + w6 =2
4z2 + 9x3 + z7 =5
3z3 + T4 4+ zg = 1
T1, ] >4

A basic feasible solution to the auxiliary problem is obtained by letting
(5, 26, 27, 25) = b = (3,2,5,1). The corresponding basis matrix is the identity.
Furthermore, we have ¢g = (1,1,1,1). We evaluate the reduced cost of each one
of the original variables z;, which is —czA,, and form the initial tableau:

R T3 X4 Z5 Te I7 I8

-1 0 -8 -21 -1 0 0 0 0

5 = 3 1 2 3 U] 1 0 0 0
rg = 2 | -1 2 6 [y 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
rg = 1 0 0 3 * 0 0 0 1t

We bring x4 into the basis and have g exit the basis. The basis matrix B is still
the identity and only the zeroth row of the tableau changes. We obtain:

T T2 I3 Tia Is Te T7 Ts

—10 0 -8 -18 0 0 0 0 1
5 = 3 1 2 3 0 1 0 0 0
Tg = 2 | -1 2 6 60 0 1 0 o0
I7 = 5 0 4 9 0 0 0 1 0
Ts = 1 0 0 ¥ 1. 0 0 o0 1
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We now bring x3 into the basis and have x4 exit the basis. The new tableau is:

r T2 X3 T4 Ts Te ITv T8

—4 0 -8 0 6 0 0 0 7

Ts = 2 1 2 0 -1 1 0 0 -t
Te = 0| -1 2 0 -2 0 1 0 -2
Ty = 2 0 4 o -3 0 0 1 -3
3=} 1/3 g 0 113 ¢ 0 0 1/3

We now bting 2 into the basis and x¢ exits. Note that this is a degenerate pivot
with 8* = 0. The new tableau is:

1 T2 ookt T4 xs Tre x7 1.3

-4 -4 0 0 -2 0 4 0 -1

5= 2 > 0 0 1 1 -1 0 1
z;=| 0 |-1/2 1 0 -1 0 1/2 0 -1
zr=| 2 2 0 0 1 0 -2 1 1
z3=|1/3 0 0 113 0 0 0 1/3

We now have ¢, enter the basis and z5 exit the basis. We obtain the following
tableau:

1 X2 X3 T4 Zs5 re It xs
00 0o o0 0o 2 2 0 1
;= 1|1 0 0 1/2 1/2 -1/2 0 1/2
za=|1/2 | 0 1 0 —3/4 1/4 1/4 D -3/4
zz=| 0|0 0 0 0 -1 -1 1 0
z3=|1/3 | 0 0 1 1/3 0 0 0 1/3

Note that the cost in the auxiliary problem has dropped to zero, indicating that
we have a feasible solution to the original problem. However, the artificial variable
z7 is still in the basis, at zero level. In order to obtain a basic feasible solution
to the original problem, we need to drive z7 out of the basis. Note that z7 is the
third basic variable and that the third entry of the columns B™1A;, j =1,...,4,
associated with the original variables, is zero. This indicates that the matrix
A has lincarly dependent rows. At this point, we remove the third row of the
tableau, because it corresponds to a redundant constraint, and also remove all of
the artificial variables. This leaves us with the following initial tableau for the
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original problem:

T1 ¥2 I3 Tq
* * * * *
m=| 1|1 0 0 172

z2=11210 1 0 -3/4
#3= |13 0 0o 1 1/3

We may now compute the reduced costs of the original variables, fill in the ze- ]

roth row of the tableau, and start executirg the simplex method on the original
problem.

We observe that in this example, the artificial variable zs was unnecessary.

Instead of starting with x5 = 1, we could have started with z, = 1 thus elimi- 3
nating the need for the first pivot. More generally, whenever there is a variable
that appears in a single constraint and with a positive coefficient (slack variables

being the typical example), we can always let that variable be in the initial basis
and we do not have to associate an artificial variable with that constraint.

The two-phase simplex method

We can now summarize a complete algorithm for linear programming prob-
lems in standard form.

Phase I:

1.” By multiplying somé of the constraints by —1, change the prob-
- lemso that b > 0.

"2. Introduce arsificial variables y1.. .., ym, if necessary, and apply
the simplex method to the auxiliary problem with cost 3., 3.

3. If the optimal cost in the auxiliary problem is positive, the crig-
inal problem is infeasible and the algorithm ferminates,

4. ' If the optimal cost i the auxiliary probleru is zero, a feasible
solution to the original problem has been found. K no artificial -
variable is in the final basis, the artificial variables and the cor-
responding columns are eliminated, and a feaszble basis for the
original problém is available.

5. Ifthe £th basic-variable is an artificial one, examine the fth.entry
of the-columins B™*A;, j = 1,...,n. If all of these entries are
_zero, the £th row represents a redundant constraint and is elimi-
“nated.. Otherwise, if the £th entry of the jth column is ‘nonzero, -
““apply a change of basis (with this entrv servmg as the pivot
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element): the fth basic variable exits and x; enters the basis.
Hepeat this operation until all artificial variables are drlven out
of the basis.
‘Phase I1:
1. Let the final basis and tableau obtamed from Phase I be the
initial basis and tableau for Phase II.

2. Compute the reduiced costs of all variables for ‘this initial basjs,
- using the cost coeflicients of the original problem: )

The above two-phase algorithm is & complete method, in the sense
that it can handle all possible outcomes. As long as cyeling is avoided (due
to either nondegeneracy, an anticycling rule, or luck), one of the following
possibilities will materialize:

(a) If the problem is infeasible, this is detected at the end of Phase I.

{b) If the problem is feasible but the rows of A are linearly dependent,
this is detected and corrected at the end of Phase I, by eliminating
redundant equality constraints.

(¢) If the optimal cost is equal to —oo, this is detected while running
Phase II.

(d) Else, Phase II terminates with an optimal solution.

The big-M method

We close by mentioning an alternative approach, the big-M method, that
combines the two phases into a single one. The idea is to introduce a cost

function of the form
n m
Z Cj %5 + M Z Yis
j=1 i=1

where M is a large positive constant, and where 3; are the same artificial
variables as in Phase T simplex. For a sufficiently large choice of M, if the
original problem is feasible and its optimal cost is finite, all of the artificial
variables are eventually driven to zero (Exercise 3.26), which takes us back
to the minimization of the original cost function. In fact, there is no reason
for fixing a numerical value for M. We can leave M as an undetermined
parameter and let the reduced costs be functions of M. Whenever M is
compared to another number (in order to determine whether a reduced cost
is negative), M will be always treated as being larger.
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Example 3.9 We consider the same linear programming problem as in Exam-

ple 3.8:
minimize 1 + zZ2 + z3

subject to 1 + 222 + 3z3 =

—z1 + 222 + 6z3

4z + 9z3

3z + x4 =

[ ST Yl (X ‘

We use the big-M method in conjunction with the following auxiliary problem, ]

in which the unnecessary artificial variable xg is omitted.

If
—_n by W

minimize T + X2 + z3 + Mz + Mz + Mzo
subject to z1 + 2x2 + 3z + x5
-z + 2x2 + 63 + ze
4z + 93 + oz
3x3 + 4
T1y. .27 2 0.

i

= Ut N W

I

A basic feasible solution to the auxiliary problem is obtained by letting
(5, 26, 7,@4) = b = (3,2,5,1). The corresponding basis matrix is the identity. 3
Furthermore, we have cp = (M, M, M,0). We evaluate the reduced cost of each §
one of the original variables z;, which is ¢; — ¢ A;, and form the initial tableau:

1 T2 T3 T4 Iz Te Ty

—-10M 1 -8M+1 -18M+1 0 0o o0 o

&5 = 3 1 2 3 0 1 0 o
Te = 2 | ~1 2 6 0O 0o 1 ¢
T7 = 5 0 4 9 0 0 0 1
T4 = 1 0 0 3 1. 0 0 ¢

The reduced cost of z3 is negative when M is large enough. We therefore bring
#3 into the basis and have 74 exit. Note that in order to set the reduced cost i
of 3 to zero, we need to multiply the pivot row by 6M — 1 /3 and add it to the }
zeroth row. The new tableau is:

1 T2 3 Ta Tz T X7

—4M —1/3 1 —8M+1 0 6M-1/3 © 0 O

T5 = 2 1 2 0 -1 1t 0 0
Te = 0 |-1 2 0 -2 0 1 0
T7 = 2 0 4 0 -3 0 0 1
T3 = 1/3 0 ] 1 i/3 0 0 o

The reduced cost of =3 is negative when M is large enough. We therefore bring §
z7 into the basis and x¢ exits. Note that this is a degenerate pivot with §* = 0. 4
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The new tableau is:

21 22 &3 x4 s rs x7
—4M—% —4M+g 0 0 —2M+§ 0 4M—% 0
T = 2 2* 0 0 1 1 -1 0
Ty = 0 -1/2 1 o0 -1 0 /2 0
Zr = 2 2 0 0 1 0 -2 1
T3 = 1/3 0 0 1 1/3 0 0 0
We now have z; enter and x5 exit the basis. We obtain the following tableau:

ry Ty I3 T4 zs5 Tg &7

—11/6 0 0 0 -1/12 2M-3/4 2M+1/4 O

x = 11 0 o 1/2 1/2 -1/2 0

To= 1/2 0 1 0 -3/4 1/4 /4 0

T7 = 0 0o 0 o 0 -1 -1 1

T3 = 1/3 0o 0 1 1/3* 0 0 0

We now bring x4 into the basis and z3 exits. The new tableau is:

T1 X2 T3 T4 x5 e IT7

—7/4 | 0 0 1/4 0 2M-3/4 2M+1/4 0O

m=| 1211 0 -3/2 0 1/2 -1/2 0©
z2=| 54| 0 1 9/4 0 1/4 /4 0©
a7 = Do o 0 0 -1 -1 1
2= 1[0 o 3 1 0 0 0

With M large enough, all of the reduced costs are nonnegative and we have
an optimal solution to the auxiliary problem. In addition, all of the artificial
variables have been driven to zero, and we have an optimal solution to the original
problem.

3.6 Column geometry and the simplex
method

In this section, we introducs an alternative way of visualizing the workings
of the simplex method. This approach provides some insights into why the
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simplex method appears to be efficient in practice.
We consider the problem

minimize ¢'x

subject to Ax = b
! e'x 1 (3.6)

x > 0,

where A is an m x n matrix and e is the n-dimensional vector with all ;

components equal to one. Although this might appear to be a special type
of a linear programming problem, it turns out that every problem with a
bounded feasible set can be brought into this form (Exercise 3.28}. The

constraint ¢'x = 1 is called the converity constraint. We also introduce |
an auxiliary variable z defined by z = ¢'x. If A A, ... A, are the n |
columns of A, we are dealing with the problem of minimizing 2z subject to |

the nonnegativity constraints x > 0, the convexity constraint "7 | x; = 1,
and the constraint

%o on[ 5]

In order to capture this problem geometrically, we view the horizontal |

plane as an m-dimensional space containing the columns of A, and we

view the vertical axis as the one-dimensional space associated with the cost !
components ¢;. Then, each point in the resulting three-dimensional space

corresponds to a point {A;, ¢;); see Figure 3.5.

In this geometry, our objective is to constrict a vector (b, z), which
is a convex combination of the vectors (A;, ¢i), such that z is as small as
possible. Note that the vectors of the form (b, z) lie on a vertical line, which
we call the requirement line, and which intersects the horizontal plane at
b. If the requirement line does not intersect the convex hull of the points

(As,¢;), the problem is infeasible. If it does intersect it, the problem is

feasible and an optimal solution corresponds to the lowest point in the
intersection of the convex hull and the requirement line. For example, in
Figure 3.6, the requirement line intersects the convex hull of the points
(Ai,¢;}; the point G corresponds to an optimal solution, and its height is
the optimal cost.

We now need some terminology.
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(A

R i Ao | (Agcy)

Figure 3.5: The column geometry.

Thus, three points are either collinear or they are affinely independent
and determine a two-dimensional simplex (a triangle). Similarly, four points
either lie on the same plane, or they are affinely independent and determine
a three-dimensional simplex (a pyramid).

Let us now give an interpretation of basic feasible solutions to prob-
lem (3.6) in this geometry. Since we have added the convexity constraint,
we have a total of m+ 1 equality constraints. Thus, a basic feasible solution
is associated with a collection of m+ 1 linearly independent columns (A;, 1)
of the linear programming problem (3.6). These are in turn associated with
m+1 of the points (A, ¢;), which we call basic poinis; the remaining points
(A;, c;)} are called the nonbasic points. It is not hard to show that the m+1
basic points are affinely independent (Exercise 3.29) and, therefore, their
convex hull is an m-dimensional simplex, which we call the basic simplez.
Let the requirement line intersect the m-dimensional basic simplex at some
point (b,z). The vector of weights z; used in expressing (b, z) as a convex
combination of the basic points, is the current basic feasible solution, and =z
represents its cost. For example, in Figure 3.6, the shaded triangle CDF is
the basic simplex, and the point H corresponds to a basic feasible solution
associated with the basic points C, D, and F.

Let us now interpret a change of basis geometrically. In a change of
basis, a new point (A, ¢;) becomes basic, and one of the currently basic
points is to become nonbasic. For example, in Figure 3.6, if C, D, F,
are the current basic points, we could make point B basic, replacing F
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Figure 3.6: Feasibility and optimality in the column geometry.

(even though this turns out not to be profitable]. The new basic simplex

would be the convex hull of B, C, D, and the new basic feasible solution
would correspond to point I. Alternatively, we could make point E basic,
replacing €, and the new basic feasible solution would now correspond to
point G. After a change of basis, the intercept of the requirement line with
the new basic simplex is lower, and hence the cost decreases, if and only
if the new basic point is below the plane that passes through the old basic
points; we refer to the latter plane as the dual plane, For example, point
E is below the dual plane and having it enter the basis is profitable; this is
not the case for point B. In fact, the vertical distance from the dual plane
to a point {A;, ¢;) is equal to the reduced cost of the associated variable z;
(Exercise 3.30); requiring the new basic point to be below the dual plane

is therefore equivalent to requiring the entering column to have negative .

reduced cost.
We discuss next the selection of the basic point that will exit the
basis. Each possible choice of the exiting point leads to a different basic

simplex. These m basic simplices, together with the original basic simplex |

(before the change of basis) form the boundary (the faces) of an (m + 1)-
dimensional simplex. The requirement line exits this (m + 1)-dimensional

simplex through its top face and must therefore enter it by crossing some !
other face. This determines which one of the potential basic simplices will |

be obtained after the change of basis. In reference to Figure 3.6, the basic
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points C, D, F, determine a two-dimensional basic simplex. If point E
is to become basic, we obtain a three-dimensional simplex (pyramid) with
vertices C, D, E, F. The requirement line exits the pyramid through its
top face with vertices C, D, F. It enters the pyramid through the face with
vertices D, E| F; this is the new basic simplex.

We can now visualize pivoting through the following physical analogy.
Think of the original basic simplex with vertices C, D, F, as a solid object
anchored at its vertices. Grasp the corner of the basic simplex at the vertex
C' leaving the basis, and pull the corner down to the new basic point E.
While so moving, the simplex will hinge, or pivot, on its anchor and stretch
down to the lower position. The somewhat peculiar terms (e.g., “simplex”,
“pivot”) associated with the simplex method have their roots in this column
geometry.

Example 3.10 Cousider the problem illustrated in Figure 3.7, in which m = 1,
and the following pivoting rule: choose a point (A, ¢;) below the dual plane to
become basic, whose vertical distance from the dual plane is largest. According to
Exercise 3.30, this is identical to the pivoting rule that selects an entering variable
with the most negative reduced cost. Starting from the initial basic simplex
consisting of the points (Aj,cs), (As, cs), the next basic simplex is determined
by the peints (As, ¢a), (As, ¢s5), and the next one by the points (As, ¢s), (As, cs).
In particular, the simplex method only takes two pivots in this case. This example
indicates why the simplex method may require a rather small number of pivots,
even when the number of underlying variables is large.

Figure 3.7: The simplex method finds the optimal basis after
two iterations. Here, the point indicated by a number ¢ corre-
sponds to the vector (Ai, e:).
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required by the algorithm, when applied to a random problem drawn ac- |

cording to the postulated probability distribution. Unfortunately, there is
no natural probability distribution over the set of linear programming prob-
lems. Nevertheless, a fair number of positive results have been obtained for
a few different types of probability distributions. In one such result, a set of
vectors ¢, ay, . .., &, € R and scalars by, ..., b, is given. Fori=1,... ,m,
we introduce either constraint ajx < b; or ajx > b;, with equal probabil-

ity. We then have 2™ possible linear programming problems, and suppose 1

that L of them are feasible. Haimovich (1983) has established that under

a rather special pivoting rule, the simplex method requires no more than °

n/2 iterations, on the average over those I feasible problems. This linear

dependence on the size of the problem agrees with observed behavior; sore {

empirical evidence is discussed in Chapter 12.

3.8 Summary

This chapter was centered or. the development of the simplex method, which
is a complete algorithm for solving linear programming problems in stan-
dard form. The cornerstones of the simplex method are:

(a) the optimality conditions {nonnegativity of the reduced costs) that -

allow us to test whether the current basis is optimal;

(b) a systematic method for performing basis changes whenever the op- 1

timality concitions are violated.

At a high level, the simplex method simply moves from one extreme |

point of the feasible set to another, each time reducing the cost, until an
optimal solution is reached. However, the lower level details of the simplex
method, relating to the organization of the required computations and the

assoclated bookkeeping, play an important role. We have described three |

different implementations: the naive cne, the revised simplex method, and
the full tableau implementation. Abstractly, they are all equivalent, but
their mechanics are quite different. Practical implementations of the sim-
plex method follow our general description of the revised simplex method,

but the details are different, because an explicit computasion of the inverse |

basis matrix is usually avoided.
We have seen that degeneracy can cause substantial difficulties, in-

cluding the possibility of nonterminating behavior (cycling). This is because |
in the presence of degeneracy, a change of basis may keep us at the same °

basic feasible solution, with no cost improvemsnt resulting. Cycling can
be avoided if suitable rules for choosing the entering and exiting variables
(pivoting rules) are applied (e.g., Bland’s rule or the lexicographic pivoting
rule).

Starting the simplex method requires an initial basic feasible solution,
and an associated tableau. These are provided by the Phase I simplex

algorithm, which is nothing but the simplex method applied to an auxiliary
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problem. We saw that the changecver from Phase I to Phase II involves
some delicate steps whenever some artificial variables are in the final basis
constructed by the Phase [ algorithm.

The simplex method is a rather efficient algorithm and is incorporated
in most of the commercial codes for linear programming. While the number
of pivots can be an exponential function of the number of variables and
constraints in the worst case, its observed behavior is a lot better, hence
the practical usefulness of the method.

3.9 Exercises

Exercise 3.1 (Local minima of convex functions) Let f : R — R be a
convex function and let § C R" be a convex set. Let x* be an element of S.
Suppose that x™ is a local optimum for the problem of minimizing f{x) over &;
that is, there exists some ¢ > 0 such that f(x*) < f(x) for all x € § for which
lx — x| € e. Prove that x* is globally optimal; that is, f(x") < f(x) for all
x€S.

Exercise 3.2 (Optimality conditions) Consider the problem of minimizing
¢'x over a polyhedron P. Prove the following:

(a) A feasible solution x is optimal if and only if ¢’d > 0 for every feasible
direction d at x.

(b) A feasible sclution x is the unique optimal solution if and only if ¢'d > 0
for every nonzero feasible direction d at x.

Exercise 3.3 Let x be an element of the standard form polyhedron P = {x ¢
R" | Ax =b, x > 0}. Prove that a vector d € R" is a feasible direction at x if
and only if Ad =0 and d; > 0 for every 7 such that z; = 0.

Exercise 3.4 Consider the problem of minimizing ¢'x over the set P = {x €
R | Ax=b, Dx < f, Ex < g}. Let x* be an element of P that satisfies
Dx* =f, Ex" < g. Show that the set of feasible directions at the point x* is the
set

{de®" | Ad=0, Dd<0}.

Exercise 3.5 Let P = {x ER otz taa=1 x> 0} and consider the
vector x = (0,0, 1). Find the set of feasible directions at x.

Exercise 3.6 (Conditions for a unique optimum} Let x be a basic feasible
solution associated with some basis matrix B. Prove the following:

(a) If the reduced cost of every nombasic variable is positive, then x is the
unique optimal solution.

(b) Ifx is the unique optimal solution and is nondegenerate, then the reduced
cost of every nonbasic variable is positive.
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3.7.

3.9.

Chap. 83  The simplex method }

The example showing that the simplex method can take an exponen- 4
tial number of iterations is due to Klee and Minty (1972). The Hirsch
conjecture was made by Hirsch in 1957. The first results on the aver- }
age case behavior of the simplex method were obtained by Borgwardt §
(1982) and Smale (1983). Schrijver (1986) contains an overview of )
the early research in this area, as well as proof of the n/2 bound on !

the number of pivots due to Haimovich (1983).

The results in Exercises 3.10 and 3.11, which deal with the smallest ?
examples of cycling, are due to Marshall and Suurballe (1969). The §
matrix inversion lemma [Exercise 3.13(a)] is known as the Sherman- §

Morrison formula.
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In this chapter, we start with a linear programming problem, called the pri-
mal, and introduce ancther linear programming problem, called the dual.
Duality theory deals with the relation between these two problems and un-
covers the deeper structure of linear programming. It is a powerful theoret-
ical tool that has numerous applications, provides new geometric insights,

and leads to another algorithm for linear programming (the dual simplex -

method).

4.1 Motivation

Duality theory can be motivated as an outgrowth of the Lagrange multiplier
method, often used in calculus to minimize a function subject to equality
constraints. For example, in order to solve the problem

v . 2
minimize z* 4 y?

subject to x4y =1,

we introduce a Lagrange multiplier p and form the Lagrangean L(z,y,p)
defined by

L{z,y,p) =&* + ¥ + p(1 —z ~ y).

While keeping p fixed, we minimize the Lagrangean over all « and y, subject
to no constraints, which can be done by setting 8L/82 and 8L /8y to zero.
The optimal solution to this unconstrained problem is

r=y= 2’
and depends on p. The constraint = +y = 1 gives us the additional relation
p =1, and the optimal solution to the original problem is z — y=1/2

The main idea in the above example is the following. Instead of
enforcing the hard constraint £ + ¢ = 1, we allow it to be violated and
associate a Lagrange multiplier, or price, p with the amount 1 — » — v
by which it is violated. This leads to the unconstrained minimization of
B2+y2+pl—z-— ¥). When the price is properly chosen (p=1, in our
example), the optimal solution to the constrained problem is also optimal
for the unconstrained problem. In particular, under that specific value of p,
the presence or absence of the hard constraint does not affect the optimal
cost.

The situation in linear programming is similar: we associate a price
variable with each constraint and start searching for prices under which
the presence or absence of the constraints does not affect the optimal cost.
It turns out that the right prices can be found by solving a new iinear
programming problem, called the dual of the original. We now motivate
the form of the dual problem.
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Consider the standard form problem
minimize c¢'x
subject to Ax

b
b e 0

v

’

which we call the primal problem, and let x* be an optimal solution, as-
sumed to exist. We introduce a relezed problem in which the constraint
Ax = b is replaced by a penalty p’(b — Ax), where p is a price vector of
the same dimension as b. We are then faced with the problem

minimize c'x+p'(b - Ax)
subject to x> 0.

Let g(p) be the optimal cost for the relaxed problem, as a function of the
price vector p. The relaxed problem allows for more options than those
present in the primal problem, and we expect g(p) to be no larger than the
optimal primal cost ¢’x*. Indeed,

g(p) =min |c'x + p'b — Ax}| < 'x* +p'(b — Ax™) = ¢'x7,
x>0

where tke last inequality follows from the fact that x* is a feasible solution
to the primal problem, and satisfies Ax* = b. Thus, each p leads to a
lower bound g(p) for the optimal cost ¢'x*. The problem

maximize g{p)
subject to no constraints

can be then interpreted as a search for the tightest possible lower bound
of this type, and is known as the dual problem. The main result in du-
ality theory asserts that the optimal cost in the dual problem is equal to
the optimal cost ¢’x* in the primal. In other words, when the prices are
chosen according to an optimal solution for the dual problem, the option
of violating the constraints Ax = b is of no value.

Using the definition of g(p), we have

. L3 I _
9(p) min [c x+p'(b— Ax)

—_— ! i ! - !
= p'b+min(c’ — p'A)x.
Note that 0 if ¢ 'A>0
. ’ ’ — ? te—p - ’
2121101(0 —-pP'A)x= { —00, otherwise.

In maximizing g(p), we only need tc consider those values of p for which
g(p) is not equal to —oco. We therefore conclude that the dual problem is
the same as the linear programmine problem

maximize p’b

subject to p’A <c’.
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In the preceding example, we started with the equality constraint |

i i he sign of the price §

= b and nded up With no constraints on t g D ;

Ax arc e lem had instead inequality constraints of the §

vector p. If the primal prOb

form Ax > b, they could be replaced by Ax — s =b, s > 0. The equality

in the form
x
(Aal-1] [ S ] =0,

which leads to the dual constraints

p'la| -1 <[]0,

constraint can be written

uivalently,
on = ¥ pPASC, p20.

Also. if the vector x is free rather than sign-constrained, we use the fact
y

0, ifc —pA=0,
n;in(c' —pA)x= { —00, otherwise,

to end up with the const
erations mativate the gen
in the next section.

In summary, the

variables) p, an
on the optimal primal cos

corresponding lower boun! "y ©
infornf)ation gThus we only need to maximize over those p that lead to

nontrivial lower bounds, and this is what gives rise to the dual constraints.
)

4.2 The dual problem

Lot A be a matrix with rows & and columns A;. Given a primal problem

with the structure shown on the left, its dual is defined to be the maxi-
mization problem shown oR the right:

- ,
e aximiz b
minimize ¢'x maximize p

subject to  alx > b;, ie M, subject to p; > 0, z € M,
alx <b;, i€ My, P <0, 2.€M2,
alx=b, @€Ms p; free, i € Ms,
r;20, J€N P:AjSCJ‘, i€,
25 <0, jGNz, P'A; > ¢, 7 € Na,

, S
z; free, 1 ENs P'Aj=c;, jEN;

raint P'A = ¢ in the dual problem. These consid-
eral form of the dual problem which we introduce

construction of the dual of a primal minimization !
problem can be viewed as follows. We have a vector of parameters (dual j
d for every P We have a method for obtaining a lower bound 3
t. The dual problem is a maximization problem }
that looks for the tightest such lower bound. For some vectors p, the ]
d is equal to —oo, and does not carry any useful
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Notice that for each constraint in the primal (other than the sign con-
straints), we introduce a variable in the dual problem; for each variable in
the primal, we introduce a constraint in the dual. Depending on whether
the primal constraint is an equality or inequality constraint, the corre-
sponding dual variable is either free or sign-constrained, respectively. In
addition, depending on whether a variable in the primal problem is free or
sign-constrained, we have an equality or inequality constraint, respectively,
in the dual problem. We summarize these relations in Table 4.1.

PRIMAL minimize || maximize DUAL
>b; >0
constraints <b <0 variables
=b; free
>0 <¢
variables <0 = ¢ constraints
free =¢j

Table 4.1: Relation between primal and dual variables and constraints.

If we start with a maximization problem, we can always convert it
into an equivalent minimization preblem, and then form its dual according
to the rules we have described. However, to avoid confusion, we will adhere
to the convention that the primal is & minimization problem, and its dual
is a maximization problem. Finally, we will keep referring to the objective
function in the dual problem as a “cost” that is being maximized.

A problem and its dual can be stated more compactly, in matrix
notation, if a particular form is assumed for the primal. We have, for
example, the following pairs of primal and dual problems:

minimize ¢'x maximize p'b
subject to Ax = b subject to p'A <c/,
x > 0,
and
minimize c¢/x maximize p’b
subject to Ax > b, subject to p'A=c

p=0.

Example 4.1 Consider the primal problem shown on the left and its dual shown
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on the right:

minimize T1 + 223 + 323 maximize 5p1 + 6p2 + 4p;
subject to —z1 + 3x2 =5 subject to 1 free
2my — ®2 + 323 > 6 p2 >0
z3 <4 p3 <0
z1 20 —p1 + 2p2 <1
2 <0 3p — po =2
x3 free, 3p2 + pa=3."

We transform the dual into an equivalent minimization problem, rename the‘-
variables from pi1,p2,p3 to #1,20, 73, and multiply the three last constraints by

—1. The resulting problem is shown on the left. Then, on the right, we show lts
dual:

minimize —5z; — G2 — 43 maximize —p1 — 2p2 — 3ps
subject to x free subject to 71— Ip2 = -5
z2 >0 —2p1 + p2 — 3ps < -6 |
z3 <0 - m2 -4
T, — 22 > -1 p1 20 3
—3z1 + =2 < -2 p2 <0
—3x2 — a3 = -3, ps free.

We observe that the latter problem is equivalent to the primal problem we started$
with. (The first three constraints in the latter problem are the same as the first
three constraints in the original problem, multiplied by —1. Also, if the maxi-
mization in the latter problem is changed to a minimization, by multiplying the;
objective function by —1, we obtain the cost function in the original problem.}

The first primal problem considered in Example 4.1 had all of the 3
ingredients of a general linear programming problem. This suggests that
the conclusion reached at the end of the example should hold in general.
Indeed, we have the following result. Its proof needs nothing more than
the steps followed in Example 4.1, with abstract symbols replacing specific
numbers, and will therefore be omitted. ‘

Theorem 4.1 If we transform the dual into an equivalent minimiza- A
tion problem and then form its dual, we obtain a problem equzvalent
to the original prob]em

A compact statement that is often used to describe Theorem 4.1 is |
that “the dual of the dual is the primal.” ]

Any linear programming problem can be manipulated into one of |
several equivalent forms, for example, by introducing slack variables or by
using the difference of two nonnegative variables to replace a single free 4
variable. Each equivalent form leads to a somewhat different form for the {
dual problem. Nevertheless, the examples that follow indicate that the §
duals of equivalent problems are equivalent.
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Example 4.2 Corusider the primal problem shown on the left and its dual shown
on the right:

minimize ¢'x maximize p'b
subject to Ax>b subject to p>0
x free, PA=c.

We transform the primal problem by introducing surplus variables and then ob-
tain its dual:

minimize <¢'x+0's maximize P'b
subject to Ax—s=Db subject to p free
x free PA=¢
s> 0, -p <0

Alternatively, if we take the original primal problem and replace x by sigu-
constrained variables, we obtain the following pair of problems:

minimize ¢'x* —¢/x” maximize p'b
subject to Axt — Ax">b subject to p=>0
x>0 pPA<c
x~ >0, —p'A<-c.

Note that we have three equivalent forms of the primal. We observe that the
constraint p > 0 is equivalent to the constraint —p < 0. Furthermore, the con-
straint p’A = ¢’ is equivalent to the two constraints p’A < ¢ and ~p’A < ~c'.
Thus, the duals of the three variants of the primal problem are also equivalent.

The next exarople is in the same spirit and examines the effect of
removing redundant equality constraints in a standard form problem.

Example 4.3 Consider a standard form problem, assumed feasible, and its
dual:

minimize ¢'x maximize p'b
subject to Ax = b subject to p'A <.
x > 0,
-1
Let a},.. ,al, be tae rows of A and suppose that am = ZZ] ~;a; for some
scalars 1,...,Ym—1. In particular, the last equality constraint is redundant and

can be eliminated. By considering an arbitrary feasible Tlution x, we obtain

m—1 m—1
/ '
b = apX = E yiaix = E Yibs
i=1 i=1

Note that the dual constraints are of the form 7" p:a} < ¢ and can be rewritten
as

1)

m—1

E(pz +'7’7-?m)az =

i=1
Furthermore, using Eq. (4.1), the dual cost E’:_i_l pibi is equal to

m—1

Z(Pi +¥ipm)bi.

=1
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If we now let i = pi + YiPm, We see that the dual problem is equivalent to
maximize Z Gibi
subject to Z g:a; <c.

We observe that this is the exact same dual that we would have obtained if we §
had eliminated the last (and redundant) constraint in the primal problem, before
forming the dual. ;

The conclusions of the preceding two examples are summarized and gener-
alized by the following result. '

"I'h&orem 4.2 Suppose timt we_have tranafozmed a hnear p O
ming prebiem Ii; to ano; linear programming problem g,

'_ asibia, ot* they have tﬁe same optnmal cast

The proof of Theorem 4.2 involves a combination of the various steps :
in Examples 4.2 and 4.3, and is left to the reader.

4.3 The duality theorem

We saw in Section 4.1 that for problems in standard form, the cost g(p) ]
of any dual solution provides a lower bound for the optimal cost. We now
show that this property is true in general.
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Proof. For any vectors x and p, we define

u = pi(ax — bi),
( -P'A; )-TJ
Suppose that x and p are primal and dual feasible, respectively. The def-
inition of the dual problem requires the sign of p; to be the same as the

sign of ajx — b;, and the sign of ¢; — p'A; to be the same as the sign of ;.
Thus, primal and dual feasibility imply that

u,ZO, Vi,

and
v; >0, Y 7.

Notice that
Z u; = p'Ax —- p'b,

and
Z'uj =c'x — p'Ax
i

We add these two equalities and use the nonnegativity of u;, v;, to obtain

OSZui+ZvJ=c’x—p’b. ]
i 7

The weak duality theorem is not a deep result, yet it does provide
some useful information about the relation between the primal and the
dual. We have, for example, the following corollary.

" Corollary 4.1 o R

Proof. Suppose that the optimal cost in the primal problem is —co and
that the dual problem has a feasible solution p. By weak duality, p satisfies
P'b < ¢'x for every primal feasible x. Taking the minimum over all primal
feasible x, we conclude that p’b < —co. This is impossible and shows that -
the dual cannot have a feasible solution, thus establishing part (a). Part
(b) follows by a symmetrical argument.

: Ancther important corollary of the weak duality theorem is the fol-
owing,.
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the dual, respect:ve[y, and suppose that p'b = c¢'X. Tben,..x andp
optimal solutions to the primal and the dual, respectively:

Proof. Let x and p be as in the statement of the corollary. For every prim
feasible solution y, the weak duality theorem yields ¢'x = p’b < ¢’y, whi
proves that x is optimal. The proof of optimality of p is similar.

The next theorem is the central result on linear programming dual-}
ity. 1

Theorem 4.4 (Strong duality) If a linear programming proble;
has an optimal solution, so does its dial, and the respective opti
costs are equaJ

Proof. Consider the standard form problem

minimize ¢'x
subject to Ax
x

Vol
=]

and an optlmal basis B. Let x5 = B !b be the corresponding vector
basic variables. When the simplex method terminates, the reduced costs
must be nonnegative and we obtain ;

c—czpBT'A >0,

where ¢/ is the vector with the costs of the basic variables. Let us define]
a vector p by letting p’ = ¢;B~!. We then have p’A < ¢’, which show:
that p is a feasible solution to the dual problem

maximize p'b
subject to p'A < ¢,

In addition,

p'b=cyB b =chxp =c'x.
It follows that p is an optimal solution to the dual {cf. Corollary 4.2) am{
the optimal dual cost is equal to the optimal primal cost. ‘

If we are dealing with a general linear programming problem II; that
has an optimal solution, we first transform it into an equivalent standard]
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form problem Il;, with the same optimal cost, and in which the rows of the
matrix A are linearly independent. Let D; and Do be the duals of I1; and
I1,, respectively. By Theorem 4.2, the dual problems Dy and D; have the
same optimal cost. We have already proved that II; and Ds have the same
optimal cost. It follows that II; and D) have the same optimal cost (see

Figure 4.1). O
. 1-[1 . s o Dl AR
e . . duals of equivalent
equivalent o | problems are
equivalent
I, > D,

duality for

standard form

problems

Figure 4.1: Proof of the duality theorem for general linear pro-
gramming problems.

The preceding proof shows that an optimal solution to the dual prob-
lem is obtained as a byproduct of the simplex method as applied to a primal
problem in standard form. It is based on the fact that the simplex method
is guaranteed to terminate and this, in turn, depends on the existence of
pivoting rules that prevent cycling. There is an alternative derivation of the
duality theorem, which provides a geometric, algorithm-independent view
of the subject, and which is developed in Section 4.7. At this point, we
provide an illustration that conveys most of the content of the geometric
proof.

Example 4.4 Consider a solid ball constrained to lie in a polyhedron defined
by inequality comstraints of the form ajx > b;. If left under the influence of
gravity, this ball reaches equilibrium at the lowest corner x* of the polyhedron;
see Figure 4.2. This corner is an optimal solution to the problem

minimize ¢'x

subject to  alx > by, Y i,

where c is a vertical vector pointing upwards. At equilibrium, gravity is counter-
balanced by the forces exerted on the ball by the “walls” of the polyhedron. The
latter forces are normal to the walls, that is, they are aligned with the vectors a;.
We conclude that ¢ = Zi p;iay, for some nonnegative coefficients p;; in particular,
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the vector p is a feasible solution to the dual problem

maximize p’b
subject to p'A=c’
pz0.

Given that forces can only be exerted by the walls that touch the ball, we must |
have p; = 0, whenever ajx* > b;. Consequently, pi(b; — ajx*) = 0 for all i. We}
therefore have p'b =3, pibs = ¥, piaix* = c’x*. It follows (Corollary 4.2) that
p is an optimal solution to the dual, and the optimal dual cost is equal to the!

optimal primal cost.

Figure 4.2: A mechanical analogy of the duality theorem.

Recall that in a linear programming problem, exactly one of the fol- j

lowing three possibilities will occur:

(a)} There is an optimal solution.

(b} The problem is “unbounded”; that is, the optimal cost is —co (for-

minimization problems), or +oo (for maximization problems).

(¢) The problem is infeasible.

This leads to nine possible combinations for the primal and the dual, which
are shown in Table 4.2. By the strong duality theorem, if one problem has ;
an optimal solution, so does the other. Furthermore, as discussed earlier, J
the weak duality theorem implies that if one problem is unbounded, the
other must be infeasible. This allows us to mark some of the entries in]

Table 4.2 as “impossible.”
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T Finite optimum | Unbounded | Infeasible
Finite optimum Possible Impossible Impossible
Unbounded Impossible Impossible Possible
Infeasible Impossibla Possible Possible

Table 4.2: The different possibilities for the primal and the dual.

The case where both problems are infeasible can indeed occur, as shown by
the following example.

Example 4.5 Consider the infeasible primal
minimize z; + 222

subject to =z + 2
27 + 232

I
el

Its dual is
maximize p; + 3p2
subject to p; + 2p2 = 1
1+ 2p2 = 2,

which is also infeasible.
There is another interesting relation between the primal and the dual
which is known as Clark’s theorem (Clark, 1961). It asserts that unless

both problems are infeasible, at least one of them must have an unbounded
feasible set (Exercise 4.21).

Complementary slackness

An important relation between primal and dual optimal solutions is pro-
vided by the complementary slackness conditions, which we presens next.

Proof. In the proof of Theorem 4.3, we defined u; = p;(ajx — b;) and
v; = {¢; —p'A;)z;, and noted that for x primal feasible and p dual feasible,
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we have u; > 0 and v; 2 0 for all 4 and j. In addition, we showed that
¢’x-pb= Zui + Zvj.
3 J

By the strong duality theorem, if x and P are optimal, then ¢'x = p’h}
which implies that u; = v; = 0 for all i, j. Conversely, if u; = v; = 0 for al
i, §, then ¢'x = p'b, and Corollary 42 implies that x and p are optim

The first complementary slackness condition is automatically satigd
fied by every feasible solution to a problem in standard form. If the pri
ma] problem is not in standard form and has a constraint like ax > b
the corresponding complementary slackness condition asserts that the dual
variable p; is zero unless the constraint is active. An intuitive explanatiog
is that a constraint which is not active at an optimal sclution can be red
moved from the problem without affecsing the optimal cost, and there is na
point in associating a nonzero price with such a constraint. Note also the
analogy with Example 4.4, where “forces” were only exerted by the active]
constraints, ]

If the primal problem isin standard form and a nondegenerate optin
basic feasible solution is known, the complementary slackness conditio

determine a unique solution to the dual problem. We illustrate this fact in
the next example. '

Example 4.6 Consider a problem in standard form and its dual:

minimize 13z; + 10z + 6x3 maximize 8py + 3po

subject o 531 + xy + 3z3 = § subject to  5p; + 3pz: < 13
3r: + Z3 =3 M+ p: <10
T, 22,73 2 0, 3 < 6.

As will be verified shortly, the vector x* = (1,0,1) is a nondegenerate optimalf
solution to the primal problem. Assuming this to be the case, we use the comple-]
entary slackness conditions to construct the optimal solution to the dual. Thej
condition pi(ajx* — b;) = 0 is antomatically satisfied for each i, since the primal }
is in standard form. The condition (¢; — p’ A;)z; = (is clearly satisfied for j = 2,
because x3 = 0. However, since z} > 0 and z3 > 0, we obtain

5p1 + 3pa = 13,
and
3p1 =6,

which we can solve to obtain p; = 2 and p2 = 1. Note that this is a dual feasiblé]
solution whose cost is equal to 19, which is the same as the cost of x". This3
verifies that x* is indeed an optimal solution as claimed earlier. :

We now generalize the above example. Suppose that z,; is a ba~§
sic variable in a nondegenerate optimal basic feasible solution to a primal]
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problem in standard form. Then, the complemeptar.y slackness. condition
(c;—P'A;)x; = 0 yields p’A; = ¢; for every such j. Since t%le basic colun?ns
A; are linearly independent, we obtain a system‘ of equations .for p which
has a unique solution, namely, p’ = B~ A sunl_lar conclusion can also
be drawn for problems not in standard form (Exercise f1,12). On‘ the other
hand, if we are given a degenerate optimal basic. feasible golutlon t(_) ’.che
primal, complementary siackness may be of very little help in determining
an optimal solution to the dual problem (Exercise 4.1_7).

We finally mention that if the primal constraints are of _the form
Ax > b, x > 0, and the primal problem has an optimal solut.mn, thc_an
there_ exist optimal solutions to the primal and the dual which §at15fy stmc.t
complementary slackness; that is, a variable in one problem is nonzero if
and only if the corresponding constraint in the other‘ pr?blen} is lactlve
(Exercise 4.20). This result has some interesting applications in discrete
optimization, but these lie outside the scope of this book.

A geometric view

We now develop a geometric view that allows us to visualize pairs of primal
and dual vectors without having to draw the dual feasible set.
We consider the primal problem

minimize c¢'x

subject to  ajx > b;, 1=1,...,m,
where the dimension of x is equal to n. We assume that the vectors a; span
R". The corresponding dual problem is

maximize p’b

m
subject to Zpiai =c
i=1

p=>0.

Let I be a subset of {1,...,m} of cardinality n, such that the ve({tors
a;, ¢ € I, are linearly independent. The system a;x = b;, ¢ € I, has a unique
solution, denoted by x’, which is a basic solution to the primal problem
(cf. Definition 2.9 in Section 2.2). We assume, that x! is nondegenerate,
that is, alx # b, for i ¢ I. )

Let p € ™ be a dual vector (not necessarily dual feasible), and let
us consider what is required for x? and p to be optimal solutions to the
primal and the dual problem, respectively. We need:

(a) alx! > by, for all i,
) p;=0,foralli¢g I, (complementary slackness),
(¢) Yo pma=c, (dual feasibility),
d p26, (dual feasibility).

(primal feasibility),
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Figure 4.3: Consider a primal problem with two variables and
five inequality constraints (n = 2, m = 5), and suppose that no
two of the vectors a; are collinear. Every two-element subset J
of {1.2,3,4,5} determines basic solutions x’ and p! of the primal
and the dual, respectively.

If I = {1,2}, x’ is primal infeasible (point A) and p’ is dual in-
feasible, because ¢ cannot be expressed as a nonnegative linear
combination of the vectors a; and as.

¥ I={1,3}, x' is primal feasible (point B) and p’ is dual infea-
sible. »

If I = {1,4}, x' is primal feasible (point C) and p’ is dual feasible,
becanse ¢ can be expressed as a nonnegative linear combination of
the vectors a; and a4, In particular, x’ and p! are optimal.

If I = {1,5), x! is primal infeasible (point D) and p’ is dual
feasible.

Given the complementary slackness condition (b}, condition (c) becomes

Zpiai =cC.

ict
Since the vectors a;, i € I, are linearly independent, the latter equation
has a unique solution that we denote by p!. In fact, it is readily seen
that the vectors a;, i € I, form a basis for the dual problem (which is in
standard form) and p? is the associated basic solution. For the vector p!
to be dual feasible, we also need it to be nonnegative. We conclude that

once the complementary slackness condition (b) is enforced, feasibility of ,
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Figure 4.4: The vector x™ is a degenerate basic feasible solution
of the primal. If we choase I = {1,2}, the corresponding dual
basic solution p? is infeasible, because ¢ is not a nonnegative linear
combination of a;, az. On the other hand, if we choose I = {1,3}
or I = {2,3)}, the resulting dual basic solution p! is feasible and,
therefore, optimal.

the resulting dual vector p’ is equivalent to ¢ being a nonnegative linear
combination of the vectors a;, i € I, associated with the active primal
constraints. This allows us to visualize dual feasibility without having to
draw the dual feasible set; see Figure 4.3.

If x* is a degenerate basic solution to the primal, there can be several
subsets I such that x! = x*. Using different choices for I, and by solving
the system ), ; p;ja; = ¢, we may obtain several dual basic solutions pl. It
may then well be the case that some of them are dual feasible and some are
not: see Figure 4.4. Still, if p? is dual feasible (i.e., all p; are nonnegative)
and if x* is primal feasible, then they are both optimal, because we have
been enforcing complementary slackness and Theorem 4.5 applies.

4.4 Optimal dual variables as marginal costs

In this section, we elaborate on the interpretation of the dual vaxiables as
prices. This theme will be revisited, in more depth, in Chapter 5.
Consider the standard form problem

minimize ¢'x
subject to Ax
x

b
0

vl

We assume that the rows of A are linearly independent and that there
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is a nondegenerate basic feasible solution x* which is optimal. Let B be
the corresponding basis matrix and let xg = B~ b be the vector of basic
variables, which is positive, by nondegeneracy. Let us now replace b by §
b +d, where d is a small perturbation vector. Since B~ lb > 0, we also §
have B-X(b + d) > 0, as long as d is small. This implies that the same
basis leads to a basic feasible solution of the perturbed problem as well.
Perturbing the right-hand side vector b has no effect on the reduced costs
associated with this basis. By the optimality of x* in the original problem, }
the veetor of reduced costs ¢ —c;BT1A is nonnegative and this establishes |
that the same basis is optimal for the perturbed problem as well. Thus,

the optimal cost in the perturbed problem is

cpB (b +d) = p'(b + d),

where p’ = ¢; B! is an optimal solution to the dual problem. Therefore, a 1§
small change of d in the right-hand side vector b results in a change of p’d §

in the optimal cost. We conclude that each component p; of the optimal |

dual vector can be interpreted as the marginal cost (or shadow price) per “

unit increase of the ith requirement b;.

We conclude with yet another interpretation of duality, for standard 3

form problems. In order to develop some concrete intuition, we phrase

our discussion in terms of the diet problem (Example 1.3 in Section 1.1). 4
We interpret each vector A; as the nutritional content of the Jjth available §

food, and view b as the nutritional content of an ideal food that we wish to

synthesize. Let us interpret p; as the “fair” price per unit of the ith nutrient. :,
A unit of the jth food has a value of ¢; at the food market, but it also has

a value of p’A,; if priced at the nutrient market. Complementary slackness
asserts that every food which is used (at a nonzero level) to synthesize the
ideal food, should be consistently priced at the two markets. Thus, duality
is concerned with two alternative ways of cost accounting. The value of the
ideal food, as computed in the food market, is ¢'x*, where x* is an optimal
solution to the primal problem; the value of the ideal food, as computed
in the nutrient market, is p’b. The duality relation ¢’x* = p’b states that

when prices are chosen appropriately, the two accounting methods should
give the same results,

4.5 Standard form problems and the dual
simplex method

In this section, we concentrate on the case where the primal problem is in
standard form. We develop the dual stmplex method, which is an alternative
to the simplex method of Chapter 3. We also comment on the relation
between the basic feasible solutions to the primal and the dual, including
a discussion of dual degeneracy.
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In the proof of the strong duality theorem, we considered the simplex
method applied to a primal problem in standard form and deﬁned4a dl_lal
vector p by letting p’ = ¢ B~!. We then noted that the prim.al optlm.al‘lty
condition ¢’ — ¢z B7LA > 0/ is the same as the dual feasibility condition
p’'A < ¢’. We can thus think of the simplex method as an algorithm that
maijntains primal feasibility and works towards dual feasibility. A metho.d
with this property is generally called a primal algorithm. An alternative is
to start with a dual feasible solution and work towards primal feasibility. A
method of this type is called a dual algorithm. In this section, we present a
dual simplex method, implemented in terms of the full tableau. We argue
that it does indeed solve the dual problem, and we show that it moves from
one basic feasible solution of the dual problem to another. An alternative
implemertation that only keeps track of the matrix B~!, instead of the
entire tableau, is called a revised dual simplez method (Exercise 4.23).

The dual simplex method

Let us consider a problem in standard form, under the usual assumption
that the rows of the matrix A are linearly independent. Let B be a basis
matrix, consisting of m linearly independent eolumns of A, and consider
the corresponding zablean

-czB7 b T
B~ 'b B'A

or, in more detail,

—c’BxB C1 Cp
TRB(1) | '
B7'A; ... B7'aA,

We do not require B~'b to be nonnegative, which means that we
have a basic, but not necessarily feasible solution to the primal problem.
However, we assume that T > 0; equivalently, the vector p' = ¢czB~!
satisfies p’A < ¢/, and we have a feasible solution to the dual problem.
The cost of this dual feasible solution is p'b = ¢zFB~!b = ¢/yx5, which
is the negative of the entry at the upper left corner of the tab]eau.‘ If
the inequality B~'b > 0 happens to hold, we also have a primal feasible
solution with the same cost, and optimal solutions to both problems have
been found. If the inequality B~!b > 0 fails to hold, we perform a change
of basis in a manner we describe next.
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We find some £ such that z B(ey < 0 and consider the £th row of the

tableau, called the pivot row; this row is of the form @B, 1y, V),

where v; is the £th component of B-*A;. For each i with v; < 0 (if such ¢

exist), we form the ratio ¢;/|v;] and let j be an index for which this ratio ‘

is smallest; that is, v; < 0 and

= mi (4.2) '

= n .
il {ilvi<o} oy

(We call the corresponding entry v; the pivot element. Note that r; must j
be a nonbasic varisble, since the jth column in the tableau contains the |
negative element v;.) We then perform a change of basis: column A; .
enters the basis and column A g, exits. This change of basis (or pivot) is |
effected exactly as in the primal simplex method: we add to each row of the |
tableau a multiple of the pivot row so that all entries in the pivot column
are set to zero, with the exception of the pivot element which is set to 1. In
particular, in order to set the reduced cost in the pivot column to Zero, We |

multiply the pivot tow by €;/|v;| and add it to the zeroth row. For every
%, the new value of ¢; is equal to

~ Cj
C; + vy,

[

which is nonnegative because of the way that j was selected [f. Eq. (4.2)].

We conclude that the reduced costs in the new tableau will also be nonneg-
ative and dual feasibility has been maintained.

Example 4.7 Consider the tableau

I T2 T3 T4 s

0 2 6 10 0 0

4= 2] -2 4 1 1 0

zs= | —1 4 -2+ -3 0 1

Since zp(s) < 0, we choose the second row to be the pivot row. Negative entries
of the pivot row are found in the second and third column. We compare the
corresponding ratios 6/} — 2| and 10/| ~ 3|. The smallest ratio is 6/ — 2 and,
therefore, the second column enters the basis. (The pivot element is indicated by
an asterisk.] We multiply the pivot row by 3 and add it to the zeroth row. We
multiply the pivot row by 2 and add it to the first rov. We then divide the pivot
row by —2. The new tableau is

&y X2 T3 B4 s
-3 14 0 1 0 3
z4 = 0 6 0 -5 1 2

= |1/2 (-2 1 32 0 -1/2
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The cost has increased to 3. Furthermore, we now have B~'b > 0, and an
optimal solution has been found.

Note that the pivot element v; is always chosen to be negative, where-
as the corresponding reduced cost T; is nonnegative. Let us temporarily
assume that ¢; is in fact positive. Then, in order to replace ¢; by zero, we
need to add a positive multiple of the pivot row to the zeroth row. Since
Zpe) Is negative, this has the effect of adding a negative quantity to the
upper left corner. Equivalently, the dual cost increases. Thus, as long as the
reduced cost of every nonbasic variable is nonzero, the dual cost increases
with each basis change, and no basis will ever be repeated in the course of
the algorithm. It follows that the algorithm must eventually terminate and
this can happen in one of two ways:

(a) We have B~'b > 0 and an optimal solution.

(b) All of the entries v1,. .., v, in the pivot row are nonnegative and we
are therefore unable to locate & pivot element. In full analogy with
the primal simplex method, this implies that the optimal dual cost is
equal to +oc and the primal problem is infeasible; the proof is left as
an exercise (Exercise 4.22).

We now provide a summary of the algorithm.

An iteration-of ’the dual simplex methed = O
1. A typical iteration starts with the tableau associsted with a basis -

timal basic feasible solution and the algorithm terminates; else,
choose some £ such that £z < 0. ,

3. Consider the £th row of the tableau, with elements 2z, 15+,
mal dual cost

Let us now consider the possibility that the reduced cost & in the
pivot column is zero. In this case, the zeroth row of the tableau does not
change and the dual cost ¢’zB b remains the same. The proof of termina-
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tion given earlier does not apply and the algorithm can cycle. This can be
avoided by employing a suitable anticycling rule, such as the following.

Lexicographic pivoting rule for the dual simplex mei:hod
1. Choose anytow £ such that x5 < 0, to be the pivot row.

2. Deétermine thé index j of the entering colunmn asfollows: Foreach "
~column with »; < 0, divide all entries by v}, and then choose it
~the lexicographically: smallest column. - If there is a tie-between : i

several lexicographically sma.llest columns, choose +the one wmh
the smallest index.

If the dual simplex method is initialized so that every column of the
tableau [that is, each vector (¢;, B~1A;)] is lexicographically positive, and
if the above lexicographic pivoting rule is used, the method terminates in a
finite nurnber of steps. The proof is similar to the proof of the corresponding
result for the primal simplex method (Theorem 3.4) and is left as an exercise
(Exercise 4.24).

When should we use the dual simplex method

At this point, it is natural to ask when the dual simplex method should
be used. One such case arises when a basic feasible solution of the dual
problem is readily available. Suppose, for example, that we already have an
optimal basis for some linear programming problem, and that we wish to
solve the same problem for a different choice of the right-hand side vector
b. The optimal basis for the original problem may be primal infeasible
under the rew value of b. On the other hand, a change in b does not affect
the reduced costs and we still have a dual feasible solution. Thus, instead
of solving the new problem from scratch, it may be preferable to apply
the dual simplex algorithm starting from the optimal basis for the original
problem. This idea will be considered in more detail in Chapter 5.

The geometry of the dual simplex method

Qur development of the dual simplex method was based entirely on tableau
manipulations and algebraic arguments. We now present an alternative
viewpoint based on geometric considerations.

We continue assuming that we are dealing with a problem in standard
form and that the matrix A has linearly independent rows. Let B be a basis
matrix with columns Apgy,..., Ap(m;. This basis matrix determines a
basic solution to the primal problem with xg = B~'b. The same basis can
250 be used to determine a dual vector p by means of the equations

P’AB(:‘) = CB(:)» i=1,...,m.
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These are m equations in m unknowrs; since the columns Apg(yy,..., Ap(m)
are linearly independent, there is a unique solution p. For such a vector p,
the number of linearly independent active dual constraints is equal to the
dimension of the dual vector, and it follows that we have a basic solution
to the dual problem. In matrix notation, the dual basic solution p satisfies
pB=cp orp = ¢’z B!, which was referred to as the vector of simplex
multipliers in Chapter 3. If p is also dual feasible, that is, if p’A < ¢/, then
p is a basic feasible solution of the dual problem.

To summarize, a basis matrix B is associated with a basic solution
to the primal problem and also with a bagic solution to the dual. A basic
solution to the primal (respectively, dual) which is primal (respectively,
dual) feasible, is a basic feasible solution to the primal {respectively, dual).

We now have a geometric interpretation of the dual simplex method:
at every iteration, we have a basic feasible solution to the dual problem.
The basic feasible solutions obtained at any two consecutive iterations have
m — 1 linearly independent active constraints in common (the reduced costs
of the m — 1 variables that are common to both bases are zero); thus,
consecutive basic feasible solutions are either adjacent or they caincide.

Example 4.8 Consider the following standard form problem and its dual:

minimize x; + za maximize 2p1 + p2

subject to 7y + 2x2 — x5 = 2 subject to p1+p2 £1
ry —2a=1 2p1 s 1
1, T2, X3, x4 = 0, p1.p2 2 0.

The feasible set of the primal problem is 4-dimensional. If we eliminate the
variables z3 and x4, we obtain the equivalent problem

minimize z; 4 z2
subject to =z + 2z2 > 2
T 2 1
1, T2 2 0.

The feasible sets of the equivalent primal problem and of the dual are shown in
Figures 4.5(a) and 4.5(b), respectively.

There is a tatal of five different bases in the standard form primal problem
and five different basic solutions. These correspond to the points A, B, C, D,
and E in Figure 45(a). The same five bases also lead to five basic solutions to
the dual problem, which are points A, B, C, D, and F in Figure 4.5(b).

Far example. if we choose the columns Az and A4 to be the basic columns,
we have the infeasible primal basic solution x = (0,0,—2,—1) (point A). The
corresponding dual basic solution is obtained by letting p’A; = ¢35 = 0 and
p'As = cs = 0, which yields p = (0,0). This is a basic feasible solution of the
dual problem and can be used to start the dual simplex method. The associated
initial tableau is
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1 To T3 T4

0 1 1 0 0
2| -1 —2* 1 0
-1|-1 0o 0 1

We carry out two iterations of the dual simplex method to obtain the following

Duality theory

ri i) T3 Tq

~1,1/2 0 1/2 0

zm=| 1|1/2 1 -1/2 0
o= | -1 -1 0 0 1
1 X2 T3 T4

—3p0 0 0 12 1/2
m=| 12| 0 1 -2 12
z = 1] 1 0 0 -1

This sequence of tableaux corresponds to the path A— B — C in either figure. In
the primal space, the path traces a sequence of infeasible basic solutions until, at
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optimality, it becomes feasible. In the dual space, the algorithm behaves exactly
like the primal simplex method: it moves through a sequence of (dual} basic
feasible solutions, while at each step improving the cost function.

Having observed that the dual simplex method moves from one basic
feasible solution of the dual to an adjacent one, it may be tempting to say
that the dual simplex method is simply the primal simplex method applied
to the dual. This is a somewhat ambiguous statement, however, because the
dual problem is not in standard form. If we were to convert it to standard
form and then apply the primal simplex method, the resulting method is
not necessarily identical to the dual simplex method {Exercise 4.25). A
more accurate statement is to simply say that the dual simplex method is
a variant of the simplex method tailored to problems defined exclusively in
terms of linear inequality constraints.

Duality and degeneracy

Let us keep assuming that we are dealing with a standard form problem
in which the rows of the matrix A are linearly independent. Any basis
matrix B leads to an associated dual basic solution given by p’ = ¢xB~L.
At this basic solution, the dual constraint p’A; = ¢; is active if and only if
czBT1A; = ¢, that is, if and only if the reduced cost  is zero. Since p is
m-dimensional, dual degeneracy amounts to having more than m reduced
costs that are zero. Given that the reduced costs of the m basic variables
must be zero, dual degeneracy is obtained whenever there exists a nonbasic
variable whose reduced cost is zero.

The example that follows deals with the relation between basic solu-
tions to the primal and the dual in the face of degeneracy.

Example 4.9 Consider the following standard from problem and its dual:

minimize 3z + 2 maximize 2p;

subject to z, + T2 — T3 =2 subject to p1 + 2pz < 3
25, — T3 — x4 =0 - p2 =1
Z1,%2,%3,%q4 > 0, p1,p2 2> 0.

We eliminate z3 and z,; to obtain the equivalent primal problem

minimize 3z; + z2

subject to  z1 + x2 > 2
221 — x2 > 0
1,22 > 0.

The feasible set of the equivalent primal and of the dual is shown in Figures 4.6(a)
and 4.6(b), respectively.

There is a total of six different bases in the standard form primal problem,
but only four different basic solutions [points A, B, C, D in Figure 4.6(a)]. In the
dual problem, however, the six bases lead to six distinct basic solutions [points
A, A', AY, B, C, D in Figure 4.6(b)).
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S

(a).

Figure 4.6: The feasible sets in Example 4.9.

For example, if we let columns Az and A4 be basic, the primal basic solu-
tion has 1 = z2 = 0 and the corresponding dual basic solution is (p1, ps) = (0,0).
Note that this is a basic feasible solution of the dual problem. If we let columns
A; and Aj be basic, the primal basic solution has again 3 = z3 = 0. For
the dual problem, however, the equations p’A; = ¢; and p'As = c3 yield
(p1,p2) = (0,3/2), which is a basic feasible solution of the dual, namely, point
A’ in Figure 4.6(b). Finally, if we let columns Az and Ay be basic, we still have
the same primal sclution. For the dual problem, the equations p’Az = ¢; and
P'As = c3 yield {p1,p) = (0, —1), which is an infeasible basic solution to the
dual, namely, point A” in Figure 4.6(b).

Example 4.9 has established that different bases may lead to the same
basic solution for the primal problem, but to different basic solutions for the
dual. Furthermore, out of the different basic solutions to the dual problem,
it may be that some are feasible and some are infeasible.

We conclude with a summary of some properties of bases and basic
solutions, for standard form problems, that were discussed in this section.

{(a) Every basis determines a basic solution to the primal, but also a
corresponding basic solution to the dual, namely, p’ = ¢;B~!.

(b) This dual basic solution is feasible if and only if all of the reduced
costs are nonnegative.

{c) Under this dual basic solution, the reduced costs that are equal to
zero correspond to active constraints in the dual problem.

(d) This dual basic solution is degenerate if and only if some nonbasic
variable has zero reduced cost.
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4.6 Farkas’ lemma and linear inequalities

Suppose that we wish to determine whether a given system of linear in-
equalities is infeasible. In this section, we approach this question using
duality theory, and we show that infeasibility of a given system of linear
inequalities is equivalent to the feasibility of another, related, system of
linear inequalities. Intuitively, the latter system of linear inequalities can
be interpreted as a search for a certificate of infeasibility for the former
system.

To be more specific, consider a set of standard form constraints Ax =
b and x > 0. Suppose tha: there exists some vector p such that p'A > 0/
and p'b < 0. Then, for any x > 0, we have p’Ax > 0 and since p’b < 0,
it follows that p’Ax # p’b. We conclude that Ax # b, for all x > 0. This
argument shows that if we can find a vector p satisfying p’A > 0’ and
p’'b < G, the standard form constraints cannot have any feasible solution,
and such a vector p is a certificate of infeasibility. Farkas’ lemma below
states that whenever a standard form problem is infeasible, such a certificate
of infeasibility p is guaranteed to exist.

Theorem 4.6 (Farkas’ lemma) Let A be a matrix of dimensions
m x n.and let b be a vector in ™. Then, exactly one of the following
two alternatives holds:

(a) ' There exists somie x > 0 such that Ax = b. -
(b) There exists some vector p such that p’A > 0’ and p'b < 0.

Proof. One direction is easy. If there exists some x > Osatisfying Ax = b,
and if p’A > 0, then p'b = p’Ax > 0, which shows that the second
alternative cannot hold.

Let us now assume that there exists no vector x > 0 satisfying Ax =
b. Consider the pair of problems

maximize 0'x minimize p’b
subject to Ax = b subject to p’A > O,
x>0

?

and note that the first is the dual of the second. The maximization prob-
lem is infeasible, which implies that the minimization problem is either
unbounded (the cptimal cost is —o0) or infeasible. Since p = 0 is a feasi-
ble solution to the minimization problem, it follows that the minimization
problem is unbounded. Therefore, there exists some p which is feasible,
that is, p’A > 0, and whose cost is negative, that is, p'b < 0. C]

We now provide a geometric illustration of Farkas’ lemma, (see Fig-
ure 4.7). Let Ay,..., A, be the columns of the matrix A and note that
Ax = Y7 | A;z;. Therefore, the existence of a vector x > 0 satisfying
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Ax = b is the same as requiring that b lies in the set of all nonnegative
linear combinations of the vectors A,,..., Ay, which is the shaded region
in Figure 4.7. If b dces not belong to the shaded region (in which case the
first alternative in Farkas’ lemma does not hold), we expect intuitively that
we can find a vector p and an associated hyperplane {z | p'z = 0} such
that b lies on one side of the hyperplane while the shaded region lies on the
other side. We then have p'b < 0 and p’A; > 0 for all 4, or, equivalently,
p’A > (0, and the second alternative holds.

Farkas’ lemma predates the development of linear programming, but
duality theory leads to a simple proof. A different proof, based on the
geometric argument we just gave, is provided in the next section. Finally,
there is an equivalent statement of Farkas’ lemma which is sometimes more
convenient,

Proof. Consider the following pair of problems

maximize c¢'x minimize p'b
subject to Ax < b, subject to p'A=c
p20,

and note that the first is the dual of the second. If the system Ax < b }
has a feasible solution and if every feasible solution satisfies ¢’x < d, then !

the first problem has an optimal soluticn and the optimal cost is bounded
above by d. By the strong duality theorem, the second problem also has
an optimal solution p whose cost is bounded above by d. This optimal
solution satisfies p’A = ¢’, p > 0, and p'b < d.

Conversely, if some p satisfies p’A = ¢/, p > 0, and p'b < d, then

the weak duality theorem asserts that every feasible solution to the first

problem must also satisfy ¢'x < d. O

Results such as Theorems 4.6 and 4.7 are often called theorems of the .
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Figure 4.7: If the vector b does not belong to the set of all
nonnegative linear combinations of Ay,..., A, then we can fird a
hyperplane {z [ p’z = 0} that separates it from that set.

alternative. There are several more results of this type; see, for example.
Exercises 4.26, 4.27, and 4.28.

Applications of Farkas’ lemma to asset pricing

Consider a market that operates for a single period, and in which n different
assets are traded. Depending on the events during that single period, there
are m possible states of nature at tae end of the period. If we invest one
dollar in some asset ¢ and the state of nature turns out to be s, we receive a
payoff of 4;. Thus, each asset i is described by a payoff vector (riz... ., 7ms).
The following m x n payoff matrix gives the payoffs of sach of the n assets
for each of the m states of nature:

™1 e Tin
R:

Tml -+ Tmn

Let z; be the amount held of asset 1. A portfolio of assets is then a vector
X = (%1,...,%,). The components of a portfolio x can be either positive
or negative. A positive value of z; indicates that one has bought z; units
of asset ¢ and is thus entitled to receive ry;z; if state s materializes. A
negative value of x; indicates a “short” position in asset ¢: this amounts to
selling |x;| units of asset ¢ at the beginning of the period, with a promise
to buy them back at the end. Hence, one must pay out ry|z;| if state s
occurs, which is the same as receiving a payoff of r ;x;.
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The wealth in state s that results from a portfolio x is given by

n
We = E Teilli.
i=1

We introduce the vector w = (w, ..., %), and we obtain
w = Rx.

Let p; be the price of asset ¢ in the beginning of the period, and let p = §
(p1,-..,Pn) be the vector of asset prices. Then, the cost of acquiring a §
portfolio x is given by p’x. {

The central problem in asset pricing is to determine what the prices }
p; should be. In order to address this question, we introduce the absence ‘
of arbitrage condition, which underlies much of finance theory: asset prices ;
should always be such that no investor can get a guaranteed nonnegative §
payoff out of a negative investment. In other words, any portfolio that
pays off nonnegative amounts in every state of nature, must be valuable to 3
investors, so it must have nonnegative cost. Mathematically, the absence }
of arbitrage condition can be expressed as follows: :

if Rx> 0, then we must have p'x > 0.

Given a particular set of assets, as described by the payoff matrix R, only
certain prices p are consistent with the absence of arbitrage. What charac- |
terizes such prices? What restrictions does the assumption of no arbitrage "
impose on asset prices? The answer is provided by Farkas’ lemma. ‘

there existd 4 nonnegative vector q = {(qr,. ..,qm), such that the price.
of each asset i is given by

o ”
=) gt
. =1

Proof. The absence of arbitrage condition states that there exists no
vector x such that xR’ > 0/ and x'p < 0. This is of the same form as
condition (b) in the statement of Farkas' lemma (Theorem 4.6). (Note that
here p plays the role of b, and R’ plays the role of A.] Therefore, by
Farkas’ lemma, the absence of arbitrage condition holds if and only if there §
exists some nonnegative vector q such that R'q = p, which is the same as !
the condition in the theorem’s statement. 14

Theorem 4.8 asserts that whenever the market works efficiently enough
to eliminate the possibility of arbitrage, there must exist “state prices” ¢s 1
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that can be used to value the existing assets. Intuitively, it establishes
a nonnegative price g5 for an elementary asset that pays one dollar if the
state of nature is 3, and nothing otherwise. It then requires that every asset
must be consistently priced, its total value being the sum of the values of
the elementary assets from which it is composed. There is an alternative
interpretation of the variables g, as being {unnormalized) probabilities of
the different states s, which, however, we will not pursue. In general, the
state price vector q will not be unique, unless the number of assets equals
or exceeds the number of states.

The no arbitrage condition is very simple, and yet very powerful. It
is the key element behind many important results in financial economics,
but these lie beyond the scope of this text. (See, however, Exercise 4.33 for
an application in options pricing.)

4.7 From separating hyperplanes to duality*

Let us review the path followed in our development of duality theory. We
started from the fact that the simplex method, in conjunction with an anti-
cycling rule, is guaranteed to terminate. We then exploited the termination
conditions of the simplex method to derive the strong duality theorem. We
finally used the duality theorem to derive Farkas’ lemma, which we inter-
preted in terms of a hyperplane that separates b from the columns of A. In
this section, we show that the reverse line of argument is also possible, We
start from first principles and prove a general result on separating hyper-
planes. We then establish Farkas’ lemma, and conclude by showing that the
duality theorem follows from Farkas’ lemma. This line of argumert is more
elegant and fundamental because instead of relying on the rather compli-
cated development of the simplex method, it only involves a small number
of basic geometric concepts. Furthermore, it can be naturally generalized
to nonlinear optimization problems.

Closed sets and Weierstrass’ theorem

Before we proceed any further, we need to develop some background ma-
terial. A set § C R™ is called closed if it has the following property: if
xt,x? ... is a sequence of elements of § that converges to some x € R”,
then x € 5. In other words, § contains the limit of any sequence of elements

of §. Intuitively, the set S contains its boundary.

Proof. Consider the polyhedron P = {x € ®* | Ax > b}. Suppose that
x!, %2, ... is a sequence of elements of P that converges to some x*. We have
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to show that x* € P. For each k, we have x* € P and, therefore, Ax* > b. ]
Taking the limit, we obtain Ax* = A{limy_ xF) = limyg_o0 (Ax"’) >b,]
and x* belongs to P. ‘

The following is a fundamental result from real analysis that provides
us with cenditions for the existence of an optimal solution to an optimiza- |
tion problem. The proof lies beyond the scope of this book and is omitted.

Weierstrass’ theorem is not valid if the set S is not closed. Consider, :
for example, the set § = {x € R | > 0}. This set is not closed because we
can form a sequence of elements of S that converge to zero, but z = 0 does
not belong to 5. We then observe that the cost function f(x} = z is not 4
minimized at any point in §; for every z > 0, there exists another positive §
number with smaller cost, and no feasible = can be optimal. Ultimately,
the reason that § is not closed is that the feasible set was defined by means }
of strict inequalities. The definition of polyhedra and linear programming
problems does not allow for strict inequalities in order to avoid situations |
of this type.

The separating hyperplane theorem

The result that follows is “geometrically obvious” but nevertheless ex- |
tremely important in the study of convex sets and functions. It states that ;
if we are given a closed and nonempty convex set S and a point x* ¢ S, ‘
then we can find a hyperplane, called a separating hyperplane, such that § |
and x* lie in different halfspaces (Figure 4.8). !

Proof. Let | - || be the Euclidean norm defined by ||xJ| = (x'x)!/2. Let us {
fix some element w of S, and let ‘

B = {x|lx—x| < |lw-x||},

and D = §N B [Figure 4.9(a)]. The set D is nonempty, because w € D).
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Figure 4.8: A hyperplane that separates the point x* from the
convex set §.

Furthermore, D is the intersection of the closed set S with the closed set
B and is also closed. Finally, D is a bounded set because B is bounded.
Consider the quantity ||x — x*||, where x ranges over the set D. This is
a continuous function of x. Since I is nonempty, closed, and bounded,
Weierstrass’ theorem implies that there exists some y € I such that

ly —xl < Jx—x"}, VxeD.

For any x € § that does not belong to D, we have ||x —x*|| > w —x*|| >
lly — x*||. We conclude that y minimizes ||x — x*|| over all x € §.

‘We have so far established that there exists an element y of S which
is closest to x*. We now show that the vector ¢ = y — x* has the desired
property [see Figure 4.9(b) .

Let x € S. For any Asatisfying 0 < A <1, we have y + A(x—y) € 5,
because S is convex. Since y minimizes |jx — x*|| over all x € 5, we obtain

ly = x*I2 < lly +Mx —y) - x*|?
ly — =112 + 22y —x*) (x — y) + 3 [|x -y,

which yields
2y —x")(x—y)+ X|x-y]* >0

We divide by A and then take the limit as A decreases to zero. We obtain
y—-x")(x-y)20.

[This inequality states that the angle # in Figure 4.9(b) is no larger than
90 degrees.] Thus,

y-x")Vx 2> (y—x"y
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Figure 4.9: Ilustration of the proof of the separating hyperplane
theorem.
= (y—-x")x" +{y—x){y—x)
> (y—x")x"
Setting ¢ = ¥ — x* proves the theorem. C

Farkas’ lemma revisited

We now show that Farkas’ lemina is a consequence of the separating hy-
perplane theorem.

We will only be concerned with the difficult half of Farkas’ lemma. In
particular, we will prove that if the system Ax = b, x > 0, does not have
a solution, then there exists a vector p such tha; p’A > 0’ and p'b < 0.

Let

S = {Ax|x>0}
{y | there exists x such that y = Ax, x> 0},

and suppose that the vector b does not belong to §. The set § is clearly
convex; it is also nonempty because 0 € S. Finalty, the set S is closed; this
may seem cbvious, but is not easy to prove. For one possible proof, note
that S is the projection of the polyhedron {(x,y) | ¥y = Ax, x > 0} onto
the y coordinates, is itself a polyhedron (see Section 2.8), and is therefore
closed. An alternative proof is outlined in Exerdse 4.37.

‘We now invoke the separating hyperplane theorem to separate b from
S and conclude that there exists a vector p such that p’'b < p’y for every
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y £ 5. Since 0 € S, we must have p’b < 0. Furthermore, for every column
A of A and every A > 0, we have JA; € § and p'b < Ap’A;. We divide
both sides of the latter ineqaality by A and then take the limit as A tends
to infinity, to conclude that p’A; > 0. Since this is true for every ¢, we
obtain p’A > 0’ and the proof is conplete.

The duality theorem revisited

We will now derive the duslity thecrem as a corollary of Farkas’ lemma.
We only provide the proof for the case where the primal constraints are of
the form Ax > b. The proof for the general case can be constructed along
the same lines at the experse of mare notation (Exercise 4.38). We also
note that the proof given here is very similar to the line of argument used
in the heuristic explanation of the duality theorem in Example 4.4.

We consider the following pair of primal and dual preblems

minimize ¢'x maximize p’b
subject to  Ax > b, sibject to p'A=c
P20,

ard we assume that the primal has an optimal solution x*. We will show
that the dual problem also has a feasible solution with the same cost. Once
this is done, the strong duality theorem follows from weak duality (ef. Corol-
lazy 4.2},

Let I = {i | ajx* = b;} be the set of indices of the constraints that
are active at x*. Wa will first show that any vector d that satisfies aid > 0
for every i € I, must also sa:isfy ¢’d > 0. Consider such a vector d and let
¢ be a positive scalar. We then have al(x* +ed) > a;x* = b; forall i e I
In addition, if ¢ ¢ I and if ¢ is suffidently small, the inequality ajx™ > b;
implies that af(x* +ed) > b, We conclude that when e is sufficiently small,
x* + ed is a feasible solution. By the optimality of x*, we obtain ¢'d > 0,
which establishes our claim By Farkas' lemma (cf. Corollary 4.3), ¢ can
be expressed as a nonnegative linear combination of the vectors a;, i € I,
and there exist nommegative scalars p;, ¢ € I, such that

c= Zpiai. (4.3)
ief

For i ¢ I, we define p; = 0. We then have p > 0 and Eq. (4.3) shows that
the vector p satisfies the dual constraint p’A = ¢’. In addition,

pb=> pb =) pax’ =cx,
el iel

which shows that the cost of this dual feasible solution p is the same as the
optimal primal cost. The duality theorem now follows from Coerollary 4.2.
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Figure 4.10: Examples of cones.

' I-n conclusion, we have accomplished the goals that were set out in the
beglmn'mg of this section. We proved the separating hyperplane theorem
which is a very intuitive and seemingly simple result .but with many { ’
portant ramifications in optimization and othe- areas ,in mathematicsy l‘;vﬂ;

used the separating hyperplane theorem to es:abl
fin 0 es:ablish Farkas’ |

ally showed that the strong duality theoren emma, and
Farkas’ lemma,

4.8 Cones and extreme rays

We bave seen in Chapter 2, that if the optimal ¢o
problem is finite, then our search for an optima)
to_ﬁnitely many points, namely, the basic feasitl
exists. In this section, we wish to develop a simil
the optimal cost is —co. In particular
Is —oo if and only if there exis

st in a linear programming
solution can be restricted

Cones

The first step in our development is to introduce the concept of a cone
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Notice that if C' is a nozempty cone, then 0 € C. To this sze, consider
an arbitrary element x of C and set A = 0 in the definition of a cone; see
also Figure 4.10. A polyhecron of the form P = {x € " | Ax > 0} is
easily seen to be a nonempty cone and is called a polyhedral cone.

Let x be a nanzero element of a polyhedral cone €. We then hsve
3x/2 € C'and x/2 € C. Since x is the average of 3x/2 and x,2, it is not
an extreme point and, therefore, the cnly possible extreme point is the zero
vector. If the zero vector is indeed an extreme point, we say that the cone
is pointed. Whether this will be the case or not is determined by the criteria
provided by our next result.

Theorem 4.12 Let C.C #™ be the polyhedral: cone defined by the
constraints alx >0, = 1,....,m. Then; the followirg ars squivalent:
(a) The zero vector is an extréme point ol Ol (LTI
(b)  Tho cone C does not contain a line. .

-

e

18 an easy consequence of -

(c) There exist n vectos out of the Family a3, ,a ,wh’iqbare
{inearly independent. D S
Proof. This result is a specal case of Theorem 2.6 in Section 2.5. H

Rays and recession cones

Consider a nonempty polyhedron
P:{xe%ﬂszb},

and let us fix some y € P. We define the recession cone at ¥ as the set of
all directions d along which we can meve indefinitely away from y, without
leaving the set P. More formally, the -ecession cone is defined as the set

{de®" | Ay +2d) > b, forall A > 0}).
It is easily seen that this set i the same as
{de ®" | ad > 0},

and is a polyhedral cone. Thisshows that the recession cone is independent
of the starting point y; see Figure 4.11. The nonzero elements of the
recession cone are called the rays of the polyhedron P.
For the case of a nonempty polyledron P = {x € R" | Ax = b, x>
0} in standard form, the recession cone is seen to be the set of all vectors
d that satisfy
Ad =0, d>o.
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Figure 4.11: The recession cone at different elements of a polyhedron.

Extreme rays

We now define the extreme rays of a polyhedron. Intuitively, these are the |
directions associated with “edges” of the polyhedron that extend to infinity;

see Figure 4.12 for an illustration.

(a) A nongero element x of a polyhedral cone C' C R" is called an .

(b) An extreme ray of the recession cone associated with a nonempty
polyhedron P is also called an extreme ray of P.

Note that a positive multiple of an extreme ray is also an extreme ray.

We say that two extreme rays are equivalent ifone is a positive multiple of §

the other. Note that for this to happen, they must correspond to the same
n—1linearly independent active constraints. Any n—1 linearly independent
constraints define a line and can lead to at mosi two nonequivalent extreme
rays (one being the negative of the other). Given that there is a finize
number of ways that we can choose n — 1 constraints to become active,

and as long as we do not distinguish hetween equivalert extreme rays, we |

conclude that the number of extreme rays of a polyhedron is finite. A finite
collection of extreme rays wil, be said to be a complete set of extreme rays
if it contains exactly one representative from each equivalence class,

Definition 4.2 E =

extreme ray if there are n —1 linearly independent constraints ?;
that are active at x. 4

3 3
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(a) {b)

Figure 4.12: Extrems rays of polyhedral cones. (a) The vactor
y is an extreme ray because » = 2 and she constraint ajx = 0
is active at y. (b} A polyhedrel cone defined by three linearly
independent constraints of the form ajx > 0. The vector z is
an extreme ray because 7 = 3 and the two linearly independent
constraints ajx > 0 and ajx > 0 are active at z.

The definition of extreme rays mimics the definition of basic feasible
solutions. An alternative and equivaent definition, resembling the defini-
tion of extreme points of polyhedra, & explored in Exercise 4.39.

Characterization of unbounded linear programming
problems

We now derive conditions under which the optimal cost in a linear pro-
gramming problem is equal to —oo, first for the case where the feasible set
is a cone, and then ‘or the general case.

Theorem 4.13 Consider the probiem of minimizing ¢/x over a pointed
polyhedral cone C = {x € R | ajx > 0, i = 1,...,m}. The optimal
cost is equal to —oo if and only if some extreme ray d of C satisfies
cd < 0.

Proof. One direction of the result is trivial because if some extreme ray
has negative cost, then the cost becomes arbitrarily negative by moving
aleng this ray.

For the converse, suppese that the optimal cost is —co. In particular,
there exists some x € €' whese cost is negative and, by suitably secaling x,
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we can assume that ¢’x = —1. In particular, the polyhedren

P={xe§R" | aixZO,...,%xEO,c’x:—l}

is nonempty. Since C is pointed, the vectors ay,...,a, span ®* and this ‘

implies tha: P has at least one extreme point; let d be one of them. At d,

we have n linearly independent active constraints, which means that n — 1
lincarly independent constraints of the form ajx > 0 must be active. It §
follows that d is an extreme ray of C. 03

By exploiting duality, Theorem 4.13 leads to a criterion for unbound- §
edness in general linear programming problems. Interestingly enough, this §

criterion does not involve the right-hand side vector b.

Theorem 4.14 Consider the problem of minimizing ¢/x subject -

Ax > b, and assume that the feasible set has at least one extren
point.’ Theuptfmal cost is equal to —oo if and. only 1f some extre

ray d of the feasxble set satisfies ¢’d < 0. '

Proof. One direction of the result is trivial because if an extreme ray has {
negative cost, then the cost becomes arbitrarily negative by starting at a |

feasible solution and moving along the direction of this ray.

For the proof of the reverse direction, we consider the dual problem:

maximize p'b
subject to p'A =¢
p=0.

If the primal problem is unbounded, the dual problem is infeasible. Then,

the related problem
maximize p’0
sudject to p'A =¢
pz0,

is also infeasible. This implies that the associated primal problem

minimize c¢'x
subject to Ax > (,

is either unbounded or infeasible. Since x = 0 is one feasible solution, it
must be unbounded. Since the primal feasible set has at least one extreme |
point, the rows of A span ", where n is the dimension of x. Tt follows |

that the recession cone {x | Ax > 0} is pointed and, by Theorem 4.13,

there exists an extreme ray d of the recession cone satisfying ¢'d < 0. By |
definition, this is an extreme ray of the feasible set. 13
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The unboundedness critericn in the simplex method

We end this section by pointing out that if we have a standard form prob-
lem in which the optimal cost is —o, the simplex method prevides us at
termination with an extreme ray.

Indeed, consider what nappens when the simplex method terminares
with an indication that the optimal cost is —oc. At that point, we have
a basis matrix B, a nonbasiz variabl: x; with negative reduced cost, and
the jth column B™-A; of the tableaa has no positive elements. Consider
the jth basic direction d, which is the vector that satisfies dg = —-B~'A;,
d; = 1, and d; = 0 for every nonbasic index i other than j. Then, the
vector d satisfles Ad = 0 and d > 0, and belongs to the recession cone. It
is also a direction of cost decrease, sirce the reduced cost ; of the entering
variable is negative.

Out of the constraints defining the recession cone, the jth basic di-
rection d satisfies n — 1 lineaily independent such constraints with equality:
these are the constraints Ad = 0 {m of them) and the constraints d; = 0
for ¢ nonbasic and different than 5 {(n— m — 1 of them). We conclude that
d is an extreme ray.

4.9 Representation of polyhedra

In this section, we establish one of the fundamental results of linear pro-
gramming theory. In particular, we show that any element of a polyhedron
that has at least one extrems point can be represented as a convex combi-
nation of extreme points plus a nonnsgative linear combination of extreme
rays. A precise statement is given by our next result. A generalization to
the case of general polyhedra is developed in Exercise 4.47.

Theorem 4.15 {Resolution theorem) Let
P={xe® | Ax>b}

be a nonempty polyhedron with at least one extreme point. Let
x!,...,x* be the extreme points, and let w', w" be a complete
set of extreme rays of P. Let

Z,\x +anﬂ‘x >0, & >0, ):)\1_1

q==x1 Fe=i

Then, ¢} = P.
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Proof. We first prove that Q C P. Let

k
X = Z Aixi + i:ijj
i=1 =1

be an element of ¢}, where the coemments A; and #; are nonnegative, a.nd ]

EI (A = 1. The vector y = 5% L Aax? is & convex combination of ele-

(d

ments of P. It therefore belongs to P and satisfies Ay > b. We also have !
Aw’ > 0 for every j, which implies that the vector z = Z 1 8,w7 satisfies |
Az > 0. It then follows that the vector x =y + = satlsﬁes Ax > b and ]

belongs to P.

For the reverse inclusion, we assume that P is nct a subset of ¢ and’ 1
we will derive a contradiction. Let z be an element of P that does not ! 4

belong to ). Consider the linear programming problem

k r
maximize ZUz\i + Z 08,
i=1 i=1

k T
subject to » Ax'+ > 0wl =z

A 20, i=1,...,k,
9j20, _j:].,...,’.",

which is infeasible because z € Q. This problen is the dual of the problem :

minimize p'z+q

subject to p'x*4+¢ 20, i=1,...,k, (4.5) "

pPw’ =0, i=1,...,r

Because the latter problem has a feasible solution, namely, p = O and g =0, }
the optimal cost is —co, and there exists a feasible solution (p,q) whose |
cost p'z + ¢ is negative. On the other hand, p'x¢ + ¢ > 0 for all i and this

implies that p'z < p’x? for all i. We also have p'w? >0 for all 5. }

Having fixed p as above, we now consider the linear programming

problem
minimize p'x
subject to Ax > b.

If ihe optimal cost is finite, there exists an extreme point x* which is op-
timal. Since z is a feasible solution, we obtain p'x* < p’z, which is a |

'For an intuitive view of this proof, the purpose of this paragraph was to construct a

hyperplane that separates z from 3.
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contradiction. If the optimal cost is —co, Theorem 4.14 implies that there
exists an extreme ray w? such that p’w? < 0, which is again a contradiction.

O
Example 4.10 Consider the unbounded polyhedron defined by the constraints
r1 — Lo 2 -2
Ttz 21
z1,8; 2 0

(see Figure 4.13). ThlS polyhedron has three extreme points, namely, x* = (0,2),

= (0,1), and x* = (1,0). The recession cone C is described by the inequalities
d1 d2 > 0,dy+dy 20, anddy,dx > 0. We conclude that C = {(d;,dz) |0 <
d2 < di}. This cone has two extreme rays, namey, w' = (1,1) and w? = (1,0).
The vector y = (2,2) is an element of the polyhedron and can be represented as

LG

However, this representation is not unique; for example, we also have

I IS I S O O R O I O O 3
=[] e

Figure 4.13: The polyhedron of Example 4.10.

We note that the set ¢} in Theorem 4.15 is the image of the polyhedron

k
:{(Al-:'--v/\k}el)-“:g'r') Z)\’izl-l A‘iZO) 9]20}1

i=1
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under the linear mapping

k T
Ay Ak 1,6} = S A+ wd
i=1 j=1

Thus, one corollary of the resolution theorem is that every polyhedron is
the image, under a linear mapping, of a polyhedron H with this particular §
structure. i
We now specialize Thecrem 4.15 to the case of bounded polyhedra, §
to recover a result that was also proved in Section 2.7, using a different line !
of argument. '

Corollary 4.4 A nonempty bounded polyhedron is the convex hull of:
its extreme points. ' :

Proof. Let P = {x| Ax > b} be a nonempty bounded polyhedron. If d
is a nonzero element of the cone C = {x | Ax > 0} and x is an element of j
P, we have x4+ Ad € P for all A > 0, contradicting the boundedness of P. }
We conclude that C consists of only the zero vector and does not have any 3
extreme rays. The result then follows from Theorem 4.15. 0

There is another corollary of Theorem 4.15 that deals with cones, and §
which is proved by noting that a cone can have no extreme points other }
than the zero vector.

“Corollary 4.5 Assume that the cone C' = [x | Ax > 0} is pointed. g
Then, every element of C can be expressec as a ncnnegative linear
combination of the extreme mys of C. :

Converse to the resolution theorem

Let us say that a set @ is finitely generated if it is specified in the form
k T k 1
Q={32x'+3 6w |,\i20, 0,20, S n=1p,  (46) ]

i=1 i=1 i=1 ]

where x!,...,x* and w!,..., w" are some given elements of ®". The res- :
olution theorem states that a polyhedron with at least one extreme point |
is a finitely generated set (this is also true for general polyhedra; see Exer-
cise 4.47). 'We now discuss a converse result, which states that every finitely
generated set is a polyhedron.
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As observed earlier, a finitely generated set Q can be viewed as the
image of the polyhedron

k
H= {(Al,..,Ak,Bl...,Hr) \ Sa=1 0200 20}
=1
under a certain linear mapping. Thus, the results of Section 2.8 apply and
establish that a finitely generated sei is indeed a polyhedron. We record
this result and also present a proof based on duality.

Theorem 4.18 A finitely generated set is a polyhedron, In particular,
she convex hull of finitely many vectors is a (bounded) polyhedron.

Proof. Consider the linear programming problem (4.4) that was used in
the proof of Theorem 4.15. A given vector z belongs to a finitely generated
set  of the form (4.6) if and only if the problem (4.4) has a feasible
solution. Using duality, this is the case if and only if problem (4.5} has finite
optimal cost. We convert problem (4.5) to standard form by introducing
nonnegative variables p™,p~,¢%, 47, such that p = p* — p~, and ¢ =
g*—q~, as well as surplus variables. Since standard form polyhedra contain
no lines, Theorem 4.13 shows that tle optimal cost in the standard form
problem is finite if and only f

P2~ (p7)z+q" — ¢ >0,
for each one of its finitely many extreme rays. Hence, z € Q if and only if

z satisfies a finite collection of linear inequalities. This shows that Q is a
polyhedron, O

In conclusion, we have two ways of representing a polyhedron:
(e) in terms of a finite set of linear constraints;

(b) as a finitely generated set, in terms of its extreme points and extreme
rays.

These two descriptions are mathematically equivalent, but can be
quite different from a practical viewpoint. For example, we may be able to
describe a polyhedron in terms of a small number of linear constraints. If on
the other hand, this polyhedron has many extreme points, a description as a
finitely generated set can be much more complicated. Furthermore, passing
from one type of description to the other is, in general, a complicated
computational task.

4.10 General linear programming duality*

In the definition of the dual problem (Section 4.2), we associated a dual
variable p; with each constraint of the form ajx = b;, alx > b;, ar alx < b;.
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However, no dual variables were associated with constraints of the form
; 2 0or z; < 0. In the same spirit, and in a more general approach
to linear programming duality, we can choose arbitrarily which constraints -
will be associated with price variables and which ones will not. In this 3
section, we develop a general duality theorem that covers such a situation, }
Counsider the primal problem
minimize c¢'x
subject to Ax > Db
xe P,

where P is the polyhedron
P={x{Dx>d}

We associale a dual vector p with the constraint Ax > b. The constraint
x € P is a generalization of constraints of the form z; > 0 or z; < 0 and §
dual variab.es are not associated with it. i

As in Section 4.1, we define the dual objective g(p) by

s ' h 1
g(p) = min [c x+p'(b Ax)] . {4.7) !
The dual problem is then defined as

maximize g(p)
subject to p >0,

We first provide a generalization of the weak duality theorem.
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Proof. If x and p are primal and dual feasible, respectively, then p'(b —
Ax) < 0, which implies that,

o ' fop

9(p) = min [c y+p'(b AY)]
< cx+p'(b— Ax) ‘
< ¢'x. O 3

We also have the following generalization of the strong duality theo-
rem. ]
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Proof. Since P = {x | Dx > d}, the primal problem is of the form

minimize ¢'x
subject to Ax>b
Dx >d,

and we assume that it has an optimal solution. Its dual, which is

maximize pb+q'd
subject to pA+qD=¢
p=0
q=0,

(4.8)

must then have the same optimal cost. For any fixed p, the vector q should
be chosen optimally in the problem (4.8). Thus, the dual problem (4.8) can
also be written as

maximize p'b+ f(p)

subject to p > 0,
where f(p) is the optimal ccst in the problem
maximize q'd
subject to gD =c¢' - p’'A (4.9)
qz=0.

[If the latter problem is infeasible, we set f(p) =
duality theoremn for problem {4.9), we obtain

—.] Using the strong

fip)= mm c'x — p'Ax).

We conclude that the dual problem (4.8) has the same optimal cost as the
problem

L. ' : ! ’
maximize p'b + min {¢'x -~ p'A
maximize p'b+ sz'j( x ~ p'Ax)

subject to p = 0.

By comparing with Eq. (4.7}, we see that this is the same as maximizing
g(p) over all p > 0. [

The idea of selectively assigniny dual variables to some of the con-
straints is often used in order to tr:at “simpler” constraints differently
than more “complex” ones, and has numerous applications in large scale
optimization. {Applications to integer programming are discussed in Sec-
tion 11.4.) Finally, let us poirt out that the approach in this section extends
to certain nonlinear optimization problems. For example, if we replace the
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linear cost function c¢’x by a general convex function c(x), and the poly- _
hedron P by a general convex set, we can again define the dual objective

according to the formula

o(p) =mip [c(x) +p'(b~ Ax)].

X

Y
It turns out that the strong duality theorem remains valid for such nonlinear
problems, under suitable technical conditions, but this lies beyond the scope §

of this book.

4.11 Summary

We summarize here the main ideas that have been developed in this chapter. '

Given a (primal) linear programming problem, we can associate with §
it another {(dual} linear programming problem, by following a set of mechan- }
ical rules. The definition of the dual problem is consistent, in the sense that §

the duals of equivalent primal problems are themselves equivalent.

Each dual variable is associated with a particular primal constraint }
and can be viewed as a penalty for violating that constraint. By replacing i
the primai constraints with penalty terms, we increase the set of available }
options, and this allows us to construct primal solutions whose cost is less 4
than the optimal cost. In particular, every dual feasible vector leads to a ]
lower bound on the optimal cost of the primal problem (this is the essence of 3

the weak duality theorem). The maximizaticn in the dual problem is then
a search for the tightest such lower bound. The strong duality theorem
asserts that the tightest such lower bound is equal to the optimal primal
cost.

An optimal dual variable can also be interpreted as a marginal cost,
that is, as the rate of change of the optimal primal cost when we perform a
small perturbation of the right-hand side vector b, assuming nondegeneracy.

A useful relation between optimal prinal and dual solutions is pro-
vided by the complementary slackness conditions. Intuitively, these con-
ditions require that any constraint that is inactive at an optimal solution
carries a zero price, which is compatible with the inzerpretation of prices
as marginal costs.

We saw that every basis matrix in a standard form problem deter-
mines not only a primal basic solution, but also a basic dual solution. This
observation is at the heart of the dual simplex method. This method is
similar to the primal simplex method in that it generates a sequence of
primal basic solutions, together with an associated sequence of dual basic
solutions. It is different, however, in that the dual basic solutions are dual
feasible, with ever improvirg costs, while the primal basic solutions are in-
feasible (except for the last one). We developed the dual simplex method by
simply describing its mechanics and by proviling an zlgebraic justification.
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Nevertheless, the dual simplex method also has a geometric interpretation.
It keeps moving from one dual basic feasible solution to an adjacent one
and, in this respect, it is similar to the primal simplex method applied to
the dual problem.

All of duality theory can be developed by exploiting the termination
conditions of the simplex method, ard this was our initial approach to the
subject. We also pursued an alternative line o development that proceeded
from first principles and used geometric arguments. This is a more direct
ard more general approach, but reqtires more abstract reasoning.

Duality theory provided us wita some powerful tcols based on which
we were able to enhance our geomeiric understanding of polyhedra. We
derived a few theorems of tae alternative {like Farkas' lemma), which are
surprisingly powerful and have applications in a wide variety of contexts.
In fact, Farkas’ lemma can be viewed as the core of linear programming
duality theory. Anmnother major result that we derived is the resolution
theorem, which allows us to sxpress any element of a nonempty polyhedron
with at least one extreme point as a convex combination of its extreme
points plus a nonnegative linear combination of its extreme rays; in other
words, every polyhedron is ‘finitely generated.” The converse is also true,
and every finitely generated set is a polyhedron (can be represented in
teems of linear inequality constraints). Results of this type play a key
role in confirming cur intuitive geometric understanding of polyhedra and
lirear programming. They allow us to develop alternative views of certain
situations and lead to deeper understanding. Many such results have an
“obvious” geometric content and are often taken for granted. Nevertheless,
as we have seen, rigorous proofs can be quite elaborate.

4.12 Exercises
Exercise 4.1 Consider the Inear programming problem:

minimize T1 — I2

subject to 2z + 3z2
3r1 + 2
-r — i)
r <0
Tz, &3 2 0.

o]

+ @4
— 24
+ ®a

++
Nk
585
LIV IA
w

Write down the corresponding dual problem.

Exercise 4.2 Consider the primal prablem

minimize «¢'x
subject to  Ax

>
x >

Form the dual problem and convert it iato an equivalent minimization problem.
Derive a set of conditions on the matrix A and the vectors b, ¢, under which the



xeuwuoneziwndo reaul|

188 Chap. 4 Duslity theory

dual is identical to the primal, and construct an example in which these conditions 3

are satisfied.

Exercise 4.3 The purpose of this exercise is to show that solving linear pro-

gramming problems is no harder than solving systems of linear inequalities.

Suppose that we are given a subroutine which, given a system of linear in- §
equality constraints, either produces a solution or decides that no solution exists, §
Construct a simple algorithm that uses a single call to this subroutine and which 3
finds an optimal solution to any linear programming problem that has an optimal

solution.

Exercise 4.4 Let A be a symmetric square matrix. Consider the linear pro- }

gramming problem
minimize ¢'x
subject to Ax > ¢
x = (.

Prove that if x* satisfies Ax* = c and x™ > 0, then x™ is an optimal solution.

Exercise 4.5 Consider a linear programming problem in standard form and
assume that the rows of A are linearly independent. For each one of the following §

statements, provide either a proof or a counterexample.

(a) Let x* be a basic feasible solution. Suppose that for every basis correspond- “
ing to x*, the associated basic solution to the dual is infeasible. Then, the §

optimel cost must be strictly less that c’'x*.

{b) The dual of the auxiliary primal problem considered in Phase I of the .

simplex method is always feasible.

{c) Let p; be the dual variable associated with the ith equality constraint in §
the primal. Eliminating the ith primal equality constraint is equivalent to 3

introducing the additional constraint p; = 0in the dual problem.

(d) If the unboundedness criterion in the primal simplex algorithm is satisfied, §

then the dual problem is infeasible.

Exercise 4.6* (Duality in Chebychev appraximation) Let A be an m xn |

matrix and let b be a vector in ™. We consider the problem of minimizing

lAx — bllo over all x € R". Here || - ||oc is the vector norm defined by |ly[lcc = 1

max; [:|. Let v be the value of the optimal cost.

(a) Let p be any vector in R™ that satisfies 3°* |p:] =1and p’A = 0". Show }

that p'b < v.

(b) In order to obtain the best possible lower beund of the form considered in |

part (a), we form the linear programming problem

maximize p’b
subject to p'A =0’

Z|P@| <1
i=1

Show that the optimal cost in this problem i equal to v.
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Exercise 4.7 (Duality in piecewiss linear convex optimization) Con-
sider the problem of minimizing max;—1,... m(ajx — b;) over all x € ®®. Let v
be the value of the optimal cost, assumed finite. Let A be the matrix with rows
ai,..-,am, and let b be the vector with components b1, ..., bm.-
(a) Consider any vector p € R™ that satisfies P A =0",p>0,and 3" p =
1. Show that —p'b < v.
(b) In order to obtain the best possible lower bound of the form considered in
part (a), we form the linear programming problem

maximize -p'b

subject o p'A =0
pe=1
p=z0

where e is the vector with all components equal to 1. Show thar the optimal
cost in this problem is eyual to v.

Exercise 4.8 Consider the linear programming problem of minimizing ¢’x sub-
ject to Ax = b, x > 0. Let x" be an optimal solution, assumed to exist, and let
p” be an optimal solution to the dual.

(a) Let % be an optimal solution to tie primal, when ¢ is replaced by some €.
Show that (& — ¢)'(X —x*) < 0.

(b) Let the cost vector be fixed at ¢, but suppose that we now change b to b,
and let X be a corresponding optimal solution to the primal Prove that
(P*)(b—b) < (% —x).

Exercise 4.9 (Back-propagation of dual variables in a multiperiod
problem) A company makes a product that can be either sold or stored to
meet future demand. Let ¢ =1,...,7T denote the periods of the planning hori-
zon. Let b; be the production volume during period ¢, which is assumed to be
known in advance. During each period :, a quantity z: of the product is sold, at
a unit price of d;. Furthermore, a quantity y: can be sent to long-term storage, at
a unit, transportation cost of c. Alternatively, a quantity wy can be retrieved from
storage, at zero cost. We assume that wien the product is prepared for long-term
storage, it is partly damaged, ¢nd only 2 fraction f of the total survives. Demand
is assumed to be unlimited. The main question is whether it is profitable to store
some of the production, in anticipation of higher prices in the future. This leads
us to the following problem, where z; stands for the amount kept in long-term
storage, at the end of period .

T
. t—1 T
maximize o {dizy —ap) + @ drsazr

i=1

subject to T + Yy —w: = by t=1,...,7,
Zetwe— 21— fye =0, t=1,...,7T,
ZnZU,

Tty Y, We, 2 > 0.

Here, dr41 is the salvage prive for whatever inveatory is left at the end of period
T. Furthermore, « is a discount factor, with 0 < a < 1, reflecting the fact that
future revenues are valued less than cumrent ones.
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(a) Let p: and g; be dual variables associated with the first and second equa.hty
constraint, respectively. Write down the dial problem.

(b) Assume that 0 < f < 1, b > 0, and ¢ > 0. Show that the followin g
formulae provide an optlma,l solutlon to the dual problem: 8

gr = aTdT+1,

Pr = max {aTﬁldT, qu—aT_lc},

¢ = max {qt+1,a*_1dg}, t=1,...,T -1,
P = max {at’]dt, fa —at'lc}, t=1,...,T-1.

{c) Explain how the result in part (b) can be used to compute an optima.l“
solution to the original problem. Primal and dual nondegeneracy can be |
assuried.

Exercise 4.10 (Saddle points of the Lagrangean) Consider the standard ; ]
form problem of minimizing ¢'x subject to Ax = b and x > 0. We define the 1
Lagrangeon by

L{x.p) =c'x+ p'(b — Ax).

Consider the following “game™: player 1 chooses some x > 0, and player 2 chooses
some p; then, player 1 pays to player 2 the amownt L(x, p). Player 1 would like
to minimize L(x, p), while player 2 would like to maximize it. ]
A pair (x*,p"}, with x* > 0, is called an equilibrium point (or a saddle §
point, or a Nash equilibrium) if ;
Lix",p) < L(x",p") < L{x,p"), Vx20,Vp.
{Thus, we have an equilibrium if no player is able to improve her performance by 1
unilaterally modifying her choice.) i
Show that a pair (x*,p*} is an equilibriun if and only if x* and p* are 4
optimal solutions to the standard form problem under consideration and its dual, !
respectively.

Exercise 4.11 Consider a linear programming problem in standard form which 3
is infeasible, but which becomes feasible and has finite optimal cost when the last §
equality comnstraint is omitted. Show that the dual of the original (infeasible) 3
problem is feasible and the optimal cost is infinits. '

Exercise 4.12* (Degenerzacy and uniqueness — I} Consider a general linear
programming problem and suppose that we have a nondegenerate basic feasible
solution to the primal. Show that the complementary slackness conditions lead
to a system of equations for the dual vector that has a unique solution.

Exercise 4.13* (Degeneracy and uniqueness — H} Consider the following 1
pair of problems that are duals of each other:

minimize ¢'x
subject to  Ax
x

mazimize p'b
b subjct to p’A < ¢

vl
o
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(a) Prove that if one problen has a nondegenerate and unique optimal solution,
s0 does the other.

(b) Suppose that we have s« nondegenerate optimal basis for the primal and
that the reduced cost for one of the basic variables is zero. What does the
result of part {a) imply” Is it true that there must exist ancther optimal
basis?

Exercise 4.14 (Degeneracy and uniqueness — III) Give an example in
which the primal problem has a degenerate optimal basic feasible solution, but
the dual has a unique optima. solution (The example need not be in standard
form.)

Exercise 4.15 (Degeneracy and uniqueness — I'V) Consider the problem

minimizz I

subject to x2 =1
I 2 0
x> 0.

Wirite down its dual. For both the primai and the dual problem determine whether
they have unique optimal solutions and whether they have nondegenerate optimal
solutions. Is this example in sgreement with the statement that nondegeneracy
of an optimal basic feasible solution in one problem implies uniqueness of optimal
solutions for the other? Explain.

Exercise 4.16 Give an example of a »air (primal and dual) of linsar program-
ming problems, both of which have multiple optimal solutions.

Exercise 4.17 This exercise is meant to demoastrate that knowledge of a pri-
mal optimal solution does not necessarily contain information that can be ex-
ploited to determine a dual optimal solution. In particular, determining an opti-
mal solution to the dual is as hard as solving a system of linear inequalities, even
if an optimal solution to the primal is available.

Consider the problem of minimizing ¢'x subject to Ax > 0, and suppose
that we are told that the zer> vector s optimal. Let the dimensions of A be
m x r, and suppose that we have an algorithm that determines a dual optimal
solution and whose rinning time O ((m -l-n)k), for some constant k. {Note that if
x = 0 is not an optimal primal solution, the dual has no feasible solution, and we
assume that in this case our slgorithm exits with an error message.) Assuming
the availability of thz above algorithm, construct a new algorithmn that takes as
input a system of m linear inequalities in n variables, runs for O((m+ n)k) time,
and either finds a feasible solwion or determines that no feasible solution exists.

FExercise 4.18 Consider a problem instandard form. Suppose that the matrix
A has dimensions m X n and its rows are linearly independent. Suppose that
all basic solutions to the primal and to the dual are nondegenerate. Let x be a
feasible sclution to the primal and let p e a dual vector (not necessarily feasibie),
such that the pair (x, p) satisfes complmentary slackness.

(a) Show that there exist m columns of A that are linearly independent and
such that the corresponding components of x are all positive.
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(b} Show that x and p are basic solutions to the primal and the dual, respec-

tively. o
(c) Show that the result of part (a) is false if the nondegeneracy assumption is |

removed.

Exercise 4.19 Let P={x € i" | Ax=b, x > 0} bea nonempty polyhedron, ]
and let m be the dimension of the vector b. We cal z; a null variable if z; =0 |

whenever x € P.

s S 3
(a) Suppose that there exists some p € R™ for which p’A > 0/, p'b = 0, aﬂﬁ |
such that the jth component of p'A is positive. Prove that z; is a null

variable. .
(b) Prove the converse of (a): if ; is a null va.r;able, then there exists some
p € R™ with the properties stated in part (a,.
(c) ¥f x; is not a null variable, then by definition, there exists some y € P for

which y; > 0. Use the resulis in parts (a) and (b) to prove that there exist

x € P and p € ™ such that:
pPA=0, pb=20, x+A'p>0.

Exercise 4.20* (Strict complementary slackness)
(a) Consider the following linear programming problem and its dual

_ ;

minimize ¢'x raximize p’h ,

subject to Ax = b sibject to p'A < ¢,
x>0

!

and assume that both problems have an opti.mal sohlltion. Fix soxglﬁ i-
Suppose that every optimal sclution to the primal satisfies x; = X m"v
that there exists an optimal solution p to the dual such that P jl < c,;: .
{Here, A; is the jth column of A) Hint: Let d be the optima cos(i
Consider the problem of minimizing —z; subject to Ax = b, x > 0, an
—¢'x > —d, and form its dual.

(b} Show that there exist optimal solutions x ard P to the primal a?i fo thé
dual, respectively, such that for every j we have either z; > O orp’A; <t -
Hint: Use part (&) for each j, and then take the average of the vectors
obtained. -

{c) Consider now the following linear programming problem and its dual:

minimize ¢'x maximize p:b ,
subject to Ax > b subject to p’A < ¢
x > 0, p > 0.

Assume that both problems have an optimal solution. Show .that there
exist optimal sclutions to the primal and to the dual, respectively, that

satisfy strict complementary slackness, that is:
(i) For every j we have either x; >0 or p'A; < ¢;. N .
(ii} For every i, we have either ax >.bi or p; > 0. {Here, a; is the zt]h
row of A) Hint: Convert the primal to standard form and apply
part (b).
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(d) Consider the linear programming problem

minimize 51 + 5z2

stbject to z;, + =z > 2
2:51 — I3 2 0
ry,x2 > .

Does the optimal primal solution ‘2 /3,4/3), together with the correspond-
ing dual optimal solution, satisfy strict complementary slackness? Deter-
mine all primal and dual optimal selutions and identify the set of all strictly
complementary pairs.

Exercise 4.21* (Clark’s theorem) Consider the following pair of linear pro-
gramiming problems:

minimize c'x maximize p’b
subject to Ax > b subject to p‘A < ¢'
x 20 pz 0

Suppose that at least one of these two sroblems has a feasible solution. Prove
that the set of feasible solutions to at least one of the two problemns is unbounded.
Hint: Interpret boundedness of a set in terms of tke finiteness of the optimal cost
of some linear programming problem.

Exercise 4.22 Consider the dual simplex method applied to a standard form
problem with kinearly independent rows. Suppose that we have a basis which is
primal infeasible, but dual feasible, and let < be such that By < 0. Suppose
that all entries in the sth row in the tabkau (other than zp(;;) are nonnegative.
Shew that the optimal dual cost is 4-o0.

Exercise 4.23 Describe in detail the mechanics of a revised dual simplex meth-

od that works in terms of the inverse basis matrix B! instead of the full simplex
tableau.

Exercise 4.24 Consider the lexicographic pivoting rule for the dual simplex
method and suppose -hat the algorithm is initialized with each column of the

tableau being lexicographically positive. Prove that the dual simp.ex method
does not cycle.

Exercise 4.25 This exercise shows that if we bring the dual problem into stan-

dard form and then apply the primal simplex method, the resulting algorithm is
not identical to the dual simpler method.

Consider the following standard form problem and its dual.

minimize 1z, + 29 maximize p; + ps
subject to =z =1 subject to p1 <1
x2 =1 <1

1,2 2 0

Here, there is only one possible basis and tie dual simplex method must terminate
immediately. Show that if the dual problem is converted into standard form and

the primal simplex method is applied to it, one or more changes of basis may be
required.
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Exercise 4.26 Let A be a given matrix. Show tha; exactly one of the following
alternatives must hold.

(a) There exists some x # O such that Ax =0, x> 0.
{b) There exists some p such that p’A > 0’

Exercise 4.27 Let A be a given matrix. Show that the following two state-
ments are equivalent.

(a) Every vector such that Ax > 0 and x > 0 must satisfy 2, =0.

(b) There exists some p such that p’A <0, p >0, and p'A; < 0, where A
is the first column of A.

Exercise 4.28 Let a and a;,.. .,a,, be given vectors in ®". Prove that the
following two statements are equivalent:

{a) For all x > 0, we have a’x < max; ajx.

(b) There exist nonnegative ccefficients A; that sum to 1 and such that a <

2?;1 Asdi.

Exercise 4.29 (Inconsistent systems of linearinequalities) Leta,,...,an
be some vectors in R™, with m > n + 1. Suppose that the system of inequalities
ax > b;, i =1,...,m, does not have any solutions. Show that we can choose
n + 1 of these inequalities, so that the resulting system of inequalities has no
solutions.

Exercise 4.30 (Helly’s theorem)

(a) Let F be a finite family of polyhedra in ™ such that every n+1 polyhedra
in F have a point in common. Prove that all polyhedra in F have a point
in common. Hint: Use the result in Exercise 4.29.

(b) For n = 2, part (a) asserts that the polyhedra P, P,...,Px (K > 3)in

the plane have a point in common if and only if every three of them have &
peint in common. Is the result still true with “three” replaced by “two”7

Exercise 4.31 (Unit eigenverctors of stochastic matrices} We say that an
n X n matrix P, with entries p;;, is stochastic if all of its entries are nonnegative

and
Zpij =1, v i,
=

that is, the sum of the entries of each row is equal o 1.
Use duality to show that if P is a stochastic matrix, then the system of
equations
pP=p, p20
has a nonzero solution. (Note that the vector p can be normalized so that its
components sum to one. Then, the result in this exercise establishes that every
finite state Markov chain has an invariant probabili:y distribaition.)
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Exercise 4.32 * (Leontief systems and Samuelson's substitution the-
orem) A Leontief matriz is an m X n matrix A in which every column has at
most one positive element. For an interpretation, each column A; corresponds
to a production process. If a;, is negative, |a;;| represents the amount of goods
of type © consumed by the process. If ay; is positive, it represents the amount of
goods of type i produced by the process. If x; is the intensity with which process
7 is used, then Ax represents the net output of the different goods. The matrix
A is called productive if there 2xists some x > 0 such that Ax > 0.

{a) Let A be a square productive Leontief matrix (m = n). Show that every
vector z that satisfies Az > 0 must be nonnegative. Hint: If z satisfies
Az > 0 but has a negative corrponent, consider the smallest nonnega-
tive 6 such that some component of x 4 #z becomes zero, and derive a
contradiction.

{b) Show that every square productive Leontief matrix is invertible and that
all entries of the inverse matrix sre nonnegative. Hint: Use the result in
part (a).

(c} We now consider the geieral case where n > m, and we introduce a con-
straint of the form e'x < 1, wherc e = (1,...,1). (Such a constraint could
capture, for example, a bottleneck due to the finiteness of the labor force.)
An “output” vector y € R™ is said to be achievable if y > 0 and there
exists some X > 0 such that Ax = y and €y < 1. An achieveble vector y
is said to be efficient if there exisis no achievable vector z such that =z > y
and z # y. (Intuitively, an output vector ¥ which is not efficient can be im-
proved upon and is therefore uninteresting.! Suppose that A is productive.
Show that there exists a positive officient vector y. Hint: Given a positive
achievable vector y”*, corsider mazimizing Ei y:; over all achievable vectors
y that are larger than y*.

(d) Suppose that A is productive. Show that there exists a set of m production
processes that are capabe of generating all possible efficient cutput vectors
y. That is, there exist indices B(1),...,B(m), such that every efficient
output vector y can be expressed in the form y = Z:ll Agiyxp(s, for
some nonnegative coefficients xp,, whose sum is bounded by 1. Hint:
Consider the problem of minimizing e'x subject to Ax =y, x > 0, and
show that we can use the same optimal basis for all eficient vectors y.

Exercise 4.33 (Options pricing) Consider a market that operates for a single
period, and which involves thiee assets: a stock, a bond, and an option. Let §
be the price of the stock, in the beginning of the period. Its price § at the end of
the period is random and is assumed tc be equal to either Su, with probability
B3, or Sd, with probability 1 — 3. Here uand d are scalars that satisfy d < 1 < «.
Bonds are assumed riskless. Investing one dellar in a bond results in a payoff
of r, at the end of the period. (Here, r is a scalar greater than 1.) Finally, the
option gives us the right to purchase, at she end of the period, one stock at a fixed
prce of K. If the realized price § of the stock is greater than K, we exercise the
option and then immediately sell the stock in the stock market, for a payoff of
S - K. If on the other hand we have §< K, thee is no advantage in exercising
the option, and we receive zero payoff. Thus, the value of the option at the end
of the period is equal to max 0,5 — K}. Since the option is itself an asset, it
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should have a value in the beginning of the time period. Show that under the -

absence of arbitrage condition, the value of the opton must be equal to
ymax{0, Su— K} + § max{0, §d — K},
where v and ¢ are a solution to the following system of linear equations:

uy + dé =

1
1

6= =
v+ -

Hint: Write down the payoff matrix R and use Theorem 4.8.

Exercise 4.34 (Finding separating hyperplanes) Consider a polyhedron §

P that has at least one extreme point.

{(a) Suppose that we are given the extreme points x' and a complete set of
extreme rays w’ of P. Create a linear programming problem whose solution }
provides us with a separating byperplane that separates P from the origin, §

or allows us to conclude that none exists.

(b) Suppose now that P is given to us in the fam P = {x | alx > b;, 1 = J
L,...,m}. Suppcse that 0 ¢ P. Explain how a separating hyperplane can §

be found.

Exercise 4.35 (Separation of disjoint polyhedra} Consider two nonempty f
polyhedra P = {x € ®#" | Ax < b} and @ = {x € " | Dx < d}. We are }

interested in finding out whether the two polyhedra have a point in common.

(a) Devise a linear programming problem such that: if P N € is nonempty, it .

returns a point in PN¢; if PNQ is empty, thelinear programming problem
is infeasible.

(b) Suppose that PN @ is empty. Use the dual of the problem you have f
constructed in part (a) to show that there exists a vector c such that |

cx<cyforallx€ Pandy € Q.

Exercise 4.36 (Containment of polyhedra)

(a) Let P and @ be two polyhedra in ®" described in terms of linear inequality

constraints. Devise an algorithm that decides whether P is a subset of Q.

(b) Repeat part (a} if the polyhedra are described in terms of their extreme 1

points and extreme rays.

Exercise 4.37 (Closedness of finitely generated cones) Let A;,..., A,
be given vectcrs in ™. Consider the cane C = {T"

¥*, k=1,2,. .., be a sequence of elements of C' tha: converges to some y. Show
that y € C (and hence C' is closed), using the following argument. With y fixed
as above, consider the problem of minimizing ||y — 3.7 | Ao, subject to the
coustraints #1....,zn = 0. Here | - || stands for the maximum norm, defined by
Ix|| = = max; |z;|. Explain why the above minimization problem has an optimal

solution, find the value of the optimal cost, and prove that y € C.

—ii=1

Air, |z 2 ()} and let f-
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Exercise 4.38 (From Farlas’ lemma to duality) Use Farkas’ lemma to
prove the duality theorem for alinear pregramming problem involving constraints
of the form a‘x = b, ajx > », and nonnegativity constraints for some of the
variables z;. Hint: Start by deriving the form of the set of feasible directions at
an optimal solution.

Exercise 4.39 (Extreme rays of cones) Let us define a nonzero element d of
a pointed polyhedral cone C tc be an exireme ray if it has the following property:
if there exist vectors f € C and g € C and some A € (0,1) satisfying d = f + g,
then both f and g are scalar multiples of d. Prove that this definition of extreme
rays is equivalent to Definition 4.2.

Exercise 4.40 (Extreme rays of a cone are extreme points of its sec-
tions) Consider the cone C = {x € ® jajx > 0, ¢ = 1,...,m} and assume
that the first n consuraint vectors a;,. .,a. are linearly independent. For any
nennegative scalar v, we define the polyhedron F. by

PTA{XEC‘ Zaﬁx:r}.
i=1

{a) Show that the polyhedron F, is bounded for every r > 0.

(b) Let r > 0. Show that a vector x € P, is an extreme point of F. if and only
if x is an extreme ray of the cone C.

Exercise 4.41 (Carathéodory’s theorem) Show that every element x of a
bounded polyhedron P C R™ can be expressed as a convex combination of at
most n 4+ 1 extreme points of P. Hint: Consider an extreme point of the set of
all possible representations of x.

Exercise 4.42 (Problems with side constraints} Consider the linear pro-
gramming problem of minimizsing ¢'x ¢ver a bounded polyhedron P < R" and
subject to additional constraints ajx =b;, i = 1,..., L. Assume that the prob-
lem has a feasible solution. Show that there exists an optimal solution which is
a convex combination of I +1 extrem> points of P. Hint: Use the resolution
theorem to represent P.

Exercise 4.43

(a) Consider the minimization of ¢1a + ca72 subject to the constraints
Te—3 < x <o+ 2, x1,T2 = 0.
Find necessary and suffcient conditions on (c1, c2) for the optimal cost to

be finite.

(b) For a general ‘easible lirear programming problem, consider the set of all
cost vectors for which the optimasl cost is finite. Is it a polyhedron? Prove
your answer.
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Exercise 4.44

(a) Let P = {($1,$2) | 21 —22 =0, 21 + 22 = 0}. What are the extreme
points and the extreme rays of P?

(b) Let P= {(a:l,a:g) | 421 +222 > 8, 271 + 22 < 8}. What are the extreme
points and the extreme rays of P?

(c) For the polyhedron of part [b), is it possible to express each one of iis
elemenis as a convex combination of its extreme points plus a nonnega-

tive linear combination of its extreme rays? Is this compatible with the _

resclution theorem?

Exercise 4.45 Let P be a polyhedron with at least one extreme point. Is it

possible to express an arbitrary element of P as a convex combination of its ]

extreme points plus a nonnegative multiple of a single extreme ray?

Exercise 4.46 (Resolution theorem for polrhedral cones) Let C be a 7}

nonempty polyhedral cone.

{a) Show that C can be expressed as the union of a finite number Ciyoo, Gy 3

of pointed polyhedral cones. Hini: Intersect with orthants.

(b) Show that an extreme ray of C must be an extreme ray of one of the cones

i, Gl
(c) Show that there exists a finite number of elements w' ..., w" of C such i
that ;

C= {Zaiw‘ ’ 91,...,0,20}.
i=1

Exercise 4.47 (Resolution theorem for general polyhedra) Let P be a l

polyhedron. Show that there exist vectors x',...,x* and w', ..., w" such that

k ™
P= {Z,\,xi+29jwf r)\izo, 9; >0, i).,—:l}.
i=1 i=1 i=1

Hint: Generalize the steps in the preceding exercise

Exercise 4.48 * (Polar, finitely generated, and polyhedral cones) For
any cone C, we define its polar C* by

ct = {p [p'x <0, for all xc C}.

(a)} Let F be a finitely generated cone, of the forn

F= {ieiwi}al,...,erzo}.

i=1

Show that F'* = {p|p'wi<0,i=1,..., v}, which is a polyhedral cone.

(b) Show that the polar of F* is F' and conclude that the polar of a polyhedral
cone is fnitely generated. Hint: Use Farkas’ lemma.
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{c) Show that a finitely generated poirted cone F is a polyhedron. Hint: Con-
sider the polar of the poar.

(d) (Polar cone theorem) Let € be a closed, nonempty, and convex cone.
Show that {C+) = C. Hint: Minic the derivation of Farkas’ lemnma using
the separating hyperplare theoren (Section 4.7).

(e) Is the polar cone theorem true when C is the empty set?

Exercise 4.49 Consider a polyhedron, and let x, y be two basic feasible solu-
tions. If we are only allowed to make moves from any basic feasible solution to
an adjacent one, show that we can go fom x to y in a finite number of steps.
Hint: Generalize the simplex method to nonstandard form problems: starting
from a nonoptimal basic feasibe solution, move along an extreme ray of the cone
of feasible directions.

Exercise 4.50 We are interested in the problem of deciding whether a polyhe-
dron

Q={xe#®"|Ax<b, Dx2d, x>0}
is nonempty. We assume that she polyhsdron P = {x € " | Ax < b, x > 0} is
nonempty and boundsd. For any vector p, of the same dimension as d, we define

g(p = —p'd+ max p'Dx.

(a) Show that if ) is nonempty, then g{(p)} > 0 for all p > 0.
(b) Show that if Q is empty, then there exists some p > 0, such that g(p) < 0.
(c) If @ is empty, what is the minimum of g{p) over all p > 07

413 Notes and sources

4.3. The duality theorem is due to von Neumann {1947}, and Gale, Kuhn,
and Tucker (1951).

4.6. Farkas’ lemma is due to Farkas (1894) and Minkowski (1896)}. See
Schrijver {1986) for a comprehensive presentation of related results.
The connection between duality theory and arbitrage was developed
by Ross (1976, 1978).

4.7. Weierstrass’ Theorem and its proof can be found in most texts on real
analysis; see, for examgle, Rudir (1976). While the simplex method is
only relevant to linear programming problems with a finite number of
variables, the approach based on the separating hyperplane theorem
leads to a generalization of duality theory that covers more general
convex optimization problems, as well as infinite-dimensional linear
programming problems, that is, linear programming problems with
infinitely many variables and constraints; see, e.g., Luenberger {1969)
and Rockafellar (1970).

4.9. The resolution theorem and its converse are usually attributed to
Farkas, Minkowski, and Weyl.



xeuwuoneziwndo reaul|

264

6.4.

6.5.
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in Section 11.1. The same idea can also be applied to more gene
convex optimization problems; see, eg., Bertsckas {1995b). ]

Dantzig-Wolfe deccmposition was developed by Dantzig and Wolf
(1960). Example 6.2 is adapted from Bradley, Hax, and Magnasi
(1977). 3

Stochastic programming began with work by Dantzig in the 1950
and has been extensively studied since then. Some books on this sulf
Ject are Kall and Wallace (1994), and Infanger (1993); Example 6
is adapted from the latter reference. The Benders decompeasitiof
method wes developed by Benders (1962). It finds applications §
other contexts as well, such as discrese optim:zation; see, e.g., Schrl
jver (1986), and Nemhauser and Wodey (1988).
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Network flow problems (also known as transshipment problems) are thej
most frequently solved linear programming problems. They include as spe-
cial cases, the assignment, transportation, maximum flow, and shortest
path problems, and they arise naturally in the analysis and design of com}
munication, transportation, and logistics networks, as well as in many cthes
contexts. 1

The network flow problem is a special case of linear programming
and any algorithm for linear programming can be directly applied. On thg
other hand, network flow problems have a speial structure which results in
substantial simplification of general methods le.g., of the simplex method
as well as in new, special purpose, methods. '

From a high level poirt of view, most of the available algorithms fo .
network flow problems fall into one of three categories:

(a) Primal methods. These methods maintain and keep improving af
primal feasible solution. The primal simplex method, presented -
Section 7.3, is an important representative. An alternative algorithmd
is derived from first principles in Sectior 7.4. '

(b) Dual ascent methods. These methods, which are discussed i
Section 7.7, maintain & dual feasible solution and an auxiliary prig
mal (usually infeasible) solution that satisfy complementary slacks
ness. The dual variables are updated s> as to increase the value of]
the dual objective and reduce the infeasbility of the complementary;
primal solution. The Hungarian, primal-dual, relazation, and d
simplez methods fall in this general category.

(c) Approximate dual ascent methods. These methods are sirnilar]
in spirit to the dual ascent methods, except that small decreases m
the dual objective are allowed to occur and the complementary slack-}
ness conditions are only approximately enforced. The auction algo-1
rithm, which is discussed in Section 7.%, as well as the e-relazation
and preflow-push methods, are of this type.

In this chapter, all three of the above mentioned algorithm types will §
be encountered. The chapter begins with a brief introduction to graphs
(Section 7.1), that provides us with the language for studying network How
problems, and with a problem formulation (Section 7.2). We develop a}
number of general methods, but we also pay attention to special cases whose §
structure can be further exploited, such as the maximum fAow problem |
(Section 7.5), the assignment problem (Section 7.8), and the shortest path |
problem (Section 7.9). We also discuss the minimum spanning tree problem ]
(Section 7.10), which is not a network flow problem. but has a similar }
underlying graph structure. Throughout this caapter, our focus is on major 3
algorithmic ideas, rather than on the refinements that can lead to better |
complexity estimates. '
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7.1 Graphs

Network flow problems are defined ¢n graphs. In this section, we intro-
duce graphs formally and provide a number of elementary definitions and

properties.

Undirected graphs

An undirected graph G = (N, £) conssts of a set A of nodes and a set & of
(undirected) arcs or edges, where an «lge e is an unordered pair of distinct
nodes, that is, a two-element subset ‘%, 5} of V; see Figure 7.1. Note that

Figure 7.1: An undirected zraph G = (N,€) with N =
{1,2,3,4,5} and £ = {{1,2}, {1,3}, {2,3}, {1,4}, {3,4}, {3,5}}.

an undirected arc {i,;} is o1e and the same object as the undirected arc
{j.i}. Furthermore, “self-arcs” like {¢,1} are not allowed. We say that
the arc {i,5} is incident to nodes ¢ and 7, and these nodes are called the
endpoints of the arc.

The degree of a node n an undirected graph is the number of arcs
incident to that noce. The degree of an undirected graph is defined as the
maximum of the degrees of its nodes.

A walk from node #; to node i; in an undirected graph is defined
as a finite sequence of nodes iy,4y,...,8; such that {ig, ik} € &, k =
1,2,...,t - 1. A walk is called a path if it has no repeated nodes. A cycle
is defined as a walk iy, i, ...,%; such that the nodes 4y,...,4;_1 are distinct
{and hence form a path) and i; = ¢;. In addition, we require the number
t -1 of distinct nodes to be at least 3. This is in order to exclude a walk
of the form 4, 7,7, where the same arc {i,j} is traversed back and forth.
An undirected graph is said to be connected if for every two distinct nodes
i,i € N, there exists a path from i to 7.

As an example, the graph in Figure 7.1 is connected. The sequence
1,2,3,1,4 is a walk but not a path. The sequence 1,2,3,1 is a cycle, and the
sequence 1,3,5 is a path.
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For undirected graphs, we will often dsnote the number of nodes K3
|V| or n, and the number of edges by |£| or m.

Directed graphs

A directed graph G = (N, A) consists of a set N of nodes and a set ‘
of (directed) ares, where a directed arc is an ordered pair (1,) of disting
nodes; see Figure 7.2. Our definition allows for both (4, J) and (4,1) to M

Figure 7.2: A directed graph G = (M, 4) with N = {1,2,3, 4,5}
and A = {(1,2), (2,1), (1,3), (3,2), (1,4), (4,3), (3,5)}.

elements of the arc set A, but self-arcs like (G, ¢) are not allowed. 3

For any arc (i, j), we say that i is the start node and j is the eng
node. The arc (4, ) is said to be outgoing from node %, incoming to nodd
J> and incident to both i and j. We define I(;) and O(i) as the set of star§
nodes (respectively, end nodes) of arcs that are incoming to (respectivelyy
outgoing from) node 7. Thar is, 3

1) = {7 e M| (4,%) € A},

and
O(iy={j e N'|(i,5) £ A}.

Starting from a directed graph, we can construct a corresponding
undirected graph by ignoring the direction of the arcs and by deleting re+
peated arcs; for example, the directed graph in Figure 7.2 leads to the
undirected graph in Figure 7.1. Under one possible incerpretation, flow or}
movement in a directed arc is permitted only from the start node to thel
end node, whereas in an undirected arc, flow or movement is permitted inj
bath directions. We say that a directed graph is connected if the resulting
undirected graph is connected. i

We now present a definition of walks i directed graphs; it is im-!
portant to note that this definition allows us to traverse an arc in either}
direction, irrespective of the arc’s direction. More specifically, a walk i8]
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defined as a sequence i1,....4; of nodes, together with an associated se-
quence @i,...,a;—1 of arcs such that for £ = 1,...,t — 1, we have ei-
ther ax = (i, %k+1) (in whith case we say that ar is a forwerd arc) or
ax = (ik+41,9%} (in which case we say that ¢y is a backward arc). Note that
if i and 741 are consecutive nodes in a walk and if (g, 4441) and (igi1, %)
are both arcs of the underlying directed graph, then either arc can be used
in the walk. The reason for ircluding the arcs ay in the definition of a walk
is precisely to avoid such ambiguities.

A walk is said to be a peth if all of its nodes 44, .. ., 4, are distinet, and
a cycle if the nodes 4;,...,4;_; are distinct and 4; = 7;. Note that we allow
a cycle to consist of only two distinet nodes (in contrast to our definition
for the case of undirected graphs). Thus, a sequence 1,{4,7), 4, 4,1),i is a
bona fide eycle. Finally, a walk, path, or cycle is said to be directed if it
only contains forward arcs.

For the graph shown ir Figure 7.2, the sequence 1,(1,3),3,(3,2),2,
(1,2),1,{1,4),4 is a walk, but not & directed walk, because (1,2) is a
backward arc. The sequence 1,(1,3),3,(3,2),2,(2,1),1 is a directed cy-
cle. The sequence 1,(1,2),2,12,1),1 is also a directed cycle. The sequence
4,(4,3),3,(1,3),1,(1,2),2 is a path, bat not a directed path, because (1,3)
is & backward arc.

For directed graphs, we will often denote the number of nodes by |V|
or n, and the number of arcs by |.A| o m.

Trees

An undirected graph G = (N, €) is called a tree if it is connected and has
no cycles. If a node of a tree has degree equal to 1, it is called a leaf See
Figure 7.3 for an illustration.

Figure 7.3: A tree with 8 nodes, 7 arcs, end 5 leaves. Note that
if we were to add the arc {2,7}, a single cycle would be created,
namely, 2,3,5,7,2.
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We now present some important properties of trees that will be of il
later on (e.g., in the development of the simplex method, in Section 7.3%
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& cycles mvajvmg tbe smue set of nodfs:)

Proof.

(a)

(b)

(©)

Consider a tree with more than one node and suppose that there &
no leaves, Then, every node has degree greater than 1. (If the n
of a node were 1, that node would be a leaf, and if it were 0,
graph would not be connected.) Therefore, given a node and an '
through which we enter the node, we czn find a different arc throug
which we can exit. By repeating such a process, we must eventual
visit the same node twice, which implies that there exists a ¢ ]
contradicting the definition of a tree.
We first prove that every tree has |A| - 1 arcs. This is trivially try
if the tree has a single node. Consider row a tree that has more th
one node. Such a tree must have at least one leaf, by part (a).
delete that leaf together with the single arc incident to that node. TR
resulting graph is again a tree, because the deletion of a leaf cannd
create a cycle or cause a graph to become disconnected. This proced
can be carried out |A] — 1 times, until we are left with a single nodf
and, therefore, no arcs. Since at each stage there was exactly one as
deletion, we conclude that the original tree had |[A| — 1 arcs.

In order to prove the converse statemert, let us consider a connectel
graph with |[A| — 1 ares. If this graph contains a cycle, we can
one of the arcs in the eycle and still maintain connectivity. We
peat this process as many times as needed, until we are left with §
connected graph without any cycles, that is, a tree. We have alread!
proved that a tree with || nodes must have || — 1 arcs, and thi
shows that the final t-ee has as many arcs as the original graph.
follows that no arc was deleted and the original graph was a tree
start with.

Suppose that there exist two different paths joining the same nodes §
and j. By joining these two paths and by deleting any arcs that an
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(a) An undirectel graph. The thicker arcs form

Figure 7.4:
a spanning tree. (b) Aaother urdirected graph. The arcs {l,2},
{2,3}, {4,6} do not form any cycle. They can be augmented to
form a spanning tree, eg., by adding arcs {3,6} and {5, 6}.

common to both, we are left with cne or more cycles, contradicting
the definition of a tree.

(d) Consider a tree, and let us add an undirected arc {i,j}. Using part
{b), the resulting graph must have |N} arcs. Therefore, it cannot be
a tree, and must have a cycle. Any cycle created by this addition
consists of the arc {4, j} and a path from i to j. Since there exists a
unique path from i to j [part (¢}], it follows that a unique cycle has
been created.

Spanning trees

Given a connected undirected graph G = (N, £), let £ be a subset of £
such that T = (A,£1) is a tree. Sich a tree is called a spanning tree.
Tke following result will be used late- on (in Sections 7.3 and 7.10) and is
illustrated in Figure 7.4.

Theorem 7.2 Let G = (N, £} be a connected undirected graph and
let & be some subset of tle set £ of arcs: Suppose that the ercs in £
do not form any cycles. Then, the set & can bé augmenéed to a set
£1 D& so tbat (A, 81) i 5 spanniig tree. .

Proof. Let G = (V,£) be a connected undirected graph. Suppose that
& C £, and that the arcs in & do not form any cycles. If & is a tree, we
may let £; = £ and we are done. Otherwise, ¢ contains at least one cycle.
A cycle cannot consist exclusively of arcs in &), because of our assumption
on &. Let us choose and delete an arc that lies on a cycle and that does
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We now present some important properties of trees that will be of use j
later on (e.g., in the development of the simplex method, in Section 7.3).

. wen s
. NS

- (a).Every troo with more than ane node b at Jeast on Jeat 15
- (b)An undisested graph is' ' trée if and Galy if it is contiecteid
{e): For any two distinct riodes’s and j in & tree, thers éxists &
oihathfom it S T T e T
- (d) Ifwestart with a tree and add a new v, the resulting graph og
;.. tains exactly one cycle (as long s we do not distinguish betwe

e

cycles involving the ssme set of nodes). -

Proof.

(a) Consider a tree with more than one node and suppose that there are}
no leaves. Then, every node has degree greater than 1. (If the degreef
of a node were 1, that node would be a leaf, and if it were 0, thq
graph would not be connected.) Therefors, given a node and an are}
through which we enter the node, we can find a different arc through
which we can exit. By repeating such a process, we must eventually
visit the same node twice, which implies that there exists a cycle, §
contradicting the definition of a tree.

(b) We first prove that every tree has || — 1arcs. This is trivially true
if the tree has a single node. Consider now a tree that has more thar |
one node. Such a tree must have at least one leaf, by part (a). We }
delete that leaf together with the single arcincident to that node. The §
resulting graph is again a tree, because the deletion of a leaf cannot 1
create a cycle or cause a graph to become disconnected. This process §
can be carried out [A] — 1 times, until we are left with a single node }
and, therefore, no arcs. Since at each stage there was exactly one arc
deletion, we conclude that the original tree had A/ — 1 arcs. ‘

In order to prove the converse statement, Izt us consider a connected

graph with |A| - 1 arcs. If this graph contains a cycle, we can delete :
one of the arcs in the cycle and still mairtain connectivity. We re- |
peat this process as many times as needed, until we are left with a |
connected graph without any cycles, that i, a tree. We have already -
proved that a tree with |A/| nodes must have |V | — 1 arcs, and this §
shows that the final tree has as many arcs as the original graph. It
follows that no arc was deleted and the original graph was a tree to 3
start with, '

(c) Suppose that there exist two different paths joining the same nodes 1
and j. By joining these two paths and by deleting any arcs that are
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Figure 7.4: (a) An undirected graph. The thicker arcs form
a spanning tree. (b) Another undirected graph. The arcs {1,2},
{2,3}, {4,6} do not form any cyde. They can be augmented to
form a spanning tree, e.g., by addng arcs {3, 6} and {5, 6}.

common to both, we are left with one or more cycles, contradicting
the definition of a tree.

(d} Consider a tree, and let us add an undirected arc {i,7}. Using part
(b), the resulting graph must have JA| arcs, Therefore, it cannot be
a tree, and must have a cycle. Any cycle created by this addition
consists of the arc {7, 7} and a path from 4 to 7. Since there exists a
unique path from i to j [part {c], it follows that a unique cycle has
been created. O

Spanning trees

Given a connected undirected graph ¢ = (N, E), let & be a subset of £
such that T = (N, £)) is a tree. Swch a tree is called a spanning tree.
The following result will be used later on (in Sections 7.3 and 7.10) and is
illustrated in Figure 7.4.

Theorem 7.2 Let G = (N, £) be a connected undirscted graph and
let £, be some subset of the set £ of arcs. Suppose that the ards in &
do not form any cycles. Then, the set £ can be augmented to a set
&1 D & 's0 that (N, &) is aspanning tree.

Proof. Let G = (N, £€) be a connect>d undirected graph. Suppose that
&y C &, and that the arcs in & do not form any cycles. If 7 is a tree, we
may let £, = £ and we are done. Otherwise, G contains at least one cycle.
A cycle cannot consist exclusively of arcs in £o, because of our assumption
on &. Let us choose and delete an are that lies on a cycle and that does
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not belong te £. The resulting graph is still connectec. By repeating this

process as many times as needed, we end up with a connected graph (N, &) ]

without any cycles, hence a tree. In addition, since the arcs in &) are never

deleted, we have & C &;. |

7.2 Formulation of the network flow problem ‘

A network is a directed graph G = (N, .A) together with some additional -§
numerical information, such as numbers b; representing the external suppiy 3
to each node ¢ € A, nonnegative (possibly infinite) numbers u;; represent- 1§
ing the capacity of each arc (4, f) € A, and numbers ¢;; representing the

cost per wiit of flow along arc (4, f).

We visualize a network by thinking of some material that flows on }
each arc. We use f;; to denote the amount of flow through arc (4, ). The
supply b; B interpreted as the amount of flow that enters the network from §

the outside, at node ¢. In particular, node ¢ is called a iource if &, > 0, and

a sink if b, < 0. If node i is a sink, the quantity |b;| is sometimes called the
demand at node i. We impose the following conditions on the flow variables 1

.fijv (7‘1.7) € 'A:

b+ Z fi = Z fijs YieN, (7.1}

FelI(i) FEO0()
0 < fi; <y,

Equation i7.1) is a flow conservation law: it states that the amount of flow .‘
into a node ¢ must be equal to the total flow out of that node. Equation }
{7.2) simply requires that the flow through an arc must be nonnegative and |
cannot exceed the capacity of the arc. Any vector with components f;, j
(¢,7) € A, will be called a flow. If it also satisfies the constraints (7.1)-(7.2}, |

it will be called a feasible flow.
By summing both sides of Eq. {7.1} over all { € A/, we obtain

Y b =0,

N

which mezns that the total flow from the environment nto the network (at ;

the sources) must be equal to the total flow from the network {at the sinks)

to the environment. From now on, we will always assure that the condition |

¥ iear bi = 0 holds, because otherwise no flow vector could satisfy the flow
conservation constraints, and we would have an infeasible problem.

The general minimum cost network flow problem deals with the min-
imization of a linear cost function of the form

Z ci; fizs

(L.1)e4

¥ (i.9) € A. 72) |}
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over all feasible flows. We observe that this is a linear programming prob-
lem. If u;; = oo for all (4,5) € A, we say that the problem is uncapacitated;
otherwise, we say that it is cpacitated. Note that in the uncapacitated
case, we only have equality and nonnegativity constraints, and the problem
is in standard form.

We now provide an overview of important special cases of the network
flow problem; most of them will be studied later in this chapter.

The shortest path problem

For any directed path in a retwork, we define its length as the sum of
the costs of all arcs on the path. We wish to find a shoriest poth, that
is, a directed path from a given origin node to a given destination node
whose length is smallest. This problem is studied in Section 7.9, where we
show that it can be formulated as a network flow problem, under a certain
assumption on the arc lengths.

The maximum flow problem

In the maximum flow probler, we wish to determine the largest possible
amount of flow that can be sent from a given source node to a given sink
node, without exceelding the arc capacities. This problem is studied in
Section 7.5.

The transportation problem

Let there be m suppliers and 7 consumers. The ith supplier can provide s,
units of a certain good and the jth consumer has a demand for d; units. We
assume that the total supply T7~; s; is equal to the total demand 3°7_, d;.
Finally, we assume that the transportation of goods from the ith supplier
to the jth consumer carries a tost of ¢;; per unit of goods transported. The
problem is to transport the gpods from the suppliers to the consumers at
minimum cost. Let f;; be the amount of goods transported from the éth
supplier to the jth consumer. We then have the following problem:

e k{3
minimize E ECT‘,:’,‘fi_r‘i

i=1 j=1

T
subject to Y fi; =d, j=1,...,n,
i=1

i
Zfij = 8, i = 1,...,’:‘7!4,
J=1

f43 20, Yi g
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The first equality constraint specifies that the demand d; of each consumg
must be met; the second equality constraint requires that the entire suppd
s; of each supplier must be shipped. This is a specizl case of the uncd
pacitated network flow problem, where the underlying graph has a spe
structure; see Figure 7.5. Tt turns out that every network flow problem

Figure 7.5: A network corresponding to a transportation prob-
lem with three suppliers and two consumers.

be transformed into an eguivalent transportation proolem {Exercises 7.3
and 7.6). Consequently, any algorithm for the transportation problem caf
be adapted and can be used to solve general network flow problems. Fof
this reason, the initial development and testing of new algorithms is often
carried out for the special case of transportation problems. 3

The assignment problem

The assignment problem is a special case of the transportation problem,}
where the number of suppliers is equal to the number of consumers, each}
supplier has unit supply, and each consumer has unit demand. As will bel
proved later in this chapter, one can always find an optimal solution in]
which every f;; is either 0 or 1. This means that for each 4 there will be a
unique and distinct § for which f;; = 1, and we can say that the ith supplier
is assigned to the jth consumer; this justifies the narme of this problem.

Variants of the network flow problem

There are several variants of the network flow problem all of which can
be shown to be equivalent to each other. For example, we have already |
mentioned that every network flow problem is equivaleni to a transportation }
problem. We now discuss some more examples.

(a} Every network flow problem can be reduced to one with exactly one |
source and exactly one sink node. This is illustrated in Figure 7.6.

Sec. 7.2

(b}

(c]
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Figure 7.6: (a) A netwak with three source nodes. (b) A net-
work with only one source node. The costs of the new arcs are zero.
Because of the way that thz arc capacities uo; are chosen (uo: = b;,
i =1,2,3), exactly b; units must flow on each arc (0,1),¢=1,2,3.
The reduction to a networs with a single sink node is similar.

Every network flow problem can be reduced to one without sources
or sinks. {Problems in which all of the supplies are zero are called
circulation problems.) Consider, without loss of generality, a network
with a single source s and a single sink t. We introduce a new arc (t,9)
whose capacity u, is equal to by and whose unit cost is ;5 = —M,
where M is a large number; see Figure 7.7. Since M is large, an
optimal solution to the drculation problem will try to set fis to bs,
which has the same effext as having a supply of b; at node s. If
an optimal solution to the circulation problem does not. succeed in
setting fi, to bs. this means that there is no way of shipping b, units
of flow from s to ¢, and the original problem is infeasible.

Node capacities. Suppose that we have an upper bound of g; on the
total flow that can enter a given node 4; for example, if i is a source
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Uy ™ by

Figure 7.7: (a) A network. (b) An equivalent circulation problem.

node, we may have a constraint

b + Z Fii Lgi

JeI(3)

By splitting node ¢ into two nodes 7 and ¢/, and oy letting g; be the ]
capacity of arc (4,1'), we are back to the case where we only have arc }

capacities; see Figure 7.8,

Figure 7.8: Transformation of a node capacity into an arc capacity.

(d) Lower bounds on the arc flows. Suppose that we add constraints of ]

the form fi; > d,;, where d;; are given scalars. The resulting problem
can be reduced to an equivalent problem in whica every d;; is equal
to zero. Exercise 7.7 provides some guidance as to how this can be
accomplished.
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A concise formulation

We now discuss how to rewrite the network flow problem, and especially the
flow conservation constraint, in more economical matrix-vector notation.
We assume that A = {1,...,n} and we let m be the number of arcs. Let
us fix a particular ordering of the arcs, and let f be the vector of flows that
results when the components f;; are ordered zccordingly. We define the
node-arc incidence matriz A as follows: its dimensions are n x m (each row
corresponds to a node and each column to an arc) and its (¢, k)th entry a;;
is associated with ths ith node and the kth arc. We let

1, if i is the start node of the kth arc,
A = -1, if i is the end node of the kth arc,
0, otaerwise.

Thus, every column of A has exactly two nonzero entries, one equal to
+1, and one equal to —1, indicating the start and the end node of the
corresponding arc.

Example 7.1 Consider the directed graph of Figure 7.2 and let us use the
following ordering of the arcs: (1,2),(2,1),(3,2),(4,3),(1,4),(1,3),(3,5). The
corresponding node-are incidence matrix is

1 - 0 0 1 1 0

-1 -1 0 0 0 0

A= 0 1 1 -1 0 -1 1
0 0 0 1 -1 0 0

0 0 0 0 0 0 -1

Let us now focus on the ith row of A, denoted by a] (this is the
row associated with node ¢). Nonzero entries indicate the arcs that are
incident to node #; such entries are +1 or —1 depending on whether the arc
is outgoing or incoming, respectively. Thus,

alf = > fi;— > L
JEO() JEL(Z)

and the flow conservation constraint at node ¢ [cf. Eq. (7.1)] can be written
as

or, in matrix notation,

where b is the vector (b1,...,b,).

We observe that the sum of the rows of A is equal to the zero vec-
tor; in particular, the rows of A are linearly dependent. Thus, the matrix
A violates one of the basic assumptions underlying our development of the
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simplex method. As discussed in Chapter 2 (¢f. Theorem 2.5 in Section 2.3),§
either the problem is infeasible or we can remove some of the equality cons
straints, without affecting the feasible set, so that the remaining constrainte
are linearly independent. We revisit this issue in the next section. .

Circulations

We close by introducing some elementary concepts that are central to mand)
network flow algorithms.
Any flow vector f {feasible or infeasible) that satisfies

Af=0,

is called a circulafion. Intuitively, we have flow conservation within the

network and zero external supply or demand, which rneans that the .‘\'

“circulates” inside the network.

Let us now consider a cycle C. We let F and B be the set of forward

and backward arcs of the cycle, respectively. The flow vector h® with

components

1, if(i,j)€F,

hi; =¢ —1, if(44)€ B,

0, otherwise. _

is called tke simple circulation associated with the cycle C. It is easily seen

that h® setisfies 1

Ah® =0, (7.3)

and is indeed a circulation. The reason is that any two consecutive arcs onf

the cycle are either similarly oriented and carry the same amount of flow;

or they have the opposite orientation and the sum of the flows that they}

carry is ecual to 0; in either case, the net inflow to aay node is zero; se
Figure 7.9 We finally define the cost of a cycle C to be equal to

DR I
(ijleF (i.J)EB
If £ 5 a flow vector, C is a cycle, and § is a scalar, we say that the;
flow vector £ 4 6h€ is obtained from f by pushing @ units of flow around;

the cycle C. Note that the resulting cost change is 8 times the cost ¢/hC]
of the cycle C. 3

7.3 The network simplex algorithm

In this section, we develop the details of the simplex method, as applied to;
the uncapacitated network flow problem

minimize c'f

subject to Af

f

v I
oo
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Figure 7.9: A cycle and the corresponding simple circulation.
Arcs (4,3} and (1,5) are backward arcs and carry a flow of —1.
Note that flow is conserved at each node.

where A js the node-arc incidence matrix of a directed graph G = (N, A).
(Capacitated problems are briefly discussed at the end of this section.)
The network simplex algorithrr is widely used in practice, and is included
in many commercial optimization codes, due to its simplicity and eficiency.
In particular, it tends to run an order of magnitude faster than a general
purpose simplex code applied to a network flow problem.

Due to our restriction to uncapacitated problems, we are dealing with
a linear programming problem in standard form. We let m and n be the
number of arcs and nodes, respectively. We therefore have m flow variables
and n equality constraints which, unfortunately, is the exact opposite of
the notational conventions usec in earlier chapters.

There are two different weys of developing the network simplex meth-
od. The first is to go through the mechanics of the general simplex method
and specialize each step to the present context. The second is to develop the
algorithm from first principles and then to point cut that it is a special case
of the simplex method. We take a middle ground that proceeds along two
paralle] tracks; each step is justified from first principles, but its relation to
the simplex method is also explained. The end result is an algorithm with
a fairly intuitive structure.

Throughout this section, the following assumption will be in effect.

Assumptaon 7.1
(a) WeBaveE,ENb =0, =
(b) . The gaph G i ‘connécted.. .

Part (a) of this assumption is natural, because otherwise the problem
is infeasible. Part (b) is also natural, because if the graph is not conmected,
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then the problem can be decomposed into subproblems that can be treated :
independently.

As rnoted in Section 7.2, the rows of the matrix A sum to the zero]
vector and are therefore linearly dependent. In fact, the last constraint]
(flow conservation at node n) is a consequence of the flow conservation;
constraints at the other nodes, and can be omitted without affecting t
feasible set. Let us define the iruncated node-arc incidence matriz A
be the matrix of dimensions (n — 1) x m, which consists of the first n — ¥}
rows of the matrix A. Any column of A that correspoads to an arc of the
form (i,n) has a single nonzero entry, equal to 1, at the ith row. Similarly
any colwmn of A that corresponds to an arc of the form (n, %) has a single
nonzero entry, equal to —1, at the ith row. Allother columns of A have twa
nonzero entries. Let b = (b1,..., b 1). We replace the original equality
constraint Af = b by the constramt Af = b. We vill see shortly thay
under Assamption 7.1, the matrix A has linearly independent rows. 1

Example 7.2 Consider the node-arc incidence matrix A in Example 7.1. The

associated matrix A is given by Figure 7.10: A networs and a set of n — 1 arcs (indicated by

thatched lines) that form a tree. By setting the arc flows outside

1 -1 0 0 1 1 0
- -1 1 -1 0 o 0 0 the tree to zero, we obtair fiz = 2, fazs = 2 and f43 = 2. We then
A O 0 1 -1 -1 1 use conservation of flow at node 3, to obtain fus = 2. We also have
0 0 0 1 =1 0 0 fs6 = 1 and far = 0. Using conservation of flow at node 6, we

. 1 obtain fss = 1. Note that this is a feasible tree solution.
It can be verified that the matrix A has full rank. For example, the third, fourth}

sixth, and seventh columns are linearly independent.

{b) Use the flow conservation equations to determine the flows on the arcs
incident to the leaves, and continue by proceeding from the leaves
towards the roor.

Trees and basic feasible solutions

We now introduce an important definition. )
It should be pretty obvious ffom Figure 7.10 that once a tree is fixed,

a corresponding tree solution is uniquely determined. Nevertheless, we
provide a rigorous proof.

Definition 7.1 A fow vector f is called a tree solution if it can
constructed by the following procedure.

(a) Pick a set T C A of n— | arcs that form a tree when tbe
direction is ignored. ;
(b) Let fi; =0 for every (4,5} ¢ T
(c) Use the flow conservation equation Af = b to determine the flow,
variables f;;, for (i,5) € T

A tree solution that also satisfies £ > 0, is called a feasible treg
soluticn.

Theorem 7.3 Let T C A be a set of n — | arcs that form a tree
when their direction is ignored. Then, the system of linear equations
Af = b, and fi; =0 for all l§,7) ¢ T, has a unique solution.

Proof. Let B be the (n — 1) x (i — 1) matrix that resulis if we only keep
those n — 1 columns of A that correspond to the arcs in 7. Let fr be the
subvector of £, of dimension n — 1, whose entries are the flow variables f;;,
{,7) € T. We need to show that the linear system Bf; = b has a unique
solution. For this, it suffices to show that the matrix B is nonsingular.
Let us assume that the nydes have been renumbered so that numbers
increase along any path from a Jeaf to the root node n. Let us also assign

Step {c) in the above definition can be carried out using the following'.
systematic procedure, lustrated in Figure 7.10:

{a) Cal node n the roof of the tree.
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1 0 0 0 00 0
0 L 0 0 00 0O
0 0 1 0 00 0
0 0 0 -1 00 0
-1 0 0 0 10 0
0 -1 0 0 -11 0

| 0 0 -1 1 00 -1

Figure 7.11: A numbering of the nodes and arcs of a tree, and
the corresponding B matrix.

to every arc (¢,j) € T, the number min{7, j}; see Figure 7.11. Such af
renumbering of nodes and arcs amounts to a reorderng of the rows and}
columns of B but does not affect whether B is singular or not. i

Wita the above numbering, the ith column of B corresponds to thej
ith arc, which is an arc of the form (i, ) or (4,1}, with § > . Thus, any]
nonzero eatries in the ith column will be in row 4 or j. Since j > ¢, no
nonzero eatry can be found above the diagonal. We conclude that B is)
lower triaagular and has nonzero diagonal entries. This implies that B has |
nonzero dsterminant and is nonsingular, which completes the proof. O

We note an important corollary of the proof of the previous theorem.

Corollary 7.1 If the graph G is connected, then ihe matrix A has
linearly independent rows. . - _ |

Proof. T the graph G is connected, then there exists a set of arcs 7 C A |
that form a tree, when their orientation is ignored (cf Theorem 7.2). Let §
us pick such a set T and form the corresponding matrix B, as in the proof |
of Theorem 7.3. Since the (n — 1) x (n — 1) matrix B is nonsingular, it }
has linearly independent columns. Hence, the matrix A has n — 1 linearly §
independent columns and, therefore, has n — 1 linearly independent rows.

a

With our construction of a tree solution, the cdlumns of B are the _
columns of A corresponding to the variables f;;, for (4,5) € T, and are
linearly independent. In general Linear programming terminology, B is a
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basis matrix. Since the remairing varisbles fi5, (4,7) € T, are set to zero,
the resulting flow vector f is tke basic solution corresponding to this basis.
Thus, a tree solution is a basic solution, and a feasible tree solution is a
basic feasible solution. In fact, the converse is also true.

- Theorem 7.4 A fow vector is a basic solution if and only if it is
. tree solution. e S

Proof. We have already argued that a tree solution is a basic solution.
Suppose now that a flow vector f is not a tree solution. We will show that it
is not a basic solution. Note that if Af # b, then f is not a basic solution
by definition. Thus, we only need to consider the case where Af = b. ,

Let § = {(4,7) € A| fi; # 0}. If the arcs in the set § do not form a
cycle, then there exists a set T of n— 1 arcs such that § C T, and such that
the arcs in T form a tree [cf. Assumption 7.1(b} and Theorem 7.2]. Since
fi = 0 for all (3,7} ¢ T, the fow vector f is the tree solution associated
with T, which is a contradiction.

Let us now assume that the set, § containg a cycle C and let h® be
the simple circulation associated with C. Consider the flow vector £ + hC,
We have Af = b and Ah® = 0, which implies that A(f + h®) = b.
Furthermore, whenever fij = 0 the arc (4, } does not belong to the cycle
C, and we have hg- = 0. We se= that all constraints that are active at the
vector f are also active at the vector £ + hC, Thus, the constraints that
are active at f do not have a unique solution, and f is not a basic solution

{cf. Theorem 2.2 and Definition 2.9 in Section 2.2). See Figure 7.12 for an
illusiration. O

Figure 7.12: (a) Part of & flow vector that satisfies Af = b. This
flow vector is not a tree solution because the acs (2,1), (3,1), and
(3,2) form a cycle C and carry nonzero flow. .b) The flow vector
f + h®. Active constraints {arcs that carry zero flow) under f
remain active under £ + h® ‘
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"o summarize our conclusions so far, we have established the follow- |
ing: ]
(a) Basic (feasible) solutions are (feasible) tree sclutions and vice versa, ]

{b) Every basis matrix is triangular when its rows and columns are suit-
&bly reordered. E

{c) Given a basis matrix B, the vector of basic variables B~'h can bel
easily computed, without the need to maintain B! in a tableau.

As in the case of general linear programming problems, a basic feasible
solution can be degenerate. This happens if the Aow on some arc (¢,7) &
T turrs out to be 0. In this case, the same basic feasible solution may;
correspond to several trees. For example, the tree shown in Figure 7.10 leads]
to a degenerate basic feasible solution, because fg; = 0. A different trea)
that would yield the same basic feasible solution is obtained by replacing§
arc (6,7) by arc (5,7). \

Change of basis f

We wil now develop the mechanics of a change o basis. Recall that in}
a general linear programming problem, we first chosse a nonbasic variable]
that enters the basis, find how to adjust the basic variables in order t0]
maintan the equality constraints, and increase the value of the entering
variable until one of the old basic variables is about to become negative. Wej
specialize this procedure to the network cese. Picking a nonbasic variable
is the same as choosing an arc (4, 7) that does not belong to T. Then, the?
arc (4, /) together with some of the arcs in T form a cycle. Let us choose!
the orientation of the cycle so that (i, §) is a forward arc. Let F and B be ]
the sets of forward and backward arcs in the cycle, respectively. If we are §
to increase the value of the nonbasic variable fij tc some 8, the old basic ]
variables need to be adjusted in order not to violate the fiow conservation 1
constraints. This can be accomplished by pushing 9 units of flow around
the cycle. More precisely, fy, is increased idecreased) by # for all forward ]
(backward) arcs of the cycle. The new flow variables fre are given by

) fre+8,  H(kOEF,
fre=< fre 8, if (k,£) € B, (7.4) 5
fre, otnerwise.

We set # as large as possible, provided that all arc flows remain nonnegative. J
It is clear that the largest possible value of 8 is equal to

§ = min_fi, 7.5) ]

(i fre {7.5) :

except f B is empty, in which case we let * = cc. A varisble Sre that §
attains the minimum in Eq. (7.5) is set to zero and exits the basis. If ]
fre = G for some arc (k,f) € B (which can happen if we start with a
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degenerate basic feasible solution), then the change of basis occurs without
any change of the arc flows. (For the example shown in Figure 7.10, if fsr
enters the basis, fg7 exits the basis and 0* =0.)

Calculation of the cost change

The cost change resulting fiom the above deseribed change of basis, is equal

to .
5*- Z Cre — Z Cre . (76)

(k£)EF (k.£}cB

Naturally, the variable f;; should enter the basis only if the value of the
expression {7.6) is negative

From the development of the simplex method for general linear pro-
gramming problems, we know that if the variable that enters the basis takes
the value &, then the cost changes by #* times the reduced cost of the en-
tering variable. Comparing with Eq. (7.6), we see that the reduced cost z;;
of a nonbasic variable f;; is given by

Cij = Z Cre — Z ke, (7.7)

(k,£jEF (k,0)eB

which is simply the cost of the cycle around which flow is being pushed.

We will now derive an alternative formula for the reduced costs that
allows for more eficient computation. Recall the general formula € =
¢ — p’A for determining the reduced costs, where p is the dual vector
given by p’ = ¢zB~!, B is the current basis matrix, and cp is the vector
with the costs of the basic variables. The dimension of p is equal to the
mumber of rows of A, which is n — 1, and we have one dual variable p;
associated with each node i # n. Suppose that (i, 5) is the kth arc of the
graph. Then, the kth entry of the vectors € and ¢ is equal to ¢;; and ¢,
respectively. The kth entry of p’ Ais equal to the inner product of p with
the &th column of A. From the definition of the node-arc incidence matrix,
the kth column of A has an entry equal to 1 at the ith row (if i < n), and
an entry equal to —1 at the jth row (if 7 < n). We conclude that

G — (p’l _pj)7 if 7’1..7 7& Ty
Ci; = €5 = Dis lfj =n, (78)
Cij +pj, if 2 =n.

Equation (7.8) can be written more concisely if we define p,, = 0, in which
case we have

Gj=cii—(pi—p), V(@EjeA (7.9)

It remains to compute the dual vector p’ = ¢zB~! associated with
the current basis. Since the reduced cost of every basic variable must be
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equal to zero, Eq. (7.9) yields

Pi—p; = ¢&;, V(i j)eT, N

n = 0. |‘7.10) ]

The system of equations (7.10) is easily solved using the following proees 1
dure. We view node n as the root of the tree and set p, = 0. We thenj

go down the tree, proceeding from the root towards the leaves, with a uew
component of p being evaluated at each step; see Figure 7.13. '

Overview of the algorithm

We start with a summary of the network simplex algorithm and then pro+§
ceed to discuss some issues related to initialization and termination. ]

The simplex method for uncapamtate& tietwork flow probl

1. A typical iteratmn sts.rts thh a ba,sm feasaé)le solutxon f
ated with a tree 7.

2.; To compute ‘the dual veemr p, solve the system of equ

»(7 10}:, by proeggding fﬁém the mot tewards "t;he leaves.

5
-vo«m‘ = 7

t&%{'g {immé brought mto the tiaéis

Mew*"

*;Eﬁhe“entmg,,a’m (t,}) and t:he arcs m T fonn a umque cycteaa

- all ares’ i’:i»tﬁe cycie are oriented the same way as (3,4, then i
;’qptmnﬂ cost 15 —0q a\u& the algerithm temnnates S
_/ Let Bbe the set. ofams in the cycle that are onented in
.+ . oppuosite direction from (i, ). Let 6* = miny hep fre, and pu

... 8" units of flow around the cycle. A new flow vector is determiné
“according to Eq. (7.4). Remove from the basis one of the old b

. variables whose new value is emxal to 2070, . .

In the case where finding an initial basic feasisle solution is difficult, §
we may need to form and solve an auxiliary problem For example, for each 1
pair of source and sink nodes, we may introduce an auxiliary arc; finding }
a basic feasible solution in the presence of these arcs is straightforward. 3
Furtheimore, if the unit costs ¢;; of the auxiliary arcs are chosen large 3
enough, solving the auxiliary problem is equivalent to solving the original §
problem. i

The network simplex algorithm is similar to :he naive implementa-
tion described in Section 3.3. Because of the specia, structure of the basis 3
matrix B, the system ¢ = p’B can be solved on the fly, without the need
to maintain a simplex tablean or the inverse basis matrix B~1. For a rough }
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Figure 7.13: Once p; is computed, p; and px can also be com-
puted, because we have p; — p; = ci; and px — pi = cx;. Starting
from the roo: and continuing in this fashion, all dual variables can
be computed.

count of the computational requirements of each iteration, we need O(n)
computations to evaluate the dual vector p, O(m) computations to evalu-
ate all of the reduced costs, and another O(n} computations to effect the
change of basis. Given that m > n — 1, the total is O(m), which compares
favorably with the O(mn) computational requirements of an iteration of
the simplex method for gerecral linear programming problems. In practice,
the running time of the network simplex algorithm is improved further by
using a somewhat more clever way of updating the dual variables, and by
using suitable data structutes to organize the computation.

All of the tteory in Chapters 3 and 4 applies to the network sim-
plex method. In particular, in the absence of degeneracy, the algorithm
Is guaranteed to terminate after a finite number of steps. In the presence
of degeneracy, the algorithm may cycle. Cydling can be avoided by using
either a general purpose anticycling rule or special methods. If the optimal
cost is —oo, the algorithm serminates with a negative cost directed cycle.
(The simple circulation h® associated with that cycle is an extreme ray of
the feasible set, and ¢’h® < 0.) If the optimzl cost is fnite, the algorithm
terminates with an optimal flow vector f and an optimal dual vector p. In
practice, the number of iterations is often O(m), but there exist examples
involving an exporential number of basis chaages.

Example 7.3 Consider the uncapacitated network problem shown in Figure
7.14(a); the numbers next to each arc are the corresponding costs. Figure 7.14(b)
shows a tree and a corresponding feasible tree solution. Arc (4,3) forms a cycle
consisting of nodes 4, 3, and 5. The reduced cost T43 of f43 is equal to the cost of
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Figure 7.14: (a) An uncapacitated network flow problem. Arc
cests are indicated next to each arc. (b) An iniial feasible tree
sclution. The are flows are indicated next to each are. (¢)-(d) Fea-
sible tree solutions obtained after the first and the second change
of basis, respectively.
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that cycle, which is c4z + cas — c45 = —1. We let arc (4, 3) enter the tree. Pushing
flow along the cycle atterpts to reduce the flow along the arc (4,5). Since this
was zero to start with (degeneracy), we have 8" = 0; the arc (4,5) leaves the tree
and we obtain the fzasible tree solution indicated in Figure 7.14{(c). The reduced
cost associated with arc (1,2) is c12 + c24 + ca3 — c13 = —1, and we let that arc
enter the tree. We can push up to one unit of flow along the cycle 1,2,4,3,1, that
is, until the flow along arc (1.3) is set o zero. Thus, 8" = 1, the arc (1,3) leaves
the tree, and we obtain the feasible tree solution indicated in Figure 7.14(d). It is
not hard to verify that all reduced costs are nonnegative and we have an optimal
solutiomn.

Integrality of optimal solutions

An important feature of network flow problems is that when the problem
data are integer, most quantities of interest are also integer and the simplex
method can be implemented using integer (as opposad to floating point)
arithmetic. This allows for faster computation and, equally important, the
issues of finite precision and truncation error disappear. The theorem that
follows provides a summary of integrality properties.

Theorem 7.5 Consider an uncapacitated network flow problem and
assume that the underly.ng graph is connected. '

(a) For every basis matrix B, the ratrix B~ has integer entries.

(b) If the supplies b; arz integer, then every basic solution has iziteger
coordinates.

(c) If the cost coefficients c;; are integer, then every dual basic solu-
tion has integer coordinates. -

Proof.

(a) As shown in the proof of Theorem 7.3, we can reorder the rows and
columns of & basis matrix B so that it becomes lower triangular and
its diagonal entries aie either 1 or —1. Therefore, the determinant of
B is equal to 1 or —1. By Cramer’s rule, B~! has integer entries.

(b) This follows hy inspecting the nature of the algorithm that determines
the values of the basdc variables (see the proof of Theorem 7.3), or
from the formula fr = B~ 1b.

{¢) This follows by inspecting the nature of the algorithm that determines
the values of the dual variables, or from. the formula p’ =cx B!, []

‘We now have the following important corollary of Theorem 7.5.
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( Corplléry 7.2 Consider an ‘uﬁcapac.x' ; 4\'ta§'ed ﬂefwm‘ . 13@,@{@1 82133 m?yf
assume that the optimal cost is finite, .~ 0T LT

- (d) . If all supplies b; are integer, there exists. an ixteger.optin:

L TECtOI‘ ;/'«_:‘ M . o M L

(k) I ail cost coeflicients ¢;; are integer, there exists an integer opti-s
~" mal solution to the dual problem. ' 1ottt e

.

al fow,

&

The simplex method for capacitated problems

We will now generalize the simplex method to the case where some of the
arc capacities are finite and we have constraints of ths form

dij < fiy <wy,  (i,j) €A

There arz only some minor differences from the discussion earlier in this
section. For this reason, our development will be less formal.
Cousider a set ' C A of n—1 arcs that form a tree when their direction

is ignored. We partition the remaining arcs into two disjoint subsets D and
U. We let fi; = di; for every (i,7) € D, f;; = uy; forevery (i,7) € U, and 4

then solve the flow conservation equations for the remaining variables f;;,

(,7) € T. The resulting flow vector is easily shown to be a basic solution,
and all basic solutions can be obtained in this manuer; the argument is 1

gimilar tc the proofs of Theorems 7.3 and 7.4.

Given a basic feasible solution associated with the sets T, D, and U,
we evaluzte the vector of reduced costs using the sams formulae as befare,
and then examine the arcs outside T'. If we find an are (¢,j) € D whose
reduced cost is negative, we push as much flow as possible around the cycle
created by that arc. (This is the same as in our previous development.)
Alternatively, if we can find an arc (4,7) € U with positive reduced cost,
we push s much flow as possible around the cycle created by that arc, but
in the opposite direction. In either case, we are dealing with a direction of
cost decrease. Determining how much flow can be pushed is done as follows.
Let F' bethe set of arcs whose flow is to increase due to the contemplated
flow push; let B be the set of arcs whose flow is to deciease. Then, the flow
increment is limited by 0%, defined as follows:

8" = min {(Jﬁ)‘é‘B{f“ —dge}, (kIE)HelF{uH - fke}} . (7.11)

By pushing 6* uniss of flow around the cycle, there wil be at least one arc
{k,£) whose flow is set to either di, or uge. If the arc {k, £} belongs to T, it
is removed from the tree and is replaced by (4, 7). The other possibility is
that (k,£) = (4, 7). (For example, pushing flow around the cycle may result
in f;; being reduced from u;; to di;.} In that case, the set T remains the

Sec. 7.4  The negative cost cycle algorithm 291

same, but (4, j) is moved from U to D, or vice versa. In any case, we obtain
a new basic feasible solution. (In the preserce of degeneracy, it is possible
that the new basic feasible solution coincides with the old one, and only
the sets T', 12, or U change.) To summarize, the network simplex algorithm
for capacitated problems & as follows.

The simis’iéx method for capacitated network flow problems
1. A typical iteratior starts with a basic feasible solution f associ-
ated with a tree T, and a partition of the remaining arcs into
iwo sets D, U, such that fi; = dy; for (i,5) € D, and fi; = u;;
for (i,7) € U. - N TR
2. Solve the system of equations (7.10) for py, . ++1+Pn, by proceeding
from the root towards the leaves. ~ oot
8. Compute the redused costs &; = ¢ ~ (p; = 2;). of all ares (i, j) £
T. Mg, > 0 forall (3,5) € D, and z;; < 0 for all (i,7) € U,
the current basic Jeasible solution. is optimal and the algorithm
lerminates. - {‘;:{:::“&ii =
4. Let (i;5) be an arc such that &, < 0-and {3,5) € D, or such
that &; > 0 and (4,5) € U. This arc (%) together with the
tree T forms a unique cycle: Choose the otientation of the cycle
as follows. If (4, 5)-€ D, then {i,5) should be a forward arc. If
(i, 7)) e, then (#,7) should be a backward arc. .
5. Let F'and B be tte forward and backward arcs, respectively, in
_the cycle. Determine #* according to Eq. {7.11), Compute a new
flow vector, with components fiy, by letting

| fret 6, if (k,0) e F,
Jre =% fre— 0%, if (k,£) ¢ B,
. fk& Dthﬁlee’ 2

Finally, update the sets T', D, U.

7.4 The negative cost cycle algorithm

The network simplex algorithm incorporates a basic idea, which is present in
practically every primal method for network flow problems: given a current
primal feasible solution, find an improved one by identifying a negative cost
cycle along which flow can be pushed. QOne advantage of the simplex method
is that it searches for negative cost cycles using a streamlined and efficient
mechanism. A potential disadvantage is that a change of basis can be
degenerate, with no flow being pushed, and without any cost improvement.

In this section, we prasent a related, but different, algorithm, where
every iteration aims at a nonzero cost improvement. In particular, at every
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(&)

(b)

Figure 7.15: (a) A portion of & netwark, together with the values
of some of the flow variables. (b} The new arc flows after pushing
¢ units of flow around the cycle C.

iteration we push some flow around a negative cost cycle. The algorithm '
termingtes wher no profitable cycle can be identified. The method is jus- §
tified by a key result that relates the absence of profitable cycles with

optimality.

Motivation

Consider the portion of a network shown in F igure 7.15(z). Could the

flow vector £ given in the figure be optimal? The answer s no, for the

following reason. Suppose that we push & units of flew along the indicated |
cycle, where § is a positive scalar. Taking into account the direction of the ]
arcs, the new flow variables take the values indicated in Figure 7.15(b). In {
particular, the flow on every forward arc is increasec by & and the flow on :
every backward arc is reduced by 6. Flow conservation is preserved, and

as long 1s § < 2, the constraints 0 < fij < wy; are respected, and the new 3
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flow is feasible. The charge in costs is
c126 + 332(—5) + 346 + 614(—5) = —6,

which is negative, and f cannot be optimal. As this example illustrates, a
flow f can be improved i’ we can identify a cycle along which flow can be
profitably pushed.

Description of the algorithm

In this subsection, we present the algorithm of inlerest after developing
some of its elements. We assume that we have a network described by
a directed graph ¢ = (A, A), supplies b;, arc capacities u;;, and cost
coefficients ¢;;. Let C be a cycle, and let F and B be the sets of forward and
backward arcs of the cycl, respectively. Let h® be the simple circulation
associated with this cycle, that is,

1, if(i,j) e F,
hG=< -1, if(i,j) € B,
0, otherwise.

Let f be a feasible low vector and let § be a nonnegative scalar. If
we change f to f + §h®, we say that we are pushing & units of flow along
the cyele C. Since f is feasible, we have Af = b; since Ah® = 0, we obtain
A(f + 6h®) = b, and the flow conservation constraint is still satisfied. Tn
order to maintain feasibility, we also need

0< fij + éhg < gy,

that is,
0

0

fii + & < uyy, if (1,7) € F,
fig = 8 L uy, if (i, ) € B.

Since § > 0 and 0 < f;; < wuyy, this is equivalent to

IA A

& < iy — fiy, if (i,7) € F,
6§ < fij, if (1,7) € B.

Thus, the maximum amoint of flow that can be pushed along the cycle,
which we denote by §(C), is given by

If the set B is empty and if ui; = oo for every arc in the cycle, then there
are no restrictions on 8, and we set §(C) = o00. If fi; < u;; for all forward
arcs and f;; > 0 for all backward arcs, then §(C) > 0, and we say that the
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cycle is unsaturated. For the cycle considered in Figure 7.15(a), we have
HC) =2.

We now calculate the cost change when we push a unit of flow aloag
a cycle C. Using the definition of hC, the cost change is

E Cij — _S_ Cij,

(i.j)eF (2.4} B

the cost of cyele C.

We zan now propose an algorithm which at each iteration looks for a
negative cost unsarurated cycle and pushes as much flow as possible along
that cycle.

Negative cost cycls algorithm -
1. Start with a feasible flow f.
2. ' Search for an unﬂa:urated cycle thh neg&m'e cost

8. Ifno unsaturated .cycle with negatwe cost can he found, the
- _akoﬁthmwmﬂaﬁes [

4] If 4 ;negaﬁ;ue mst imsatuéﬁed eycie C is founfi then: L
: ftg”’f If ﬁ(fC} € oo,.txmstmﬁn the new feaszble ﬂow £ +6(C)hC,

Py
®
[
o
e
&
i
-

a5 ib} If 6601} w, the al?gorithm térmma.tea and t;he o;mma_l
) cost s —oc0.

5
at
%,
- e

There are a few different issues that need to be discussed:
(a) How do we start the algorithm?
{b) How do we search for an unsaturated cycle with negative cost?

{c) If the algorithm terminates, dees it provide us with an optimal soh-
tion?
{d) Is the algorithm guaranteed to terminate?

These issues are addressed, one at a time, in the subsections that follow.

Starting the algorithm

As discussed in Section 7.2, every network flow problem can be converted
into an equivalent problem with no sources or sinks. For the latter problem,
the zero flow is a feasible solution that provides a starting point. As an
alternative, a feasible flow (if cne exists) can be consiructed by solving a
suitable maximum flow problem {Exercise 7.21).
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The residual network

Suppose that we have a network G = (N, .A) and a ‘easible flow f. The
residual network is an auxiliary network G = (A, .4) with the same set of
nodes, but with different arcs and arc capacities. It is a convenient device
to keep track of the amount of flow that can be pushed along the arcs of
the original network.

Consider an arc (i, 7}, with capacity u, and let f;; be the current
flow through that arc. Then, f;; can be increased by up to wy; — fij, or
can be decreased by up to f;;. We represent these options in the residual
network by introducing an arc (7, j) with capacity w; — fi;, and an arc
(4,¢), with capacity fi;. Any flow onthe arc (j,4) in the residual network is
to be interpreted as a corresponding reduction of the flow on the arc (i,7)
of the original network.

We assign costs to the arcs of the residual network in a way that
reflects the cost changes in the original network. In particular, we associate
a cost of ¢;; with the arc (4 j} of the residual network, and a cost of —c¢;;
with the arc (4,4) of the residual network. [This is because a unit of flow
on the arc (7, 1) corresponds to a unit reduction of the Aow on the arc (i, §)
of the original network, and a cost change of —¢;;.] All supplies in the
residual network are set to zero, which implies that every feasible flow is a
circulation. Finally, we delete those arcs of the residusl network that have
zero capacity.

The construction of the residual network is shown in Figure 7.16. As
seen in the figure, the residual network may contain two arcs with the same
start node and the same enl node. In particular, the presence of two arcs
from ¢ to j indicates that we can push flow from i to j either by increasing
the value of f;; or by decreasing the value of f;;. Strictly speaking, this
violates our original definiton of a graph, but this turns out not to be a
problem.

Let f be a feasible flow in the original network and let £+ be another
feasible flow in the original retwork. The flow increment f can be associated
with a flow vector f in the residual network as follows.

(a) I Tij > 0, we let the flow fij on the corresponding arc (¢,7) in the
residual network be equal to f;;. Feasibility in the original network
implies that f,; < u;; — fi;, and f;; satisfies the capacity constraint
in the residual network.

(b) If f;; < 0, we let the flow f3: on the corresponding arc (7,1) in the
residual network be equal to —f,;. Feasibility in the original net-
work implies that —f . < fi; and therefore f;; satisfies the capacity

constraint in the residual network.

All variables f;; that are nct set by either (a) or (b) above are left at zero
value. See Figure 7.17 for an illustration.
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(a)
(b)

()
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0< fig<ty

Figure 7.16: (a) Each arc of the original netwcrk leads to two
ares in the residual network. (b) A network and an associated
feasible flow. (c) The corresponding residual network, Note that
zero capacity arcs have been deleted.

We make the following observations:
‘We have fij > 0 for all ares in the residual network.

The flow f in the residual network is a circulaticn. This is because in :

the original network, we have Af = b = A(f + ). Hence, Af =

which means that with the flow vector f, the net flow into any node i i |
is zero. Because of the way f was constructed the net flow into any |

node of the residual network must also be zero.
The cost of f in the residual network is equal to E(i, 7 cij?{j, which ig

the cost of f in the original network. This is beceuse for each arc with :

Tu > 0, we have an equal flow f” in a corresponding arc (¢, j} in the

residual network, and the latter arc has unit cest ¢;;. Furthermore, }§
for each arc with f” < 0 in the original network, we have a flow }

fJt = 7U in a corresponding arc (j,¢) in the rsidual network, and |
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Figure 7.17: In this igure, the numbers next to each arc indicate
arc flows. (a; A feasibe flow £ in a network. (b} Another feasible
flow f +¥. (c) The flow increment F. Note that it is a circulation.
{d) The fiow  in the residual network (only arcs with nonzero flows
are shown).

the latter arc has unit cost —e;;. Since (—ey )sz = c,-jfz-j, we see that
fi; and fj; incur the same cost.

The preceding arguments can be reversed. That is, if we start with a

feasible circulation f in the esidual network, we can construct a circulation
fin the original network such that f+f is feasible and such that ¢'F is equal
to the cost of f in the residual network.

We finally note that every unsaturated cycle in the original network
corresponds to a directed cyele in the residual network in which all arcs have
positive capacity and vice versa. Furthermore, the costs of these cycles in
their respective networks are equal. We conclude that the search for neg-
ative cost unsaturated cycles in the original network can be accomplished
by searching for a negative cost directed cycle in the residual network. In
Section 7.9, we show that the problem of finding negative cost directed
cycles in a graph can be solved in time O(n®); hence, the computational

requirements of each iteration of the negative cost cycle algorithm are also
O(n?).
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Optimality conditions

We now investigate what happens at termination of the negative cost cycle §
algorithm. If the algorithm terminates because it discovered a negative cost i,.
cycle with {(C) = oo, then the optimal cost is —oc. In particular, the flow
f+6hC isfeasible for every § > 0, and by letting § become arbitrarily large, |
the cost of such feasible solutions is unbounded below. 1

The algorithm may also terminate because no unsaturated negative |
cost cyclecan be found. In that case, we have an optimal solution, as shown §
by the next result.

Proof. One direction is easy. If C is an unsaturated cycle with negative 3
cost, then f 4+ §(C)h® is a feasible flow whose cost is less than the cost of 1
f, and so f is not optimal. &

For the converse, we argue by contradiction. Suppose that f is a §
feasible flow that is not optimal. Then, there exists another feasible flow |
f + T whose cost is less, and in particular, ¢'f < 0. As discussed in the
preceding subsection, it follows that there exists a feasible (in particular, -
nonnegative) circulation f in the residual network whose cost is negative. To 1
prove that this circulation implies the existence of a nsgative cost directed |
cycle in the residual network, we need the following important result. '

Lennm '! 1 (l‘-’law éecampositxon theorem) Lef > 0 be ananze«
10 circulation: - Then, ‘there exist simple c:rculatxons | LI .8 mm}w
‘ ‘Lng xmf‘? &u'wardarcs, and pomtjve scaiars al, ,ah, such that

L _wﬁzx'Ea.,-f,i.

' Furthe:more, 1f £is. an mteger vector, t;hen eacb a4 can be chosen m
be an znteger. o

Proof. See Figure 7.18 for an illustration.) If f is the zero vector, the '
result is trivially true, with £ = 0. Suppose that f is ronzero. Then, there 1
exists some arc (i, j) for which f;; > 0. Let us traversearc (%, ). Because of
flow conservation at node j, there exists some arc (j,}) for which fjx > 0. |
We then traverse arc (7, k) and keep repeating the same process. Since there |
are finitely many nodes, some node will be eventually visited for a second ]
time. At that point, we have found a directed cycle with each arc in the 1
cycle carrying a positive amount of flow. Le: f! be the simple circulation §
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Figure 7.18: Illustretion of the flow decomposition theorem.
The numbers next to each arc indicate the value of the correspond-
ing arc flows. Arcs with zero flow are not shown. {a) A nonneg-
ative circulation £. (b) The circulation e;f'. (c¢) The remaining
flow £ — a1f!. (d) The circulation a2f?. (e) The remaining flow
f—aif! — aof? is a simole circulation and we let asf® be equal to
it.
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corresponding to that cycle. Let a1 be the mininum value of f;;, where i
the nminimum is taken over all arcs in the c¢ycle, and consider the vector 3
f =1 — a,f'. This vector is nonnegative because of the way that a; was ]
chosen. In addition, we have Af = 0 and Af ! = 0, which implies that
Af = 0 and f is a circulation. By the deﬁmtlon ofa;, there exists scme arc.
{k, £y on the cycle for which fi, = a; and fkg = 0. Therefore, the number of
positive components of f is smaller than the number of positive components |
of f. We can now apply the same procedure to f, to obtain a new simple ]
circulation £2, and continue similarly. Each time, the number of arcs that |
carry positive flow is reduced by at least one. Thus, after repeating this }
procedure a finite number of times, we end up with the zero flow. When *'
this kappens, we have succeeded in decomposing [ as a nonnegative linear
comtination of simple circulations. Furthermore, since all of the cycles ]
constructed were directed, these simple circulations involve only forward {
arcs. i

If f is integer, then a; is integer, and f is ¢lso an integer vector. It §
follows, by induction, that if we start with an integer flow vector f, all ]
flows produced in the course of the abcve procedure are integer, and all §
coefficients a; are also integer. This concludes the proof of Lemma 7.1. 3}

We now apply Lemma 7.1 to the residual network. The circulation F §
can be decomposed in the form 1

f = Z aé?i,

wher: each fi is a simple circulation involving only forward arcs, and each j
a; is positive. Since f has negative cost, at least one of the circulations £
must also have negative cost; hence, the residua. network has a negative }
cost directed cycle. As discussed in the preceding subsection, this implies 1
that the original network contains a negative cost unsaturated cycle, and }
the groof of Theorem 7.6 is now complete. ‘

Termination of the algorithm

Before concluding that the algorithm is correct, we need 2 guarantze that
it will eventually terminate. This is the subject o’ our next theorem.

Theorem 7.7 Suppose that all arc capacities u;; are integer or in-
finite, and that the negative cost cycle algorishm is initialized with |
an integer feasible flow. Then, the arc flow variables remain integer
throughout the algorithm and, if the optimal cost is finite, the a.1g0~
rithm terminates with an integer optimal solution.
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Proof. If the current flow I is integer, then §(C) is integer or infinite, for
every cycle C. Hence, the flow obtained after one iteration of the algorithm
must also be integer, and integrality is preserved.

At each iteration, before the algorithm terminates, we have a cost
reduction of §(C)|c’h®], where C is the negative cost cycle along which
flow is pushed. Since #(C) > 1, this is no smaller than » = minp [¢'h”|,
where the minimum is taken over all negative cost cycles D. Thus, each
iteration of the algorithm reduces the cost by at least v, which is positive.
It follows that if the optimal cost is finite, the algorithm must terminate
after a finite number of iterations. O

Note that Theorem 7.7 establishes an integrality property of optimal
solutions. This is the same conclusion that was reached in Corollary 7.2(a),
for standard form problems.

Surprisingly, and unlike the simplex methoc, if the arc capacities
are not integer, the algo-ithm is not guaranteed to terminate, even if the
optimal cost is finite. One possibility is that the algorithm makes an infinite
number of steps, each step results in lower costs, but the cost reductions
become smaller and smaller, and the cost of the current flow does not
converge to the optimal cost. Tt turns out that finite termination can be
guaranteed under specia. rules for choosing between negative cost cycles.
Two possible rules that are known to lead to finite termination are the
following:

{a) Largest improvement rule: Choose a negative cost cycle for which
the cost improvement §(C)|c’h®| is largest. Unfortunately, finding
such a cycle is difficult. See Exercise 7.16 for an upper bound on the
number of iteratiors.

{b) Mean cost rule: Choose a negative cost cyele for which |¢'h®|/k(C)
is largest, where k(C) is the number of arcs in cycle C. Tt turns out
that the search for such a cycle is not too difficult (Exercise 7.37).

When the optimal cost is —oo, the algorithin may fail to terminate
after a finite number of iterations, even if the arc capacities are integer. For
this reason, one should verify that the optimal cost is finite before starting
the algorithm; & simple criterion is developed in Exercise 7.17.

7.5 The maximum flow problem

In the maximum flow problem, we are given a directed graph G = (V,.4)
and an arc capacity bound u;; € [0, o] for each arc (3, j) € A. Let s and £ be
two special nodes, called the source and sink node, respectively. The prob-
lem is to find the largest possible amount of flow that can be sent through
the network, from s to £ We will see shortly that this is a special case of
the general network flow problem. On the other hand, special purpose al-
gorithms are possible, because of the simple structure of the problem. The
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maximum flow problem arises in a variety of applications. Some are rather ;
obvious (e.g., maximizing throughput in a logistics network), while others}
are less expected; see the example that folows.

Example 7.4 (Preemptive scheduling) We are given m identical machines]
and n jobs. Each job j must be processed for a total of pj periods. (We assume;
that each p; is an integer.) However, we allow preempticn. That is, the processing§
of a job can be broken down and can be carried out by different machines in
differest periods. Each machine can only process one job at a time, and a job{
can only be processed by a single machine at a time. In addition, each job #4
is assoriated with a release time r; and a deadline d; processing cannot starg’
before period r;, and must be completed before period d;. Naturally, we assume]
that r;+p; < d; for all jobs j. We wish to desermine aschedule whereby all joba )
are processed, without violating the release times and deadlines, or show that noj
such schedule exists. 3

We will now construct a maximum flow formulation of the problem. The
first step is to rank all the release times and deadlines in ascending order. The re-}
sulting ordered list of numbers divides the tims horizon nto a number of nonover-]
lapping intervals. Let Ty; be the interval that starts in the beginaning of period & §
and ends in the beginning of period {. Note that during each interval Tii, the set?
of jobs that can de processed does not change. In particular, we can process any |
job j that has been released (r; < k) and its deadline has not yet been reached ]
{{ < d;). For a concrete exampie, suppose that we have four jobs with releagse
times 3, 1, 3, 5, and deadlines 5, 4, 7, 9. The ascending list of release times and j
deadlines is 1,3,4,5,7,9. We then obtain five intervak, namely, Tis, Thq, Tas, §
T57 ) and TTQ. .

We construct a network involving a sowrce node ¢, a sink node ¢, a node
corresponding to each job j, and a node corresponding to each interval Ty, The ;
arcs and their czpacities are as follows. For svery job j, we have an arc (s,7),
with capacity p;. We interpret the flow along this arc as the number of periods }
of processing that job 7 receives. For every node Ty;, weintroduce an arc {1k, 1),
with cepacity m(l — k). The flow along this arc repiesents the total number 3
of machine-periods of processing during the interval Ty;. Finally, if a job j is 3
available for processing during the interval T, that is, if ri k<l <dy, we §
introduce an arc (§, Tr:), with capacity ! — k. The flow along this arc represents §
the number of periods that job j is processed during thisinterval. See Figure 7.19 §
for an illustration. It is not hard to show that every feasble schedule corresponds }
to a flow through this network, with value Z?:I p;, ard conversely. Therefore, ‘
the scheduling problem can be solved by solving a maximum flow problem, and 1
checking whether the resulting maximum flow value is «qual to 22:1 Py '

Mathematically, the maximum flow problem can be formulated as
follows ]
maximize b,
subject to Af = b

bt = _b‘g

bi - U, Vi ?é 8, ta

0 < fij < uyy, vV @,4) € A
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Figure 7.19: The structure of the network asseciated with the
preemptive scheduling problem. The number next to each arc in-
dicates its capacity. The arc from node § to node (k,!) is present
only if r; <k <1l <d;.

Note that, in contrast to the network flow problems considered earlier,
b, is a variable to be optimized. Any flow vector f satisfying the above
constraints is called a feasible flow and the corresponding value of b, is
called the value of that flow.

The maximum flow problem can be reformulated as a network flow
problem, as follows (see Figure 7.20 for an illustration). We let the cost
of every arc be equal to zero and we introduce a new infinite capacity arc
(t,s), with cost ¢, = —1. Minimizing 3 (ij) €3 fi In the new network is
the same as maximizing tte flow f;, on the new arc. Since the flow on the
arc (t, s) must return from s to ¢ through the original network, maximizing
Jis is the same as solving the original maximum flow problem.

‘:ix:-i ) .ufsé@ R

Figure 7.20: Reformulation of the maximum flow problem as a
network flow problem

Once the maximumn flow problem is formulated as a network fow
problem, the negative cost cycle algorithm of Section 7.4 can be applied, and
this is one way of deriving tae main algorithm in this section {Exercise 7.18).
However, our derivation will be self-contained.
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Figure 7.21: Let all arc capacities be equal t> 1. The numbers
next to each arc indicate the values of the arc flows. Note that
up to one unit of additional flow can be pushed along the path
indicated by thatched arcs.

Consider she flow illustrated in Figurs 7.21. Its value can be increased

by pushing additional flow along the path consisting of the arcs (s, 2), (1,2),
(1,£). Note that arc (1,2) is a backward arc of that path; pushing & units 3
of flow along ths path, reduces the How along arc (1,2) by 6. The definition
that fcllows deals with paths of this type, through which additional flow ]
can be pushed. ‘

Definition 7.2 Let f be a feasible flow vector. An augmenting pathz
is a path from s to t such that f;; < u;; for all forward arcs, and fis > 0%
for &ll backward arcs on the path.

Suppose that we have a feasible flow and that we have found an ;
augmenting path P. We can then increase the flow along every forward
arc, decrease the flow along every backward arc by the same amount, and ]
still sasisfy all of the problem constraints; we then say that we are pushing }
flow along the path P, or that we have a jflow augmentation. The amount 4
of flow pushed along P can be no more than §( P), defined by

5(P) = mi in (i — fis ; 7.13) §
(P) mm{(gljl)lgﬁ,(uj Jii)s (HBfJ} ( )5

where ' and B are the sets of forward and backward arcs, respectively,
in the augmenting path. If the augmenting path consists exclusively of 3
forward arcs, and if all arcs on the path have infinite capacity, then there is §
no limit on the amount of flow that can be pushed, and we have §( P} = oo
For the example in Figure 7.21, we have §(P) = 1. ,

We now introduce a natural algorithm for the maximum flow problem. §
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The Ford-Fulkerson algorithm
_1; Start with a feasible flow f.
 Search for an augmenting path.
3. If no augmenting path can be found, the a.lgorithm terminates.
4. If an augmenting path P is found, then:
(a) If §(P) < oo, push 6(P) units of flow along P, and go to
Step 2.
(b) If {(P) = o, the algorithm terminates.

If the algorithm terminates because 5{(P) = oo, we have found an
augmenting path without capacity limitations and, using that path, an
arbitrarily large amount of flow can be sent to the sink.

We now address the termination properties of the algorithm.

Thecrem 7.8 Suppose that all arc capacities u;; are integer or infi-
nite, and that the Ford-Fulkerson algorithm is initialized with an inte-
ger flow vector. Then, the arc flow variables remain integer throughout
the algorithm and, if the optimel velue is finite, the algorithm termi-
nates after a finite nurmber of steps.

Proof. This result can be derived as a corollary o Theorem 7.7 in Sec-
tion 7.4. For a self-contained proof, note that if we have an integer feasible
flow, and if all arc capacities are integer or infinite, then §(P) is integer or
infinite. Thus, integrality of lows is maintained throughout the algorithm.
Every iteration of the algorithim increases the value of the flow by at least
1 [since 8(P) is integer|. Hence, either the value of the flow increases to
infinity, or the algorithm must terminate. |

Example 7.5 Consider the network shown in Figure 7.22(a} and let us start
with the zero flow. The pati consisting of the thatched arcs in Figure 7.22(b) is
an augmenting path, with é(P) = 1. After a flow augmentation, we obtain the
flow indicated. The path censisting of the thatched ares in Figure 7.22(c) is an
augmenting path, with §(P} = 1. By continuing similarly, and after a total of
four flow augmentations, weobtain the flow shown in Figure 7.22(e), whose value
is equal to 6. At this point, no augmenting path can be found. In fact, this flow
must be optimal because the total capacity of the arcs leaving node s is equal to
6, and this is a bottleneck that cannot be overcome.

If the arc czpacities are rational numbers, the algorithimn is again gnar-
anteed to terminate after a finite number of iterations. This is because we
can multiply all arc capacities by their least common denominator, and
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Figure 7.22: Hlustration of the Fora-Fulkerson algorithm. The
mmbers next to the arcs in part {a) are arc capacities. We start
with the zero flow. (b)-(e) In each case, we identify the augmenting
indicated in the figure, and push as much flow as possible. The
mumbers next to the arcs correspond to the arc flows after the flow
augmentation. The flow indicated in part {e) is optimal.
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obtain an equivalent problem with integer arc capacities. However, if the
grc capacities are not rational, there exist examples for which the algo-
rithm never terminates. In sarticular, even though the value of the flow is
monotonically increasing, its limit can be strictly less than the optimal.

For the non-rational case, the Ford-Fulkerson algorithm can be made
to terminate after a finite number of iterations, if one uses special methods
for choosing an augmenting path. For example, if ore looks for an aug-
menting path with the least possible number of arcs, then the algorithm
can be shown to terminate after O(|A| - ||} iterations.

If the algorithm does ;erminate, it provides us with an optimal solu-
tion. This fact can be obtamed as a corollary of the optimality conditions
in Section 7.4. A self-contained proof using different ideas will be provided
shortly. However, we will fitst discuss some issues related to the search for
an augmenting path.

Searching for an augmenting path

The search for an augmenting path can be carried out in a fairly simple
manner, using a method known as the labeling algorithm.

Suppose that we have a feasible flow f. Consider a path from the
source s to some node k, such that f;; < w;; for all forward arcs on the
path, and f;; > 0 for all backward arcs on the path; we say that this is an
wnsatyrated path from s tok. Such a path can be used to push additional
flow from node s to node k, without violating the capacity constraints.
Note that an unsaturated path from s to ¢ is the same as an augmenting
path.

Let us say that a node 7 is labeled if we have determined that there
exists an unsaturated path from s to 7.

{(a) Suppose that node # is labeled, that we have an unsaturated path P
from s to 4, and that (i, j) is an arc for which f;; < u;;. We may then
append arc (4, §) to the path P, and obtain an unsaturated path from
s to j. Thus, node j can also be labeled.

(b) Similarly, if we have an unsaturated path P from s to ¢, and if (,1) is
an arc for which f;; > 0, we may append arc (7, %) to P (as a backward

arc), and obtain an unsaturated path from s to j. Then, node j can
be labeled.

The process of examining all nodes j neighboring a given labeled node i,
to determine whetaer they can also be labeled, is called scanning node 4.
We now have the following algorithm, where I is the set of nodes that have
been labeled but not yet scanned.
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The labeling algor:thm

only labsled node. SeiIiiis

2. A typical iteration starts with a set I of labeled; but notly
scanned nodes. ¥t € I ar if I = @, the algorithm. terminat;
Otherwise, choose a node i € T to be scarned, ami J:ezmwé
“from the set 1. Examine all arcs of the form (i, ) or (4} .

8. If (i,5) € A, fij < uij, and j is unlabeled, then label , and aﬁ
j to the set I.

4. If (j,i) € A, f; > 0, and § is unlabeled, then label j, and adé 7
to the set 1. 5

Note that a node enters the set I only if it changes from unlabeled:

to labeled. Therefore, a node can enter the set I at most once. Since each]
iteration removes a node from the set I, the algorithm must eventuallye

terminste. We distinguish between two different possibilities.

(a) Suppose that the algorithm terminates becamse node ¢ has been la-§

beled. Then, there exists an unsaturated pathfrom s to ¢, that is, an
augmenting path. That path can be easily recovered if we do some;
extra bookkeeping in the course of the labeling algorithm, as follows.

Whenever a node j is labeled while scanning a previously labeled node
i, we record node 7 as the parent of 7. At the end of the algorithm,

w2 may start at node t, go to its parent, then to its parent’s parent,

etc., until we reach node s; the resulting path is an augmenting path

from s to 1.

(b) The second possibility is that the algorithm terminates because the}
set I is empty. We will now argue that this implies that there exists;
no augmenting path. Let S be the set of labeled nodes at termination, |
and suppose that there exists an augmenting path. Since s € 5 and$

t ¢ 8, it follows that there exist two consecutive nodes ¢ and § on]

tle augmenting path, such that i € § and 7 ¢ S, Since ¢ and § arej
consecutive nodes of an augmenting path, we have either (4, j) € A
and fi; < wyj, or (4,4) € A and f;; > 0. In ether case, we see that]
node j should have been labeled at the time that node ¢ was scanned._

This is a contradiction and shows that no augmenting path exists.

Example 7.6 Consider the network shown in Figure 7.23. The labeling algo~]

rithm operates as follows:
1. I={s}. Node s is scanned. Nodes 1, 2 are labeled.
2. I={1,2}. Node 1 is scanned. Node 4 is labeled.
3. I={2,4}. Node 4 is scanned. No node is labeled.
4. I={2}. Node 2 is scanned. Node 3 is labeled.
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2 u=4

f=

Figure 7.23: The network in Example 7.6 together, with a fea-
sible fow.

5. I ={3}. Node 3 is scanzed. Node t is labelsd.

Since node t is labeled, we conclude that there exists an augmenting path, which
can be obtained by backtrackiig, as follows. Node ¢ was labeled while scanning
node 3. Node 3 was labeled while scanning node 2. Node 2 was labeled while
scanning node s. This leads us to the augmenting path s,2, 3, ¢.

We conclude our analysis of the labeling algorithm with a brief dis-
cussion of its complexity. Every node is scanned at most once, and every
arc is examined only when one of its end nodes is scanned. Thus, each
arc is examined at most twice. Examining ar arc entails only a constant
(and small} number of arithmetic operations. We conclude that the com-
putational complexity of the algorithm is proportional to the number of
arcs.

We now formally record our conclusions so far.

Theorem 7.9 The Iabeling algorithm runs in time O([.Al) (At termi-
nation, the node ¢ is labekd if and on!y if them ex;sbs an augmentmg
path o : : ) "’

Cuts

We define an s-t cut as a subset S of the set of nodes A, such that s € §
and £ ¢ S. In our context, the nodes s and ¢ are fixed, and we refer to S
as simply a cut. We define the capacity C(S) of a cut S as the sum of the
capacities of the arcs that cross from S to its complement, that is,

C(S) = Z ‘M,‘j

{(i.4)EA | i€8, j¢S}




xeuwuoneziwndo reaul|

310 Chap. 7  Network fow problems |

Wi

b A s B

Figure 7.24: Theset 5 = {s,1,2,3} is a cut. The capacity of
this cut is was + w14 + uas + uss.

(see Figure 7.24). Any flow from s to ¢ must at some point cross an are}
(¢,7) with i € S and j ¢ §. For this reason, the valus v of any feasible flow}
satisfies

v £ C(8), (7.141%

for every cut. Ir essence, each cut provides a potertial bottleneck for th‘
maximtm flow. Our next result shows that the value of the maximum flow$
is equal to the tightest of these bottlenecks. :

Theoremtio B
(a). If the Ford-Fulkerson algorithm terminates because no augmerits
.. ing path can be found, then the current flow is optimal.

(b) (Max-flow min-cut theorem) The value of the maximum fi
is equal to the minimum cut capacity.

Proof. (a) Suppose that the Ford-Futkerson algarithm has terminated
because it failed to find an augmenting path. Let & be the set of labeled §
nodes at termination. These are the nodes i for which there exists an
unsaturated path from s to . Since the search for an augmenting path ;
starts by labeling node s, we have s € 5. On the other hand, since no ;
augmenting path was found, node t is not labeled. Therefore, the set Sis a !
cut. For every arc (7,7) € A, with i € S and j ¢ S, we must have fi; = u;;. |
(Otherwise, node j would have been labeled by the labeling algorithm.) 3
Thus, tie total amount of flow that exits the set S is equal to C'(S). In 1
addition, if (i,7) € A, with ¢ ¢ § and j € S, then f;; = 0. (Otherwise,

node ¢ would have been labeled by the labeling algotithm.) Thus, the flow }
crossing from S to its complement cannot return to S, and must exit at ]
the sink node t; see Figure 7.25. This establishes that the value of the |
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Figure 7.25: Let § and S be the sets of labeled and unlabeled
nodes, respectively, at termination of the Ford-Fulkerson algorithm.
Since j is not labeled, we must have fi; = u.;. Since k is not
labeled, we must have fry = 0. In particular, all flow moves from s
to the rest of S, then t» nodes in §, and finally exits at ¢.

flow from s to t, when the Ford-Fulkerson algerithm terminates, is equal to
C(S). Since the value of the maximum flow can be no higher than c(S)
[cf. Eq. (7.14)], we conclude that at termination of the Ford-Fulkerson
algorithm, an optimal flow & obtained.

(b) If the optimal value of the flow is infinite, it is not hard to see that
there must exist a directed path P from s to t (consisting only of forward
arcs}, such that every arc in P has infinite capacity. For every cut S, there
is an arc {i,j) on the path P such that i € § and j ¢ S. Since that arc has
infinite capacity, we conclude that C(S) = co. Since this is true for every
cut, we conclude that the minimum cut capacity is infinite and equal to the
maximum flow value.

Suppose now that the optimal value, denoted by v*, is finite. This
implies that there exists an >ptimal solution, that is, a flow whose value is
v*. Let us apply the Ford-Fulkerson algorithm, starting with an optimal
flow. Due to optimality of the initial flow, no flow augmentation is possible,
and the algorithm terminates with the first iteration. Let S be the set of
labeled nodes at termination, as in part (a). From the argument in the
proof of part (a}, it follows that C'(S) = v*. On the other hand, we have
vt < C(8') for every cut §'. It follows tha: C(S) is the minimum cut
capacity and is equal to the value of a maximum flow. O

The proof of the max-flow min-cut theorem did rely on the details
of the Ford-Fulkerson algorithm. Oa the other hand, since this theorem
relates the optimal values of two optimization problems, one being a mini-
mization and the other beiny a maximization problem, it is reminiscent of
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the duality theorem. Indeed, the max-flow min-cut theorem can be proved
by constructing a suitable pair of linear programming problems, dual to
each other, and then appealing to the duality theorem (Exercise 7.20).

The complexity of the Ford-Fulkerson algorithm

We close with a discussion of the computaticnal complexity of the Ford- i
Fulkerson algorithm. We assume that every arc capacity is either integer or ]
infinite, and that the maximum flow value is finite. Let U be the largest of ]
those arc capacities that are finite. The capacity of any cut is either infinite §
or bounded above by |A| - U. If the maximum flow value is finite, there
exists at least one cut with finite capacity, and the value is bounded above '
by |.A|-U. Therefore, there can be at most, [A|-U flow augmentations. Since |
each flow augmentation involves O(|A|) computations (to run the labeling §
algorithm), the overall complexity of the algorithm is O i(|A32-U ) Under the |
stronger assumption that all arcs outgoing from node s have finite capacity,
the maximum flow value can be bounded above by [N - U, by focusing on |

these arcs. The complexity bound then becomes O(|A - [N - U).

The linear dependence of our complexity estimate on U is unappeal- §
ing, espedally if [/ is a large number. Exercise 7.25 develops a related |
algorithm whose complexity is proportional tc the logarithm of U. The key 1
idea is to scale the arc capacities, leading to a new problem with smaller !
arc capacities, which is easier to solve, and whose optimal solution provides 4

a near-opiimal solution to the criginal problem.

There is an alternative methed that eliminates the dependence on '

U altogether. As mentioned earlier, if we always choose an augmenting
path witt the least possible number of arcs. the nunber of iterations is

O(|A| - |¥1), which implies that the complexity is O(| A2 - |N]). With

proper implementation, this complexity estimate can be further reduced.

7.6 Duality in network flow problems

Tn this section, we examine the structure of the dual of the network flow |
problem. For simplicity, we restrict ourselves to the uncapacitated case. We §
provide interpretations of the dual variables, of complementary slackness, |
and of the duality sheorem. Throughout this section, we let Assumption 7.1 §
be in effect; that is, the network is assumed to be connezted and the supplies :

satisfy >, 0 =0.

The dual problem

The dual of the uncapacitated network flow problem i
maximize p’b
subject to p'A <c'.
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Due to the structure of A, the dual constraints are of the form
Pi —Pj < Cij, (4,5) € A

Suppose that {p1,...,pn) is adual feasible solution. Let # be some scalar
and consider the vector (p1 +6,...,p, +8). It is clear that this is also a
dual feasible solutior. Furthermore, using the equality Zz‘e b= 0, we

have n R
Z(p1'+9)bi = Zpibi—FGZbi = Zpib,‘,.
i=1 i=1 =1 =1

Thus, adding a constant to all components of a dual vector is of no conse-
quence as far as dual feasibility or the dual objective is concerned. For this
reason, we can and will assume throughout this section that p, has been
set to zero. Note that this is equivalent to eliminating the (redundant} flow
conservation constraint for node n.

According to the duality theorem in Chapter 4, if the original problem
has an optimal solution, so does the dual, and the optimal value of the
objective function is the same for both problems. The example that follows
provides an interpretation of the duality theorem in the network context.

Example 7.7 Suppose that we are running a business and that we need to
transport a quantity & > 0 of goods from each node + = 1,...,n — 1, to node
7 through owr private network. The solution to the corresponding network flow
problem provides us with the best way of transporting these goods.

Consider now a transportation services company that offers to transport
goods from any node ¢ to node 2, at a unit price o p;. If (#,7) is an arc in our
private network, we can always transport some goods from i to j, at a cost of
¢i; and then give them to the transportation services company to transport them
to node n. This would cost us =; + p; per unit of goods. The transportation
services company knows b and c. It wants to take over all of our transportation
business, and it sets its prices so that we have no incentive of using arc (¢, 7). In
particular, prices are set so that p; < ¢;; + p;, and p,. = 0. Having ensured that
its prices are competitive, it now tries to maximize its total revenue Z'.’fll pibi.
The duality theorem asserts thai its optimal revenue is the same as ourigptimal
cost if we were to use our private network. In other words, when the prices are
set right, the new options opened up by the transportation services company will
not result in any savings on our part.

Sensitivity

We now provide a sensitivity interpretation of the dual variables. In order
to establish a connection with the theory of Chapter 5, we assume that we
have eliminated the flow conssrvation constraint associated with node n,
and that the remaining equality constraints are linearly independent.
Suppose that f is a nondsgenerate optimal basic feasible solution, as-
sociated with a certain tree, and let p be the optimal solution to the dual.
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Consider some node i # n and let p; be the associated dual variable. Lety
us change the supply b; to b; + ¢, where ¢ is a small positive number, whilej
keeping the supplies bo,...,b,—1 unchanged. The condition Siib= |
then requires that b, be changed to b, — ¢, but this only affects the nthy
equality constraint which has already been omittel. As long as we insigh
on keeping the same basis, the only available option is to route the suppli
increment ¢ from node i to the root node n, along the unique path dete
mined by the tree. Because of the way that dual variables are calculated
[cf. Eq. (7.10) in Section 7.3], the resulting cost charge is precisely ep;. Th !
is in agreement with the discussion in Chapters 4 aad 5, where we saw that]
a dual variable is the sensitivity of the cost with respect to changes in thel
right-tand side of the equality constraints. 3

By following a similar reasoning, we see that if we increase b; by eg
decrease b; by ¢, keep all other supplies unchanged, and use the same basis,g
the resulting cost change is exactly e(p; —p;), in the absence of degenerac &
and for small e. We conclude that, in the absence of degeneracy, p, — pj
is the marginal cost of shipping an additional unit of flow from node i tag
node 7.

Complementary slackness
The complementary slackness conditions for the minimum cost networ .{
flow problem are the following: L

(a) I p; # 0, then [Af]; = b;. This condition is automatically satisfied}
by any feasible flow f.

(b) It fi; > 0, then p; — p; = c;;. This condition is interpreted as follows.:;‘
We have p; — p; < ¢;j, by dual feasibility. If ; — p; < ¢;;, then there
is a way of sending flow from ¢ to j, which is less expensive than using }
arc (i, j}. Hence, that arc should not carry any flow. ]

From Theorem 4.5 in Section 4.3, we know taat f is primal optimal ]
and p is dual optimal if and only if f is primal feasiblz, p is dual feasible, and f
complementary slackness holds. Consider now Figure 7.26, which captures :
the dual feasibility constraint p; — p; < ¢;;, the nonnegativity constraint
fij 2 €, and the second complementary slackness condition. We then obtain _
the folowing result. ]

Theorem 7.11 For any uncapacitated network dow problem, the foI-«
lowing are equivalent.

(a) The vectors £ and p are optimal solutions to the primal and the:
dual problem, respectively.

{b) The vector f satisfies the flow conservation equatzon Af = b, and

for every arc (4,7), the pair: (p, - i, fi,) satrsﬁes the relations
indicated by Fxgure 7’26
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Figure 7.26: Iustration of the complementary slackness condi-
tions. For any arc (%, §), the pair {p; —p;, fi;)} must lie on the heavy
line.

A circuit analogy

We now draw an analogy between networks, as defined in this chapter,
and electrical circuits. We visualize each node in the network as a place
where several “wires” meet, and each arc as a two-terminal circuit element
through which current may flow. Let us think of f;; as the current on arc
(t,7), and let b; be the current pumped into the circuit at node , by means
of a current source. Then, :he flow conservation equation Af = b amounts
to Kirchofl’s current law. _et us view p; as an electric potential. In these
terms, Figure 7.26 specifies a relation between the “potential difference”
P — p; across arc (1,7) ard the current through that same are. Such a
relation is very much in the spirit of Ohm’s law {potential difference equals
current times resistance) except that here the relation between the potential
difference and the current ‘s a bit more complicated.

In circuit terms, Theorem 7.11 can be restated as follows. The vectors
f and p are optimal solutions to the primal and dual problem, respectively,
if and only if they are equal to an equilibrium state of an electrical circuit,
where each circuit element is described by the relation specified by Fig-
ure 7.26. I circuit elemen:s with the properties indicated by Figure 7.26
were easy to assernble and calibrate, we could build a circuit, drive it with
current sources, and let it come to equilibrium. This would be an analog
device that solves the network flow problem. While such devices do not
seem promising at present, the conceptual connections with circuit theory
are quite deep, and are vslid in greater generality (e.g., in network flow
problems with a convex nonlinear cost function).
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7.7 Dual ascent methods*

In this section, we introduce a second major class of algorithms for the ]
networz flow problem, based on dual ascent. These algorithms maintain
at all times a dual feasible solution which, at each iteration, is updated in }
a direction of increase of the dual objective {such a direction is called a §
dual ascent direction), until the algorithm terminates with a dual optimal §
solution. Algorithms of this type seem to be among the fastest available,
In this section, we only consider the special case where all arc capacities are
infinite; the reader is referred to the literature for extensions to the general |
case.

Fecall that the dual of the network flow probem takes the form

T
maximize Z Piby
i=1
subject to  p; < ¢y + py, (i,j) € A
Given a dual feasible vector p, we are interested i1 changing p to a new .
feasible vector p + 0d, where 8 is a positive scalar, and where d satisfies ]
d’'b > ) (which makes d a dual ascent direction). '
Let S be some subset of the set A" = {1,...,n] of nodes. The elemen-§

tary direction d° associated with S is defined as the vector with components }

s=1L if i € 8,
i 0, ifigs.

Moving along an elementary direction is the same aspicking a set S of nodes
and rasing the “price” p; of each one of these nodes by the same amount. §
A remarkable property of network flow problems i that the search for a
feasible ascent direction can be confined to the set of elementary directions,
as we now show.

T:heorem 7.12 Let- p be a feasible solution to .thé dual ..prableix;'
Then, either p is dual optimal or there exists some S C N and someé
8>, such that p+ 8d” is dual feasible and (d°)'b > 0.

Proof Let § C A and consider the vector d5. We start by deriving §
conditions under which p+@d? is feasible for some @ > 0. We only need to §
check whether any active dual constraints are violated by moving along d¥. :
Note that the dual constraint corresponding to an arc (i,7) € A is active §
if and only if p; = ¢;; + p;, in which case we say that the arc is balanced. §
Clearly, if (i,7) is a balanced arc and if 4 € S, raising the value of p; will |
violate the constraint p; < ¢;; + p;, unless the valueof p; is also raised. We §
conclude that dual feasibility of p + 8d?, for some # > 0, amounts to the
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B> 0

By> O

by> 0 (a)

by + by + by

Figure 7.27: (a) A network with some source nodes and some
sink nodes, and in which we have only kept the balanced arcs.
{b} A corresponding maximum flow problem; all arcs have infinite
capacity with the exception of the arcs (s,%) and (4,t), where 1 is
a source and j is a sink in the criginal network. There is a feasible
solution to the problem in (a) if and only if the optimal value in
the maximum flow problem in (b} is equal to V = b; + b3 1 bs.

following requirement:
if i € § and (¢, ) is balanced, then j € S. {7.15)

Let @ = {i € N | b; > 0} be the set of source nodes and let
Q- ={i€ N |b; <0} be the set of sink nodes. Let V = }7.., b; be the
total amount of flow that has to be routed from the sources to the sinks.
Our first step is to determine whether the entire supply can be routed to the
sinks using only balanced arcs. This is accomplished by solving a maximum
flow problem of the type shown in Figure 7.27.

Let us run ihe labeling algorithm, starting from a maximum flow f.
Since we already have a maximum flow, no augmenting path is found and
node ¢ remains unlabeled, We partition the set {1,...,n} of original nodes
into sets § and S of labeled and unlabeled nodes, respectively. Then, the
situation is as shown in Figure 7.28(a).
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Figure 7.28: The cut obtained at termination of the labeling
algorithm, for the network involving only balarced arcs. (a) If a
source node 4 is not labeled, we must have f.; = b; and arc (s, i)
is saturated. If a sink node j is labeled, we must have Jie = 1b;
and arc (f,t) is saturated, because otkerwise node ¢ would also be
labeled. If (4, 7) is a balanced arc and if i € S, then we must also
have § € S, because otherwise node J would have been labeled
(recall that arc capacities are infinite]. If (¢, ) is a balanced arc
and i is not in §, j can be either in $ or cutside S;if 5 € S, we must
have fi; = 0, because otherwise node i would have been labeled.
(b} Interpretation of the variables A, B, C, .
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Let

A= Z Fsis C= Z fjt,

1EQL 1S jeQ_rs
B= > fu D=} fis
1EQL NS jEQ_NS

see Figure 7.28(h) for an nterpretation. The total flow F that leaves node
s is equal to A+ B. On the other hand, all of the flow must at some point
traverse an arc that starts in {s} U S and ends in {{} US. By adding the
flow of all such arcs, we obtain F = B 4+ C. We conclude that A = C, or

Z foi = Z Fie.

EQLNS jeqg_ns

For every labeled sink node j € @. N S, we have f;; = |b;| = —b;, because
otherwise node ¢ would have been labeled, which shows that

D fa= 3 byl

e NS j€@-_ns

We finally note that

@Yb=3"b= 3 b—- > |bl> X fu- Y Il=o0.

€S 1EQ4NS i€Q-nNS iI€Q4 NS j€eQ_ns

We distinguish between two cases. If (d5)'b > 0, we have a dual
ascent direction, as desired. On the other hand, if (d°)'b = 0, we must
have fy; = b; for every i € Q4 N 8. Since we also have f,; = b; for every
i€ @y NS, it ‘ollows that the value of the maximum flow is equal to
V= Ei€Q+ bi, and we have a feasible solution to the original (primal)
network flow problem. In addition, since positive flow is only carried by
the balanced arcs, complementary slackness holds, and we have an optimal
solution to the primal and the dual problerc. O

Theorem 7.12 leads to a general class of algorithms for the network
flow problem.
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Dual ascent algorithm
1. A typical iteration starts with a dual feasible solution p
2. Search for a set S C N with the pmperty '

and such that 215511 > 0. If no such set S emsts,
aptimal and the algorithm terminates. :

3. Update p to p +0*d”, where §” is the largest value for w
p + 6d° is dual feasible. If §* = oo, the algorithm termi
otherwise, go back to Step 2.

The value of 8" in the dual ascent algorithm is easily determined,
follows. We consider each constraint p; < ¢i; + p;j. The possibility thaf
p + 0d® may violate this constraint arises only if 7 € 5 and j ¢ S. For sucly
pairs (%,7), we need p; + 6 < ¢;; + p;, and we obtain 3

8 = min (Cij + p; — Pi)' (716

{te.i)eA | S j¢5)

increase. this 1mp11es tha.t the optimal dual cost is +oc and, in partlcula.r,
the prmral problem is infeasible.
Our next results deals with the finite termination of the algorithm.

Theorem 7.13 Suppose that the optimal cost is finite. If the o
coeffidents ¢;; are all integer, and if the dual ascent algorithm is inf
tialized with an integer dual feasible vector, it terminates in a fini
number of steps with a dual optimal solution.

Proof. Suppose that the algorithm is initialized with an integer vector
p. Then, the value of 0* is integer. (It cannot be infinite, because the+
dual optimal cost would also be infinite, which we assumed not to be the 3
case.) Let v = mins(d®)b, where the minimum is taken over all S fo
which (d%)’b > 0. Clearly, v is positive. Since 8* is integer, every iteratio
increases the duel objective by at least v. It follows that the algorithm
must temminate after a finite number of steps. ]

1

There are several variations of the dual ascent slgorithm which differ §
primarily in the method that they use to search fo- an elementary dual }
ascent drection. If the set S is chosen as in the proof of Theorem 7.12, we §
have the so-called primel-dual method. (When spedalized to the assign- !
ment preblem, it is also known as the Hungarian method.) It can be verified |
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that the primal-dual methoed uses a “steepest” ascent direction, that is, an
elementary ascent direction that maximizes (d¥)'b (Exercise 7.30). On the
other hand, the sc-called relaration method tries to discover an elementary
ascent direction ¢° as quickly as possible. In one implementation, a one-
element set S is tried first. If it cannot provide a direction of ascent, the
set is progressively enlarged until an ascent direction is found. In practice,
a greedy search of this type pays off and the relaxation method is one of
the fastest availahle methods for linear network flow problems.

In all of the availabe dual ascent methods, the search for an ele-
mentary ascent direction is streamlined and organized by maintaining a
nonnegative vectar f of promal flow variables. Throughout the algorithm,
the vectors f and p are such that the complementary slackness condition
(ci; + pj — Pi) fi; = 0 is enforced. (That is, flow is only carried by balanced
arcs.) If such a complementary vector f is primal feasible, we have an opti-
mal solution to both the primal and the dual. For this reason, dual ascent
algorithms can be alternatively described by focusing on the vector f, and
by interpreting the different steps as an effort to attain primal feasibility.
(This is also the historical reason for the term “primal-dual.”)

The primal-dual method

In this subsection, we consider in greater depth the primal-dual method.
We do that in order to develop a complexity estimate, and also to illustrate
how a network algorithm can be made more efficient by suitable refinements.

The primal-dual method is the special case of the dual ascent algo-
rithm, where the set S is chosen exactly as in the proof of Theorem 7.12. In
particular, given a dual fezsible vector p, we form a maximum flow prob-
lem, in which cnly the balanced arcs are retained, and we let S be the set
of nodes in {1,...,n} that are labeled at termination of the maximum flow
algorithm. We then update the price vector from p to p + 0*d?®, form a
new maximum flow problem, and continue similarly.

We provide some observations that form the basis of efficient imple-
mentations of the algorithm.

(a) The maximum flow end the current dual vector satisfy the comple-
mentary slackness condition (¢i; + p; —p;) fi; =0. This is because in
the maximum flow problem, we only allow flow on balanced arcs.

(b) If we determine a marimum flow and then perform a dual update, the
complementary slackness condition {c;;+p; —p;) fi; = 0 is preserved.
Suppose that an arc ¢, j) carries positive flow in the solution to the
maximum flew problem under the old prices. In particular, (4, §) must
have been a balancec arc before the dual update. Note that § € S
if and only if j € §. (If i € S, then j gets labeled because the arc
capacity is infinite; i’ j € S, then i gets labeled because f;; > 0.)
This implies that p; and p; are changed by the same amount, the arc
(¢,J) remains balanced, and complementary slackness is preserved.
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(c) An important consequence of observation (b) s that subsequent to &
dial updaze, we do not need to solve a new maximum flow problen
from scratch. Instead, we use the maximum flow under the old pri
as an initial feasible solution to the maximum fow problem under thi
new prices. Furthermore, the nodes that were labeled at terminatio
of the maximum flow algorithm under the old prices, will be labelad
a1 the first pass of the labeling algorithm under the new prices. [T
is because if node j got its label from a node 7 through a balance®
arc (4,7} or (4,1), then p; and p; get raised by the same amount}
the arc (4,7) or {j,i) remains balanced, and taat arc can be used ta
lzbel j under the new prices.] Our conclusion is that subsequent to &
daal update and given the current flow, we do not need to start th
labeling algorithm from scratch, but we can readily assign a label t
all nodes that were previously Iabeled. ’

(d) A dual update {with 8* < o) results in at least one unlabeled nodey
becoming labeled. Consider an arc (i,7) withi € §, j £ §, and suchy
that 8* = ¢;; + p; — p;. Such an arc exists by the definition of 6*.3
Subsequent to the dual update, this arc beccmes balanced. At the]
first pass of the labeling algorithm, node j will inherit a label from¥

node 7.

The preceding observations lead to a new perspective of the primal-3
dual method. Instead of viewing the algorithm as 1 sequence of dual up- §
dates, with maximum flow problems solved in between, we can view it as ;
a sequence of applications of the labeling zlgorithm, resulting in flow aug- }

mentations, interrupted by dual updates that create new labeled nodes.

At the beginning of a typical iteration, we have a price vector, a flow ]
vector that only uses balanced arcs, and a set of labeled nodes; thess are
nedes to which additional flow can be sent, using only balanced arcs. We

distingnish two cases:

(a) I node t is labeled, we have discovered an augmenting path and we
a‘e niot yet at an optimal solution to the maximum flow problem. We *;
push as much flow as possible along the augmenting path. At this §
point, we delete all labels and start another round of the labeling j

agorithm, to see whether further flow augmentation is possible.

{b} If node ¢ is not Jabeled, we have a maximum flow and we perform

a dual update. Right after the dual update, we resume with the

lebeling algorithm, but without erasing the old labels. Recall that 1

a dual update results in at least one new beanced arc (4, j), with
myde 1 previously labeled and node j previously unlabeled. Node
1 remains labeled and 7 will now become labzsled. Since every dual
update results in an additional node being labeled, node ¢ will become
Izbeled after at most n dual updates, and a flow augmentation will
take place.

We can now get an upper bound on the running time of the algerithm.
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Let, as before, V be the sum of the supplies at the source nodes. Assuming
that all supplies are integer, there can be at most V flow augmentations.
Since there can be at most n dual updates between any two successive ow
augmentations, the algorithm terminates ater at most nV dual updates.
If at each dual update we determine #* using Eq. (7.16), we need O(m)
arithmetic operations per dual update, and the running time of the algo-
rithm is G(mnV) = O{n'B), where B = max; |b;{. With a more clever
way of computing 0%, the running time can be brought down to O(n*B)
(Exercise 7.28). For the assignment problem, we have B = 1, and we obtain
the so-called Hungarian method, which runs in time O(n®).

Example 7.8 We go throigh an example of the primal-dual method. Consider
the network shown in Figwe 7.29(a), and let us start with the dual vector p =
{1,1,1,1,0). It is casily checked that we have g; < ¢.; + p; for all arcs (4, 4), and
we therefore have a dual feasible solution. The balanced arcs are (1,4}, (2,4),
{3,5). In Figure 7.29(b), we form a maximum flow problem involving only the
balanced arcs. We solve this problem using the Ford-Fulkerson algorithm. At
termination, we obtain the labels and the flows shown in Figure 7.29(c). {Node
2 inherits a label from node 4.) The set of labeled nodes is § = {1,2,4} and
the corresponding elementary direction is d° = (1,1,0,1,0). The only arc (4, 5)
with i € S, § € S, is the arc {2,5), and Eq. (7.16) yields 8" = 2. The new dual
vector is p+6*d% = (3,3,1,3,0). The arc {2,5) has now hecome balanced and all
nodes that were labeled remain labeled. Since node 2 is labeled, and arc (2, 5) has
become balanced, node 5 gets labeled. Finally, because arc (5,¢) is unsaturated
(fs: = 2 < 3 = |bs)), node £ also gets labeled. At this point, we have identified a
path through which additional flow can be shipped, namely the path s,1,4,2,5,t.
By shipping one unit of flow along this path, the value of the fiow becomes 8.
We now have a feasible solition to the original primal sroblem, which satisfies
complementary slackness, and is therefore optimal. If primal feasibility had not
been attained, we would erase all labels and rerun the labeling algorithm, in an
attempt to discover a new rugmenting path.

Comparison with the dual simplex method

Network flow preblems (lice all linear programming problems} can be solved
by the dual simplex method. This is also a cual ascent method, in the sense
that it maintains a dual feasible solution and keeps increasing the dual
objective. Furthermore, it can be verified that dual updates in the dual
simplex method only takeplace along elementary directions (Exercise 7.31).
On the other hand, the cual simplex method can only visit basic feasible
solutions in the dual feasible set. In contrast, the methods considered in
this section, have more directions to choose from and do not always move
along the edges of the dual feasible set.

A key difference between the dual simplex method and the dual ascent
methods of this section is in the nature of the auxiliary flow information
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Figure 7.29: Tllustration of the primal-dual method in Example 7 8.
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that they employ. In the dual simplex method, we maintain a basic solution
to the primal; in particular, the flow conservation constraints are always
satisfied. If the basic solution is infeasible, it is only because some of the
nonnegativity constraints are violated. In contrast, with the dual ascent
methods of this section, auxiliary flow variables are always nonnegative,
but we allow the Jow conssrvation equations to be violated.

7.8 The assignment problem and the auction
algorithm

The auction algorithm, which is the subject of this secsion, is a method that
can be used to solve general network flow problems. We restrict ourselves
to a special case, the assignment problem, because it results in a simpler
and more intuitive form of the algorithm. The auction algorithm resembles
dual ascent methods, except that it only changes the price of a single node
at a time. Given a nonoptimal feasible solution to the dual, it is sometimes
impossible to find a dual ascent direction involving a single node. For this
reason, a typical iteration may result in a temporary deterioration (i.e.,
decrease) of the dual objective. Aslong as this deterioration is kept small,
the algorithm is guaranteed to make progress in the long run, and can be
viewed as an approximate dual ascent method. Our presentation bypasses
this approximate dual ascent interpretation, for which the reader is referred
to the literature.
The problem

k13 ™
minimize E E cij fiz

i=1j=1

n

subject to Z_f;‘j:]., i=1,...,n,
i=1
T
Efij:l’ i=1,...,n,
j=L
fiz =20, Vi

is known as the assignmeat problem. One interpretation is that there are
n persons and n projects and that we wish to assigr. a different person to
each project while minimising a linear cost function of the form 3" (i.5) i Fii»
where f;; = 1 if the ith person is assigned to the jth project, and fi;=0
otherwise. With this interpretation, it would be natural to introduce the
additional constraint f;; € {0,1}. However, this is unnecessary for the
following reasons. First, the constraint f;; < 1 is implied by the constraints
that we already have. Second, Corollary 7.2 implies that the assignment
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problem always has an integer optimal solution. In particular, if we solve

the assignment problem using the simplex method or the negative cost cycle |
algorithm, the optimal value obtained for each variable f;; will be zero or }

one.

Let us now digress to mention an interesting special case of the as- 3
signiment problem. Suppose that the cost coefficients c;; are either zero or |
one. The resulting problem is called the bipartite matching problem and §
has the following interpretation. We have ¢;; = 0 if and only if person 7 is
compatible with project j and we are interested in finding as many com- §
patible person-project pairs as possible. If the optimal value turns out to |
be 0, we say that there exists a perfect matching. Besides being an assign- §
ment problem, the bipartite matching problem is also a special case of the ;
max-flaw problem (send as much flow as possible from persons to projects

using only zero cost arcs) and as such it can be also solved using maximum

flow algorithms. There are even better special purpose algorithms, which §

can be found in the literature.

Duality and complementary slackness

We forn the dual of the assignment problem. We associate a dual variable r; ‘
with each constraint E;”:l fi; = 1, and a dual variable p; to each constraint ]

>y fi = 1. Then, the dual problem takes the form

n n
maximize Zri-}- E Py
i=1 g=1

subject to ; +p; < ¢, V1, .

It iz clear from the form of the dual constraints that once the values of |
P1y...,0n are determined, 2?21 1; 15 maximized if we set each r; tc the )

largest value allowed by the constraints r; + p; < ¢;;, which is

T = j:I[l]iIl n{C,;j —p_;,} (7.17) 1

This lezds to the following equivalent dual problem:

maximize ij + Z:n‘un{c,”“T -p;i} (7.18) .'

1=1 i=1

Note that this is an unconstrained problem with a piecewise linear concave |

objective function.
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We now consider tke complementary slackness conditions for the as-
signment problem, which are the following:

(a) flow must be conserved;
(b) lffw > 0, then r; +p; = ¢ij-

Using Eq. {7.17) to eliminate r;, the second complementary slackness
condition is equivalent to

if f; >0, then p; —¢;;=-r; = mgx{pk —cih (7.19)

Condition (7.19) admits the following interpretation: each project k carries
a reward pp and if person ¢ is assigned to it, there is a cost ;. The
difference pr — ¢ is viewed as the profit to person i derived from carrying
out project k. Condition (7.19) then states that each person should be
assigned to a most profitable project.

Auction mechanisms

We recall that a pair of >rimal and dual solutions is optimal if and only
if we have primal and dual feasibility, and complementary slackness. Hav-
ing defined r; according to Eq. (7.17), dual feasibility holds automatically.
Thus, the problem boils down to finding a set of prices p; and a feasible
assignment, for which the condition (7.19) holds. This motivates a bidding
mechanism whereby persens bid for the most profitable projects. It can be
visualized by thinking about a set of contraetors whe compete for the same
projects and therefore keep lowering the price (or reward) they are willing
to accept for any given project.

Naive auction algorithm

1. Bidding phase. Given a set of prices p1,...,p, for the different
projects, and s partisl assignment of persons to projects, each
unassigned persou finds a best project j, that maximizes the
profit p; — ¢;;, and “bids” for it, by é.cceptmg a Eower price. In
particular, the price is lowered by -~ -

(proﬁt of the best project) (proﬁt: of %he second best project).

«««««

2. Foilowmg the blddmg phase, there us aﬁmment phase during
which every project is asmgned to the lowest; bidder (if any). The
new pricz of each project is set to t&g@ Mﬁe of the lowest bid.

The ok:l hoider of the project: (i:f anv} beoomes unassigned.

@,.«
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Example 7.9 Consider an assignment problem involving three persons and
three objects; see Figure 7.30. Suppose that all p; are equal to one, that per-
son 1 is assigned to project 1, person 2 is assigned to object 2, and person 3 is 4
unassigned.

Person 3 computes the profits of the different projects; they are 1 —0 =1
for the first and second project, and 1 —1 =  for the third project. Person 3 bids I‘
for the second object. The bid for project 2 cannot be lower than one, because
that would make project 2 less profitable than project 1. Hence, the bid is equal §
to one. Pemson 3, as the sole bidder, is assigned project 2, and person 2 becomss 1
unassigned However, there is no price change. In the next iteration, person 2 !
who is unassigned goes through a similar process, and bids for project 2. The 3
price is agein unchanged, and we end up in exactly the same situation as when }
the algorithm was started.

As Bxample 7.9 shows, the naive auction algorithm does not always
work. The reason is that if there are two egually piofitable projects, a §
bidder cammot lower the price of either, and the algorithm gets deadlocked. j
However, the algorithm works properly after a simple modification. Let us 4
fix a positive number €. The bid placed for a project is lower by ¢ than
what it would have been if we wished that project to ramain the best one; A
as a result, the project comes short, by ¢, of being the most profitable one. 1
A complete description of the algorithm is given below.

“ 1. A typmal iteration starts with a set of prices py,...,p, for the
different piojects, a set S of assigned ‘persons, a.mi a project ji?
asiigned to each person i € § (that is, fi;, = ], zeS) (At the

- beginning of the algorithm, the set .S is empty.) - :
2. Esch unassigned person i ¢ S finds a best pm]ect k; by mas+
. . imrizing the proﬁt Py = cq, over all k. Let k| beasecond beag

. Pl'Bjth that i8, " ¢

ﬂ?he auction agonthm

o - c;k;‘apk;m-cae,. for aﬂ bk b
Let
‘ (Pm Gak.} (Pk' &k'
n -,_Persons "blds p;;i ﬁkf—sforpw}act z. S
_8: Every project for. which: theré. s at least’ cme b:d is ass;gngd o
"+ 8 jowest bidder;. the old: hiolder of the project, (if any) becomes
-ugasslgaesi The new price: p;. .of leach project’that: bﬁmmvefﬁ
tleast ane: b;& x.s aet to thehvaiué éf :he; eq% bid: o

bk
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Figure 7.30: An assimment problem. The costs ¢;; and ¢ for
the first two projects are zero, for every i. The costs c;z for the
third project are equal to one, for every i.

Example 7.10 We apply the auction algorithm to the problem considered in
Example 7.9. Once more, we assume that persons 1 and 2 are assigned to projects
1 and 2, respectively, and the initial prices are all equal to 1. Person 3 chooses to
bid for project 2 and decreases its price to 1 —¢. Person 2 becomes unassigned and
computes the profits of the different projects; they are: 1-0 =1, (1—€}-0 = 1—¢,
and 1 — 1 = 0, respectively. Prmoject 1 is the most profitable. Its price is to be
brought down so that its profit becomes equal to the profit of the second best
project, minus e. Therefore, the bid is equal to 1 — 2e.

At the next iteration, pemon 1, who is unassigned, bids for project 2 and
brings its price down to 1 — 3e. The same process is then repeated. At each itera-
tion, projects 1 and 2 have prices that are within € of each other. An unassigned
person always bids for the one that has the larger price, and brings its price down
by 2e. After a certain number of iterations, the prices of projects 1 and 2 be-
come negative. At that point, project 3 finally becomes profitable, receives a bid,
becomes assigned, and the algorithm terminates.

Note that a bid pushes the price of a project below the level at which
that project would be the most profitable. For this reason, petsons will
not, in general, be assigned to their most profitable project, and the com-
plementary slackness conditions fail to hold. On the other hand, since
persons may underbid only by ¢, the complementary slackness conditions
are close to being satisfied. This motivates our next definition.

Deﬁmtion 7. 3 Consider 8 sec Ofpnceg p.,. ﬁiﬁéftmf e .em
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The following result deals with a key property ol the auction algo- J
rithm. ;

Proof. Tae condition is satisfied initially, before any person is assigned. ]
Whenever a person i is assigned a project j;, the price is chosen so that the !
profit p;, — ¢i;, cannot be smaller than the profit of ary other project by}
more than g, assuming the other prices do not change. I the prices of some §
other projects do change, they can only go down, and project j; is again §
guaranteed to be within e of being most profitable. As long as a person
holds the same project, the price of that project cannot change, and its
profit stays constant. In the meantime, the prices of any other projects can _'
only go down, thus reducing their profits, which means that the person still{
holds a preject whose profit is within e of the maximum profit. 034

We also have the following result that ensures the finite termination}
of the algorithm,

Thaqrem 1’2.’15 ‘I"he auctxou aigontbm tenmnates alter a ﬁmte ny

Proof. The proof rests on the following observations:

{a} Omnce a project receives a bid, it gets assigned to seme person. Oncea
project is assizned, it may be later reassigned to snother person, but |
it wil never become unassigned. Thus, if all projects have received }
at least one bid, then all projects are assigned and, consequently, all §
perscns are also assigned.

(b} If all persons are assigned, no person bids and the algorithm termi- :
nates. j

(c) If ths algorithm does not terminate, then some project never geis
assigned. Such a project has never received a bid and its price is
fixed at its initial value.

(d) If the algorithm does not terminate, some project receives an infinite ]
number of bids. Since every successive bid lowers its price by at least |
¢, the price of such a project decreases to —oco.

Using observetions (¢) and (d), a project that has never received a |
bid must eventually become more profitable than any project that receives ]
an infinite number of bids. On the other hand, for a project to receive an §
infinite number of bids, it must remain more profitable than any project
that has mot receivad any bids. This is a contradiction, which establishes |
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that every project will eventually receive a bid. Using observations (a) and
(b}, the algorithm must eventually terminate with all persons assigned to
projects. d

The preceding proof generalizes to the case where some assignments
are not allowed, which is the same as setting some of the coefficients ¢;;
to infinity. However, a slightly more involved argument is needed (see
Exercise 7.32).

At termination of the auction algorithm, we have:

(a) primal feasibility (all persons are assigned a project);

(b) dual feasibility [if we define r; = maxy{px — e}, we have a dual
feasible solution};

(¢} e-complementary slackness (Theorem 7.14).
If we had complementary slackness instead of e-complementary slackness,
linear programming theory would imply that we have an optimal solu-

tion. As it turns ou:, because of the special structure of the problem,
e-complementary slackness is exough, when ¢ is sufficiently small.

Theorem 7.16 If tke cost coefficients ¢;; are fntegér and if -
0<e<l/n, '

the auction algorithni terminates with an optimal solution.

Proof. Let j; be the projeci assigned to person i when the algorithm
terminates. Using e-complementary slackness, we have

Pj; — Cij, = meX{Pj —eir—¢€, Vi

By adding these inequalities over all 4, and rearranging, we obtain

mn

E : €ij;

i=1

Zn: (sz - max{pj Cij }) + ne

IA

I
™:=1I

3}) + ne.

(le + mjiﬂ{cij —-r

=1

Let z be the cost of an optimal assignment. The sum in the right-hand
side of the above equation is the same as the dual objective function
[cf. Eq. (7.18)] and by weak daality, it is bounded above by the optimal
cost z. This implies that

k]
Zci-?" Lz4+ne<z+ 1.
i=1
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On the otler hand "
Z Cigg 2 %
i=1

by the definition of z. Since z and all ¢;;, are integer, ve conclude that

n
E :Ciji =z,
i=1

and optimality has been established.

Discussion

Let us assume, for simplicity, that ¢;; > 0 for al<, j, and let C = max; ; ¢, ]
Suppose that the algorithm is initialized with all projects having the samé]}
prices. If some project has received C/e or more bids, then its price is lower?
than the price of any project that has not received any bids, by at least C.3
(This is because each bid lowers the price by at least ¢.) At that point, a;
project that has nct received any bids would become more profitable. i
conclude that every project receives at most C'/e bids. The total number
of bids is at most »C/e. Since there is at least one bid at each iteration
this is also a bound on the number of iterations. Finally, the computationak}
effort per ‘teration is easily seen to be O(n?). If we let  be slightly smallery
than 1/n, the version of the auction algorithm that we have described hereg
runs in time O(ntC). ‘

The auction algorithm can be sped up using the idea of e-scaling.:
One first uses a relatively large value of ¢, and obtains a solution which is§
optimal within ne. (The proof is the same as the proaf of Theorem 7.16.) §
Then, the obtained prices are used to start another solution phase, with a
smaller value of ¢, ete. This device leads to better theoretical running time |
estimates and also to improved performance in practice. ]

7.9 The shortest path problem

The shortsst path problem is an important problem that arises in a multi- 5
tude of applications in transportation networks, communication networks, |
optimal control, as well as a subproblem of more complex problems. As |
will be seen shortly, it can be posed as a network flow problem. However, }
practical methods for solving the shortest path problem do not rely on |
the netwark flow formulation. Instead, they are centered around a set of |
optimality conditions, known as Bellman’s equation, which are intimately }
related to the subject of dynamic programming (see Section 11.3). We will ?
use duality to derive Bellman’s equation, and we will then proceed to de- §
velop a suite of algorithms. Some of these algorithms are of a somewhat ad §
hoc nature, but they are quite efficient in practice. :
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Throughout this section, the words walk, path, and cycle will always
mean directed walk, path, and cycle, respectively; that is, all arcs are tra-
versed in the forward direction. This should not lead to any confusion,
because in this section we never need to consider walks, paths, or cycles
that are not directed.

Formulation

We are given a directed graph G = (N, .A) with n nodes and m arcs. For
each arc {(i,7) € A, we are also given a cost or length ¢;; in general, the
numbers ¢;; are allowed to be negative. The length of a walk, path, or cycle
is defined as the sum of the leagths of its arcs. A path from a certain node
to another is said to be shorted if it has minimum length among all possible
paths with the same origin and destination. A shortest walk from a node
to another is defined similarly. A shortest walk and a shortest path from
one node to another are not necessarily the same. In particular, if there
exists a cycle with negative length, we can construct walks whose length
converges to —oo (we can traverse the cycle several times before reaching
the destination). On the other hand, the length of any path is bounded
below by —nC', where C' = max; ;)c 4 |c;;]- If all cycles have nonnegative
length, there is no incentive 10 go around a cycle and, for this reason, a
shortest path is also a shortes; walk. Conversely, any cycles contained in a
shortest walk must have zero length; by removing such cycles, we obtain a
shortest path.

The shortest path problam can be posed in a few different ways; for
exsmple, we might be interested in a shortest path from a given origin to
a given destination, or we might be interested in shortest paths from each
of 2 number of selected origins to each of several destinations. We will
focus on the problem of finding a shortest path from all possible origins to
a particular destination node, which is called the all-to-one shortest path
problem, as well as on the prodlem of finding shortest paths for all possible
origin destination pairs, which is called the all-pairs shortest path problem.

Before continuing, we introduce two mora concepts that will prove
useful. Consider a tree, and suppose that all arcs are assigned directions
80 that we have a (directed) path from every node 7 # 7 to node n. Such
a directed graph will be callec an intree rooted at node n; see Figure 7.31.
If it happens that for every i £ n, the path from ¢ to n along the tree is a
shortest path, we say that we have a lree of shortest paths.

Relation to the network flow problem

We consider here the all-to-one shortest path problem. For concreteness,
we assume that node n is the destination node. We also assume that there
exists at least one path from every node 7 # n to node n, which means that
the all-to-one shortes: path problem is feasible. Finally, and withont loss of
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On the other hand N
Zc«m 2z,
i=1

by the defnition of z. Since z and all ¢;;, are integer, we conclude that

n
E C,',J“. = Zz,
i=1

and optimality has been established. O

Discussion

Let us assume, for simplicity, that ¢;; > 0 for all 4, j, and let C' = max; ; c;;.
Suppose that the a.gorithm is initialized with all projects having the same
prices. If some project has received C/¢ or more bids, then its price is lower
than the price of any project that has not received any bids, by at least C.
(This is because each bid lowers the price by at least ¢.) At that point, a
project that has not received any bids would become more profitable. We
conclude that every project receives at most C'/e bids. The total number
of bids is 3t most »C/e. Since there is at least one bid at each iteration,
this is also a bound on the number of iterations. Finally, the computational
effort per ‘teration is easily seen to be O(n2). If we let : be slightly smaller
than 1/n, the version of the auction algorithm that we have described here
runs in tine G(r*0).

The auction algorithm can be sped up using tke idea of e-scaling.
One first uses a relatively large value of ¢, and obtains a solution which is
optimal within ne. (The proof is the same as the proof of Theorem 7.16.)
Then, the obtained prices are used to start another solution phase, with a
smaller value of ¢, etc. This device leads to better theoetical running time
estimates and also to improved performance in practice.

7.9 The shortest path problem

The shortest path problem is an important problem that arises in a multi-
tude of applications in transportation networks, communication networks,
optimal control, as well as a subproblem of more complex preblems. As
will be seen shortly, it can be posed as a network flow problem. However,
practical methods for solving the shortest path problem do not rely on
the network flow formulation. Instead, they are centered around a set of
optimality conditions, known as Bellman’'s equation, which are intimately
related to the subject of dynamic programming (see Section 11.3). We will
use duality to derive Bellman’s equation, and we will then proceed to de-
velop a suite of algorithms. Some of these algorithms are of a somewhat ad
hoc nature, but they are quite efficient in practice.
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Throughout this section, the words walk, path, and cycle will always
mean directed walk, path, and cycle, respectively; that is, all arcs are tra-
versed in the forward direction. This should not lead to any confusion,
because in this section we never need to consider walks, paths, or cycles
that are not directed.

Formulation

We are given a directed graph G = (N, A4) with n nodes and m arcs. For
each arc (i,7) € A, we are also given a cost or length c;;; in general, the
numbers ¢;; are allowed to be negative. The length of a walk, path, or cyde
is defined as the sum of the lengths of its arcs. A path from a certain node
to another is said to be shortest if it has minimum length among all possible
paths with the same origin and destination. A shortest walk from a node
to another is defined similarly. A shortest walk and a shortest path from
one node to another are not necessarily the same. In particular, if there
exists a cycle with negative length, we can construct walks whose length
converges to —oc (we can traverse the cycle several times before reaching
the destination). On the olher hand, the length of any path is bounded
below by —nC, where C' = max; jyea |ci;t. If all cycles have nonnegative
length, there is no incentive to go around a cycle and, for this reason, a
shortest path is also a shortest walk. Conversely, any cycles contained in a
shortest walk must have zero length; by removing such cycles, we obtain a
shortest. path.

The shortest path proslem can be posed in a few different ways; for
example, we might be interested in a shortest path from a given origin to
a given destination, or we might be interested in shortest paths from each
of a number of selected orizins to each of several destinations. We will
focus on the problem of finding a shortest pata from all possible origins to
a particular destination node, which is called the all-to-one shortest path
problem, as well as on the problem of finding shortest paths for all possible
origin destination pairs, which is called the all-pairs shortest path problem.

Before continuing, we introduce two more concepts that will prove
useful. Consider a tree, anc suppose that all arcs are assigned directions
so that we have a (directed) path from every node i # n to node n. Such
a directed graph will be callzd an intree rooted at nede n; see Figure 7.31.
If it happens that for every i # n, the path from ¢ to n along the tree is a
shortest path, we say that we have a tree of shortest paths.

Relation to the network flow problem

We consider here the all-to-one shortest path problem. For concreteness,
we assume that node n is the destination node. We also assume that there
exists at least one path from every node ¢ # n -0 node n, which means that
the all-to-one shortest path problem is feasible. Finally, and without loss of
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Figure 7.31: An intree rooted at node 6.

generality, we assume that there are no outgoing arcs from node n. These §
assumptions will remain in effect throughout this section. -

We view the graph G as a network of infinite capacity arcs. Suppose ]
that each one of the nodes 1,...,n — 1 is a source nods, with unit supply, §
and that node n is the only sink node, with a demand of n — 1. If we pose
the problen of minimizing 3, .\ 4 ¢i;fi; over all feasible flow vectors, it ]
should be clear tha: for every node i other than n, one unit of flow should;
be shipped from node ¢ to node n, at least cost. As long as there a.rel
no negative length cycles, this should be dore along a shortest path. If
on the other hand, there are negative length cycles, the optimal cost inj
the network flow problem is —co, because we could “push” an arbitrarily
large amount of flow around such a cycle. This discusson is refined in the
following theorem. '

"I‘I_'lebrem 7.17 Consider the shortest path problem in a directed gra ]
with n nodes and the associated network flow problem. We assume tha
there is a path to node n from every other rode, and that node n has
no outgoing arcs.
(a) If there exists a negative length cycle, the optimal cost in the
network flow problem is —oo. ’
{b) Suppose that all cycles have nonnegative length. If a feasible
tree solution is optimal, then the corresponding tree is a tree ofl
shortest paths.
(c) Suppose that all cycles have nonaegative length. If we fix p,, t
zero, the dual problem has & unique solution p*, and p} is th
shortest path length from node 4.

Proof. Part (a) is trivial. For part (b}, we first note that in a feasible tree |
solution, all arcs in the tree must be oriented from the leaves towards the ]
root and tierefore form an intree rooted at node n. This is because if some
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arc (4,J) in the tree is pointing away from the root, the Aow on that arc
must be negative, contradicting feasibility. If for some node i there exists
a path from ¢ to n whose lergth is smaller than that of the path on the
tree, the feasible tree solutior is not optimal, because some flow could be
redirected to that path. Thus, an optimal feasible tree solution provides us
with a tree of shortest paths and this proves part (b).

Let p; = 0 and let (p},...,p,_;) be the vector of dual variables
associated with an optimal feasible tree solution. For each arc on the tree,
we have pf = ¢;; + p}. Since &ll arcs are oriented towards the root, we can
add the equalities p; = ¢;; + p} along a path contained in the tree, and
conclude that p} is the length of the path from node i to node n. Note that
this is a shortest path, since we are dealing with an optimal feasible tree
solution. Thus, p; is the shoriest path length.

We finally note that every feasible tree solution is nondegenerate.
This is because any arc (4, j) on the tree must carry the supply at node 1.
1t follows that the dual problem has a unigue solution. O

The connection between shortest paths, network flows, and linear
programming duality is illustrated by our nex: exampls, which arises in
practical context.

Example 7.11 (Project management) A project consists of a set of jobs
and a set of precedence relations In particular, we are given a set A of job pairs
(¢,4) indicating that job ¢ cannct start before job j is completed. Let ¢; be the
duration of job {. We wish to id:ntify the least possible duration of the project.
We will show that this can be accomplished by solving a shortest path problem.

In addition to the original jobs, we introduce two artificial jobs s and t, of
zero duration, that signify the beginning and the completion of the project. We
augment the set A by introducing the additional precedence relations (s,7) and
{i,t) for all jobs 4. Let p; be the time that job i begins. A precedence relation
{7,7) € A leads to a constraint ; 2 pi + ¢, that is, project j cannot begin before
the completion time p; + ¢, of pioject i. The project duration is p; — ps and the
minimal project duration is obtained by solving the following problem:

minimize g — ps

subject to z; —p: 2 ¢, V(i) € A

The dual of this problem is
maximize Z ¢ fig
(i,71eA

S k- Y fi=t Vi,

{ilG.reA} {il{z.5)€A}
fiis =20, v (i,5) € A

Here, b, = —1, b = 1, and b, =0 for ¢ # s,¢. This is a shortest path problem,
where each precedence relation (¢,7) € A correspends to an arc with cost of
—¢i. It is natural to assume thai the set of arcs A does not contain any cycles,

subject to
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because otherwise the project cannot be completed. In that case, the network isj
guaranteed to have no negative cost cycles.

Bellman’s equation

Recall that by = --- = b, = 1. Under the conventim p, = 0, the duaf
problem is of the form ;
n—1
maximize Z i
i=1

subject to  p; < ¢+ py, v (i,7) € A

It is evident that if all components of p, except for g;, are fixed to some}
values, the remaining component p; should be set to the largest value al-
lowed by the constraints, that is, mingeoqy{cik + px}- [Recall that O(%)
the set of endpoints of arcs that are outgoing from node 4] We conclude]
that the optimal solution p* to the dual problem, which is the same as thg
vector of shortest path lengths, satisfies ‘
i =kren(%){cik +pi},  i=1,...,n—1, (7.20)4
where p:, = 0. This is a system of n — 1 nonlinear equations in n — 14
unknowns, and is known as Bellman’s equation. It has a rather intuitivey
interpretstion: suppose that we are interested in patls that start at node
i, but that we also impose the additional constraint that the path rnust|
start with the arc {i,k). Then, the best we can do is to find a shortest}
path from node k to n, for a total length of ¢;; + py. However, since the
first node k is of oar own choosing, we should make an optimal choice of K,
and therefore the length of a shortest path is minge o {cix +p}}. The key'§
idea behind Bellman’s equation is the so-called principle of optimality: if |
a shortest path from i to n goes through an intermediate node k, then the |
portion of the pata from % to n is also a shortest patk. ]
Wehave argned that the shortest path lengths satisfy Bellman’s equa- 4
tion. Thus, one possible method of computing shortest path distances is by §
trying to solve Belman’s equation directly. However, some care is needed,
because Bellman's equation may have several soluticns, and only one of
them will give us she correct shortest path lengths; an example is given in 3
Figure 7.32. Tt turns out that the shortest path lengths are the unique so- 1
lution to Bellman’s equation if all cycles have positive lengths. If all cycles ]
have nonnegative length, we can only assert that the shortest path lengths 4
are the lergest solution to Bellman’s equation (Exercise 7.33). '

The Bellman-Ford algorithm

A common method for solving a system of equations of the form x = F(x)
is to use the iteration x := F(x). If we attempt to solve Bellman’s equation }
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Figure 7.32: Consider a graph with three nodes and let the
arc lengths be as indicated. The shortest path lengths to node 3
are p; = p5 = 1. Bellman’s equation is of the form p; = p: and
pz = min{pi1, 1}. It is easily seen that p; = p> = [ is & solution to
Bellman's equation for every § < 1. Note that the shortest path
lengths are the largest soution to Bellman's equation.

in this fashion, we obtain the Bellman-Ford algorithm. In the discussion
that follows, we again assume that node n has no outgoing arcs.

Let p;(t) be the length cf a shortest walk from nods 4 to node n that
uses at most t arcs; we let p;(t) = oo if no such walk exists. We use the
convention p,{t) = 0 for all {, and p{0) = o for all § # n. Note that
pi(t+1) < p;(t) for all ¢ and t. because as ¢ increases, there are more walks
to choose from. A shortest walk from node ¢ to node n that uses at most
t 4 1 arcs, consists of an initial arc (i, k) and a walk from node & to node n
that consists of at most ¢ arcs. Of course, the latter walk should be chosen
as short as possible and its length is therefore pi(f). Since node k should
also be chosen in the most prefitable fashion, we have

(t+ 1) = mi : t)}, i=1,....n—1,

it +1)= min {ew +pult)} n

and this equation defines the Bellman-Ford algorithm. We now discuss the
termination properties of the algorithm.

(a) Suppose that there are 10 negative length cycles. Then, there exists
a shortest walk, which is also a shortest path, and has at most n — 1
arcs. In particular, p;(n-1) = p!. Allowing for a walk with » or more
arcs cannot reduce the total length, and we have p;(n) = pi(n — 1)
for all nodes.

(b) Suppose that there exists a negative length cycle. Suppose for a
moment, that we also heve p(n) = p(n—1). This implies that p(t} =
p(n) for all t > n and the length of any walk is bounded below.
However, in the presence of negative length cycles, there exist walks
whose length tends to —oo. This is a cortradiction and proves thut

p(n) # p(n — 1),
By comparing the two cases just discussed, we see that no more than
n iterations are needed. If p(n) = p{n — 1), then p(xn)} is the vector of
shortest path lengths. (An example is given in Figure 7.33.) If on the ocher
hand p(n) # p(n—1), we conclude that there exists a negative length cycle.
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Figure 7.33: We apply the Bellman-Ford algorithm to the graph
shewn. Node 4 is the destination node. We have p4(t) = 0 for all

t, and
pi0) = o0, pi(1) =00, p(2) =9, m@3 =9,
p{0) = oo, m(l) = 7, m(2) =7, pA3) =T,

pa(0) = oo,  pa(l) = L, p3(2) = 1, ps(3) = L

‘We cobserve that p(3) = p(2) and, therefore, p{2) is equal to the
shortest path length vector p*.

The computational complexity of the algorithn is O(mn) beca y
there are at most n iterations and at each iteration, ezch arc is only exang
ined once.

We have focused so far on the computation of the shortest pat]
lengths rather than the shortest paths, The reason is taat once the shortes
path lengths are available, shortest paths can be detarmined fairly casil§
(Exercise 7.34). The task of finding shortest paths is made even easier if i
the course of the algorithm, we maintain some information that allows
10 backtrack and recover a shortest path. This is done as follows. For eve
node i, we keep a record of a successor node s(i), chosen as the first nodd
in a path whose tctal length is equal to the current estimate p;(t) availabld
at node i. Determining a successor node with such & property is simpl
whenever we have p; (¢ + 1} < p;(¢), we delete the old successor of i, if a
and let si7} be such that p;(t + 1) = ci5() + Py (1)- ;

As noted earlier, the Bellman-Ford algorithm provides us with 4
method for checking whether there are any negative length cycles. DBeg
sides detecting the existence of a negative length cyck, some application]
such as the negative cost cycle algorithm of Section 7.4, require the con
struction of a negative length cycle. This can be accomplished as followd]
Consider a node 4 for which p;{n) < p;(n — 1}. By starting at node i and
going from each node to its successor, we obtain a wak with n arcs whos _'
length is p;{n). Since there are only n nodes in the graph, this walk m
comtain a cycle. Suppose that this cycle has nonnegative length. Let u
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delete the arcs on the cycle and we are left with a walk with fewer than n
arcs whose length is no greater than p;(n). This contradicts the inequality
pi(n) < piln— 1). We conclude that by tracing the successors of node i, we
will discover a negative length cycle.

Label correcting methods

Label correcting methods are a general class of shortest path algorithms,
that have proved to be very efficient in practice. They are similar in spirit to
the Bellman-Ford algcrithm, but they are more flaxible, hence the potential
for improved performance.

The key idea is to maintain at each node j, a label p; equal to the
length of the shortest walk from j to n discoversd thus far. Given a walk
from j to n, of length p;, there exists a walk from 4 to n of length ¢;; + p;.
Thus, each time that p; is revsed downwards (“corrected”), we also have
an opportunity to revise downwards the labels of all nodes ¢ that have an
outgoing arc to node j (the predecessors of j}. The algorithm maintains
a list S of all nodes whose labels have been revised downwards, and such
that the revision has not yet been propagated to their predecessors. (The
list S plays a role similar to the list of labeled but not yet scanned nodes
in the labeling algorithm of Sestion 7.5.)

Label correcting algorithm
The algorithm is initialized with § = {n}, p, = 0, and p; = oo for
every i # n. A typical iteration is as follows.

1. Remove a node j from. 5.

2. For every node ¢ # n such that (4, 7) is an arc, do the following.
Let p; := min{p;, ¢ij +p;}- If the new value of p; is smaller, add
node ¢ to the set S.

3. If 8 is empty, the algarithm terminates. Otherwise, go back to
Step 1.

The label of a node is always equal to the length of some waltk to
node n. {Except when the label is infinite, indicating that a path has not
yet been discovered.) This is easily shown by induction. Indeed, assuming
this to be true before an update, the new label min{p;, ¢;; + p;} is either
equal to the length p; of a previcusly identified walk, or is equal to the
length ¢;; + p; of a walk that starts with arc (¢, j) and follows a previously
identified walk from § to n.

We now establish the finite termination of che algorithm. We assume
that all cycles have nonnegatve length. Let p? be the first finite label
assizned to node i. Any walk from i to n whose length is less than p?,
consists of a path from ¢ to n, an arbitrary number of zero length cycles,
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and a bounded number of positive length cycles. Since zero length cyclegf
have no effect on :he length of the walk, the possible values of p; that are
smaller than pY, are finitely many. This implies thet there can only byl
finitely many downward revisions of each label. After some point, therd
will be ne more revisions, and each iteration will only result in the removel
of some rode fror: S. It follows that S eventually becomes empty and th
algorithm terminates. 3
‘We conclude our analysis, by analyzing the comectness of the algos
rithm. :

Theorem 7.18 Suppose that there exists a path fom every nt
“node n, and that all cycles have nonnegative length. Then, the
correcting algorithm eventually términates with the label Pi of
node equal to the shortest path length p}. e

Proof. Consider a shortest path i;,s,...,4 = n from some node i; to )z
By the definition of the algorithm, we have p, = 0 =p%, at all times. A{
the first iteration of the algorithm, we have § = {n}, the predecessors of #§
are examned, and we set p;,_, = c;,_,n, which is equal to p;,_,- {This .
because the last arc of a shortest path is itself a shortest path )
Corsider now an intermediate node i in the path, and suppose tha i
the final label p;, is equal to p} . Since p,, was initislly infinite, its lab of
has changed at least once. The last time that p;, was changed, and was s
to p} , ncde i entered the set S. When at some later iteration, iy exi
S, pi,_, was set to min{p;,_,,¢;, s, +p} }. This is less than or equal]
t0 ¢y i+ 7, = P, _,- On the other hand, p;, , is the length of somej
walk, and can be no smaller than p; . We have therefore completed an)
inductive proof that p;, = p;, for all k.

The practical efficiency of label correcting methods is highly depen-
dent on the rule used to select a node from the list 5. It is interesting tof
note that for certain rules, including some that have been very successful
in practice, the worst-case complexity is exponential in n. The reader is]
referred to the literature for a more detailed discussion. |

Dijkstra’s algorithm

Dijkstra’s algorithm is an alternative to the Bellman-Ford algorithm and §
label correcting msthods. We will see shortly that Dijkstra’s algorithm is}
more effident, but can only be applied if all arc lengrhs are nonnegative, §
which will be assumed throughout this section. The key idea in Dijkstra’s]
algorithm s to identify the nodes in the order of the corresponding shortest
path lengths, starting with a node for which the shertest path length is§
smallest. [n order to simplify the presentation, we assume that ¢ij is defined §
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for every pair (i,7) of distinct nodes (with ¢ # n), but may be equal to
infinity for some pairs.

Our first step is to show that a node £ with a smallest shortest path
length is easy to find. Nonnegativity of the arc lengths is crucial here.

— .
Theorem 7. 19 Suppose that ¢;; > 0 for all i, 7. Let i ;é n- be such

that

= minh
Cén t;énc“‘

- Then, p; = Cen and p; S pi for allk # n.

Proof. Any path to node n has a last arc (¢, n) whose length c;,, is at least
¢m. Thus, g5 > egp for all k¥ £ n. For node £, we also have Pp < cpp. We
conclude that p} = ¢y < pf for all k #n.

Suppose that £ and p} have been determined as in Theorem 7.19, and
comsider an arbitrary node i. One of the options available at that node
is to traverse the arc (4,£) and visit node £. Once at node ¢, we should
traverse arc (f,n), because this is a shortest path from £ to n. Thus, once
an arc (i,f) is traversed, the ‘raversal of arc (£,n) can be assumed to be
automatic. We can therefore replace the two arcs (i, £) and (£,n) by a single
arc (i,n)" of length c;s + ¢4n; once we do that for every i # £, n, node ¢ can
be taken out of the picture. Note that a node i may now have two direct
arcs to node n, the original arc (i, n} as well as the new artificial arc (4,n)".
Naturally, any shortest path would only use the least expensive of the two.
We therefore remove (i, n)" and replace ¢;,, by

min{cin, Ci + Con }.

We are left with a new shortest path problem with one node less. We
apply the same process to the new shortest pata problem. Fach iteration
evaluates the shortest path lergth for one more node and, therefore, after
1 — 1 iterations, the algorithm terminates.

The resulting algorithm s summarized next.

Dijkstra’s algorithm
1. Find a node £ # n such that ¢z, < ¢ for all g # . Set p} = cop.
2. For every node i # £, n, set
Cin i min{cm,ct-e + em}

3. Remove node ¢ from the graph and app]y the same steps to the
new graph.
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Figure T.34: (a) A graph with arc lengths. The arcs that are
1ot shown have infinite length. (b) The graph cbtained after one
‘teration of Dijkstra’s algorithm.

Example 7,12 We apply Dijkstra’s algorithm to graph shown in Figure 7.34(3),;,
with node n = 4 being the destination node. We have ¢ = 3 and p} = 1.
The folowing arc lengths are modified: 14 = min{co 94 1} = 10 and ¢z =
min{7,3 + 1} = 7. We now eliminate node 3 and obsain the graph shown in
Figure 7.34(b). We obtain £ = 2 and p5 = 7. The arc length cis is modified '
by ¢14 = min{16,2 + 7} = 9. Node 2 is eliminated. Since node 1 is the only
nonterminal node left, pi is equal to the current value of ci14, which is 9. '

We now estimate the computational complesity of the Dijkstra al- §
gorithm. A typical iteration starts by comparing the coefficients ¢;, and §
this takes O(n) time. Having determined ¢, we need to update ¢;;, for each |
node i. We conclude that there are only O(n) arithmetic operations per |
iteraticn. The overall complexity is O(n?), which is one order of magnitude |
better than the Beliman-Ford algorithm. For a dense graph with Q(n?) |
arcs, aiy shortest path algorithm needs 2(n?) arihmetic operations be- |
cause, in general, every arc has to be examined at least once. Thus, for !
dense graphs, Dijkstra’s algorithm is the best possible. ‘

For sparse graphs, that is, when m is muca smaller than n, the
computational complexity of Dijkstra’s algorithm can be brought down i
to O{mlogn). Doing so requires keeping the coefficients e, in a suitable j
data structure that allows us to obtain the smallest such coefficient with }
minimsl work.

Reduction to the case of nonnegative arc lengths and |
the all-pairs problem

Suppose that some of the arc lengths are negative, but that all cycles have
nonnegative length. Let p! be the shortest path length from node ¢ to node
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n. From Bellman's equation, we have
pi < ci; + i, (7.21)

for all arcs (4,7). Let us now construct a new shortest path problem in
which the arc lengths c;; are replaced by new arc lengths €;;, defined by
Cij = Ciy + P —Bi-

Using Eq. (7.21), we have §; > 0 for all (i,j) € A. Under the new arc
lengths, the length of any path ¢;,...,%, from some node 4; to some other
node i, is given by

t—1 t—1 t—1
- _ o * kN ok x E o
C17f7+1 - (cl-ri-,+1 +pi,r+1 p‘i.,) - pit pll + Cl‘r’?‘fl'
=1 T=1 T=1

[n particular, for any given pair of nodes, a shortest path under the new
arc lengths is a shortest path under the old arc lengths, and conversely.
Since the new arc lengths are nonnegative, we are in a position to apply
Dijkstra’s algorithm.

If we are only interested in a single destination, the transformation
that we have just described is of no particular use. On the other hand, if
we are interested in the all-pairs problem, w2 can solve a single all-to-one
problem, using the Bellman-Ford algorithm, transform the arc lengths, and
finally solve n — 1 additional all-to-one problems (ore problem for every
possible destination) using Dijkstra’s algorithm. The overall complexity
is O(n*) + (n — 1) - O(n?) = O(n®). This is much better than applying
the Bellman-Ford algorithm n times, which would require Q(n*) time. For
sparse graphs, the running time can be brought down to G(nmlogn) by
using an efficient implementation of Dijkstra’s algorithm. An alternative
O(n?) algorithm for the all-pairs problem is developed in Exercise 7.38.

7.10 The minimum spanning tree problem

We are given a connected tndirected graph G = (N, £}, with n nodes. For
each edge e € £, we are alsc given a cost coefficient c.. {Recall that an edge
in an undirected graph is an unordered pair e = {¢, 7] of distinct nodes in
N A minimum spanning tree (MST) is defined as a spanning tree such
that the sum of the costs of its edges is as small as possible.

The minimum spanning tree problem arises naturally in many ap-
plications. For example, if edges correspond to communication links, a
spanning tree is a set of links that allows every node to communicate (pos-
sibly, indirectly) to every other node. Then, a minimum spanning tree
is a communication network that provides this type of connectivity, and
whose cost is the smallest possible. The minimum spanning tree problem
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also arises as a subproblem of more complex, seemingly unrelated, pro
lems. An example will be seen in Section 11.5, where it forms a basis for]
heuristic for the traveling salesman problem. ‘

Even though the MST problem is not a network flow problem, 9
include it in this ckapter, because of its graph-theoretic structure. We w
see that it can be solved by means of a simple greedy slgorithm. A gree
algorithm is one consisting of a sequence of choices that appear to be bd
in the short run. For certain problems, like the MST, short run opting
decisions turn out to be optimal in the long run as well. The algoritl
that we describe builds an MST by progressively adding edges to a currg
tree. At any stage, we have a tree and we add a least :xpensive edge th
connects & node in the tree with a node outside the tree.

Greedy algorithm for the minimum spanning tree proﬁ{
1. The input to the algorithm is a connected undirected graph

(N,£) and a coefficient c, for each edge e € £. The algorit
* i8 initialized with a tree (N}, &) that has a siagle node

edges (& is empty}

{ag}egsuchthatzéNkandjéNk Choosea.nedge
{z J} of. th»s type whose cost is smallest. Let B

MHZ =N U{s}

5;;.,.1 = & U{e’}

Since at each stage we connect a node in the current tree with a nod
outside the tree, no cycles are ever formed, and we always have a tred
The set A, has n elements and, therefore, (N, £,) is a spanning tree. ¥
remains to show that it is a minimum spanning tree. This is accomplished
by showing a somewhat stronger property. i

Theorem 7.20 For k = 1,...,n, the .E_ree (Ni, &) is part of so
MBST. That is, there exists an MST (N, £L) such thet & C &.

Proof. The proof uses induction on k. The result is trivially true foR
k =1, because the empty set £ is a subset of the edge set of any spanning
tree.

Suppose now that k& < n, and that £ is a subset of some MST £
[We are slightly abusing terminology by referring to £y instead of (N, £){
as a spanning tree.] Let e* = {i, 7} be the edge added to £; that is, i € M},
J & N, and Epyy = E U {e*}. Tf e* € &, then &1 is also a subset of
&, and the induction hypothesis is verified for k + 1, with £, = &/
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Suppose now that e* ¢ £.. Then, e*, together with Ek, forms a unique
cycle [Theorem 7. 1(d)). This cycle must contain a second edge (call it €)
with one endpoint in Ni and another outside Nj; see Figure 7.35. Since

Figure 7.35: The thicker edges correspond to a tree (N, &4)
involving 4 nodes. This is assumed to be part of an MST £,
which consists of all edges shown, with the excepticn of e*. If the
algorithm selects e”, its cost can be no greater than the cost of g,
and £4U {e*} is part of an alternative MST, in which 2 is replaced
by e”.

the algorithm selected e¢* rather than e to be added to &, we must have
Cer < cz. Let us now take the MST &y, delete edge €, and replace it by
e*. We obtain a new spanning tree, call it €41, and the cost change is
¢es — ¢z < 0. By the optimality of £k, we must have ¢.» = ¢, and both
spanning trees are optimal. We now note that £, is a subset of the MST
€111, and the induction is complete. O

Having proved the correciness of the algorithm, we now discuss its
computational complexity. We nave n — 1 iterations. At each iteration, we
need to examine each edge to see whether it is eligible for becoming part of
the tree, and we then need to find the least expensive one, which can all be
done in time O(n?). Thus, the overall complexity is O(n*). With a more
clever implementation, it can be brought down to O(n?); see Exercise 7.39.

7.11 Summary

Tn this chapter, we provided an overview of a broad range of topics related
to network flow problems, and we have covered most of the major available
methodologies.

Network flow problems are special cases of linear programming prob-
lems, and can be solved by applying general purpose methods, suitably
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tuned to exploit the network structure. For example, the primal or ;_,"
dual smplex method can be used. As we have pdinted out, the underly-§
ing network structure allows for simple and efficient rules for updating the
basic variables and the reduced costs. In addition, when the problem datg]
are integer, integer arithmetic can also be employed.
An important property of network flow problms that we discovered
in the course of our development, relates to integrality of basic solutions
Assuming that problem data are integer, we have shown that basic solug
tions to the primal and the dual have integer coordinates. The key reasoy]
behind this property is that the determinant of any basis matrix B has
unit magnitude. Unfortunately, there are only precious few classes of lineas
programming problems that have such remarkable properties.
Besides fine tuning the simplex method, we also developed some algo !
rithms that are specially tailored to network flow problems. These includeg
the negative cost cyele algorithm of Section 7.4 and the dual ascent meth4
ods of Section 7.7. These two methods are dual to each other in many
ways that can be made mathematically precise, bu; which are beyond ow
scope. Nevertheless, it is important to point out a common feature. In both
methods, a direction of improvement is identified by examining only a finite]
number of possible directions, which are independeat of the numerics} val4
ues of the input data. (In the negative cost cycle algorithm, the directiong]
considered correspond to simple circulations. In dual ascent methods, they
directions considered correspond to subsets of the set of nodes.) 3
Both the negative cost cycle algorithm and the dual ascent meshod
can be described at a high level of generaliry, while leaving a lot of freedom;
on how to choose a cycle or a dual ascent direction. By making some’
more specific choices, the worst-case number of iterations can be reduced. J
Furthermore, the search for a direction of cost improvement, carried out in §
the course of each iteration, usually has a lot of room for increased efficiency. §
(An example of this is our development of the primal-dual method, where :
the search for an ascent direction is implemented by means of an auxiliary ;
maximum flow problem and the labeling algorithm.! Such refinements lead }
to improved worst-case complexity bounds. It should be kept in mind, §
however, that worst-case complexity bounds may not accurately reflect the 3
performance of an algorithm in practice. _
The network flow problem contains some impcrtant special cases that’
can be solved by suitable special purpose algorithms. We saw the Ford-
Fulkerson algorithm for the maximum flow problem, the auction algorithm
for the assignment problem, and a number of (somewhat ad hoc) methods
for the shortest path problem. Auction algorithms can also be developed
for the general network flow problem, but this is s direction that we did 1
not pursue. '
The minimum spanning tree problem is somewhat disjoint from the 1
rest of the chapter. It was included because of its importance, and also i
becauss it shares an underlying graph-theoretic structure. :
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7.12 Exercises

Exercise 7.1 (The caterer problem) A catering company must provide to a
client 7 tablecloths on each of N consecutive days. The catering company can buy
pew tablecloths at a price of 7 dollars each, or launder the used ones. Laundering
can be done at a fast service facility that makes the tablecloths unavailable for
the next » days and costs f dollars per tablecloth, or at a slower facility that
makes tablecloths unavailable for the next m days (with m > n) at a cost of g
dollars per tableclosh (g < f). The caterer’s problem is to decide how to meet
the client’s demand at minimim cost, starting with no tablecloths and under the
assumption that any leftover tablecloths have nc value.

(a) Show that the problem can be formulated as a network flow problem. Hint:
Use a node carresponding to clean tablecloths and a node corresponding to
dirty tablecloths for each day; more nodes may also be needed.

(b) Show explicitly the form of the network if N =5, n=1m =3.

Exercise 7.2 Consider a wood produet company that owns M forest units and
wants to find an optimal cutiing schedule over & period of K years. Forest unit
i is predicted to have a;; tons of wood available for harvesting during peried j.
The company wants to meet a demand of d; tons during year j. However, due to
capacity limitations, it can cnly harvest up to u; tons during that year. Weod
harvested in past years can >e stored and used to meet demand in subsequent
years, but there is a cost of ¢; for storing one ton of wood between year j — 1
and j. We also assume that wood that is available but not harvested during a
year remains available for harvesting in later years. Formulate the problem of
determining a minimum cost harvesting schedule that meets the demand as a
network flow problem.

Exercise 7.3 (The tournament problem) Each of n teams plays against
every other team a total of k games. Assume that every game ends in a win or a
loss {no draws) and let z; be ;he number of wins of team i. Let X be the set of all
possible autcome vectors (@1.. .., %, ). Given an arbitrary vector (&1,...,%x), we
would like to determine whether it belongs to X, that is, whether it is a possible
tournament outcome vector. Provide a network low formulation of this problem.

Exercise 7.4 (Piecewise linear convex costs)

{a) Consider the capacitated network flow problem except that the cost at each
arc is a piecewise linear convex function of the flow on that arc. Show that
the problem can be recuced to one with linear costs, but in which we allow
multiple arcs with the same start node and end node.

{b) Show that a capacitated problem in which we have multiple arcs with the
same start node and end node can be reduced to a problem without any

such multiple arcs.

Exercise 7.5 (Equivalence of uncapacitated network flow and trans-
portation problems) Corsider an uncapacitated network flow problem and
assume that c;; > 0 for all arcs. Let $+ and S- be the sets of source and sink
nodes, respectively. Let d;; de the length of a shortest directed path from node
i€ 5, to node j € S_. We construct a transportation problem with the same
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source and sink nodes, and the same values for the supplies and the demands; :’j
For every source ncde ¢ and every sink node j, we introduce a direct link with]
cost di;. thow that the two problems have the same optimal cost.

Exercise 7.6 (Equivalence of capacitated network flow and transports
tion problems) Censider a capacitated network Aow problem defined by a grapl
G = (N, A) and the data u;;, cij, b:. Assume that the capacity wi; of every anl§
is finite. We construct a related transportation problem as follows. For every ar§
(i,J) € A, we form a source node in the transportation prcblem with supply uyl
For every node i € N, we construct a sink node with demand > {kl(ikycAy Wik —D :'
At every sipply node (4, §) there are two outgoing infinite capacity arcs: one goe
to demand node ¢, end its cost coefficient is 0; the other goes to demand node §
and its cost coefficient is ¢;;. See Figure 7.36 for an illustration.

Figure 7.36: The transportation problem in Exercise 7.6.

Show that that there is a one-to-one correspondence between feasible flo ;
in the two problems and that the cost of the two corresponding flows is the s

Exercise 7.7 (Lower bounds on arc flows) Consider a network flow pro¥§
lem in which we impose an additional constraint Jfis = dy for every arc (i,

Construct an equivalent network flow problem in which there are no no
lower bounds on the arc costs. Hini: Let f,-j = fi; — di; and construct a nel
network for the arc flows ?ij. How should b; be changed?

Exercise 7.8 Consider a transportation problem in which all cost coefficien|
¢ij are positive. Suppose that we increase the supply at some source nodes
the demand at some sink nodes. (In order to maintain frasibility, we assung
that the increases are such that total demand is equal to total supply.) Is)
true that the value of the optimal cost will also increase? Prove or providej
counterexample. 1

Exercise 7.9 Consider the uncapacitated network flow problem shown in F
ure 7.37. The label next to each arc is its cost. 3

{a) Whai is the matrix A corresponding to this problem?

(b) Solve the problem using the network simpex algorithm. Start with *.
tree indicated by the dashed arcs in the figure. 3

Sec. 7.12  Exercises 349

Figure 7.37: The retwork fow problem in Exercise 7.9.

Exercise 7.10 Consider the uncapacitated network flow problem shown in Fig-
ure 7.38. The label next to each arc is its cost, Consider the spanning tree
indicated by the dashed arcs in the figure and the associated basic solution.

(a) What are the values of the arc flows corresponding to this basic solution?
Is this a basic feasible solution?

(b) For this basic solution, find the reduced cost of each arc in the network.
(¢) Is this basic solution optimal?

(d) Does there exist & nondegenerate basic feasible solution?

(e) Find an optimal dual solution.

(f) By how much can we increase cs [the cost of arc (5,6)] and still have the
same optimal basic feasible solution?

(g) If we increase the supply at node 1 and the demand at node 9 by a small
positive amount 6, what is the change in the value of the optimal cost?

(h) Does this problem have a special structure that makes it simpler than the
general uncapacitated network flow problem?

Exercise 7.11 {Degeneracy in a transportation problem) Consider a
transportation problem with two source nodes s, , 82, ard n demand nodes 1, ..., n.
Al arcs (8:,4) are assumed to be present and to Lave infinite capacity. Let

;:D E/E?:] d; be the total demand. Let the supply at each source node he equal
o D/2.

(a) How many basic variables are there in a basic feasible solution?

(b) Show that there exists a degenerate basic feasible solution if and only if
there exists some set $ C {1,...,n} such that Yiesdi=D/2.
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Figure 7.38: The network flow problem in Exercise 7.10.

Exercise 7.12* (Degeneracy in the assignment problem) Consider the

polyhedron P C R defined by the constraints

k
ot =1, J=1...,k
=1
k
Zﬁj =1, i=1,... .k
=1

fo 20, Bhi=1,...k

(a) Shew that P has k! basic feasible solutions and that if k > L, every basic |

feasible solution is degenerate.

(b) Shoew that there are 2°7'k*~2 different bases that lead to any given basic
feasible solution.

Exercise 7.13 Suppose that we are given a noninteger optimal solution to an |

uncapacitated network flow problem with integer data.

(a} Shew that there exists a cycle with every a-c on the cycle carrying a positive
flow. What can you say about the cost of such a cycle?

(b) Suggest a method for constructing an irteger optimal solution, without
solving the problem from scratch. Hint: Remove cycles.

Exercise 7.14 (Decomposition of circulations) Let A be the node-arc in-
cidence matrix associated with a directed graph with m arcs. Suppose thet a
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vector f satisfies AFf = 0. Show that there exists a nonnegative integer k& (with
k <m), cycles C1,..., Ck, and nonnegative scalars ay, . .. , @, such that:

. vk o
@ f= E,‘:l a:h™,
(ti) for every arc (k, £) on a cycle C, hfe' and fi; have the same sign.
Furthermore, show that if f is an integer vector, then the coeflicients ay, ..., ax

can be chosen to be integer. Hizf: Reverse the arcs that carry negative flow and
apply Lemma 7.1.

Exercise 7.15 (Flow decomposition theorem) State and prove a result
analogous to the flow decomposition theorem in Exercise 7.14, for the case of a
flow vector f that satisfies Af = b. Hint: Besides cycles, use paths as well.

Exercise 7.16 * (Negative tost cycle algorithm under the largest im-
provement rule) Consider the variant of the negative cost cycle algorithm in
which we always choose a cycle C' with the largest value of 8(C}Hc'h”|. Let £ be
the current flow and let f* be a1 optimal flow.

(a) Show that f* —F is equal to a nonnegative linear combination of at most
m simple circulations, whare m is the number of arcs. Furthermore, each
such simple circulation is associated with an unsaturatsd cycle. Hint: Use
the result in Exercise 7.14.

(b) Show that unde: the largst improvement rule, the cost improvement at
each iteration is at least {¢'f — ¢'f*}/m.
{c) Assuming that all problem data, are integer, show that the algorithm termi-

nates after O(mlog(mCU)) iterations, where C' and U are upper bounds
for [cy;| and wus;, respectively.

Exercise 7.17 Consider a network fow problem and assume that there exists
at least one feasible salution. We wish to show that the optimal cost is —oo if
and only if there exists a negative cost directed cycle such that every arc on the
cycle has infinite capacity.

(a) Provide a proof based on the flow decomposition theorem.

(b} For uncapacitated problems, provide a proof based on the network simplex
method.

Exercise 7.18 Show that there is a one-to-one correspondence between aug-
menting paths in the maximum flow algorithm and negative cost unsaturated
cycles in the network flow formulation of the maximum flow problem.

Exercise 7.19 Consider the maximum fow problem. Describe an algorithm
with O(|A|) running time that determines whether the value of the maximum
flow is infinite.

Exercise 7.20 (Duality and the max-flow min-cut theorem} Consider
the maximum flow problem.

{a) Let p; be a price variable sssociated with the flow conservation constraint
at noded. Let ¢;; be a pricevariable associated with the capacity constraint
at arc (4, 7). Write down a minimization problem, with variables p; and ¢,
whose dual is the maximum flow problem.
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(b) Show that the optimal value in the minimization problem is equal to the
milimum cut capacity, and prove the max-flow min-cut thecrem. ]

Exercise 7.21 (Finding a feasible solution) Show that a feasible solution of
a capacitated network problem (if one exists) can be found by solving a maxim
fow protlem.

Exercise 7.22 (Connectivity and vulnerability) Ceusider a directed graph]
and let vs fix an origin node s and a destination node t. We define the connec-:
tivity of the graph as the maximum number of directed paths from s to £ that do
not share any nodes. We define the sulnerability of the graph as the minimum§
number of nodes (desides s and t) that need to be removed so that there exista
no directzd path from s to t. Prove that connectivity is equal to vulnerability. ]
Hint: Convert the connectivity problem to a maximum fow problem. ]

Exercise 7.23 (The marriage problem) A small vilage has n unmarried §
men, n uamarried women, and m marriage brokers. Each broker knows a subset §
of the men and women and can arrange up to b marriages between any pair of ;
men and women that she knows. Assuming that marriages are heterosexual and :'
that each person can get married at most once, we are imerested in determining §
the maximum number of marriages that are possible. Show that the answer can]
be found by solving a maximum flow problem.

Exercise 7.24 * (Kénig-Egervary theorem) Consider an m x n matrix}
whose entries are zero or one. We refer to a row or a column as a line. We§
say that a set of lines is a cover if every unit entry lies or one of the lines in the
set. A sel of unit entries are called independent if no two of them lie on the same
line. Prove that the maximum cardinality of an independent set is equal to the |
smallest cardinality of a cover. Hint: Formulate an appropriate maximum flow
problem. ]

Exercise 7.25 (The scaling method for the maximum flow problem) 1§
This exercise illustrates the scaling method, a common tecinique for reducing the }
complexity of network flow algorithms.

Consider 2 maximum flow problem II. Let n be the rumber of nodes, let u;;
be the capacity of arc (%, ), assumed integer, and let » be the value of a maximum _
flow. We construct a scaled problem I, in which the capacity of each arc (,7) 1
is |u:;/2), and we let v, be the corresponding optimal value. (The notation |a] |
stands for the largest integer & that satisfies k < a.)

(a) Cousider an optimal flow for the problem IT,, and multiply it by 2. Show :
that the result is a feasible flow for the original proslem II.

(b) Show that 2v, < v < 20, +n

{c) Consider running the Ford-Fulkerson algorithm on problem II, starting with
the feasible flow described in (a). How many flow augmentations will be §
needed, and what is the total computational effort? ‘

{d) Shew how to solve the maximum flow problem witk a total of O(n*logU)
arithmetic operations, where U is an upper bound on the capacities ;.
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Exercise 7.26 * (Birkhofl-von Neumann theorem) A square matrix A is

called doubly stochastic if 3.  ai; = 1 for all j, Z" L @i; = 1 for all 4, and all
entries are nonnegative. A matrix P is called a permutatwn matriz if each row
and each column has exactly one nonzero entry, which is equal to 1.

(a) Let P1,...,P: be perrtation matrices, and let Ay, .., Ax be nonnegative
scalars that sum to 1. Show that ZLI A;P; is doubly stochastic.
(b) Let A be a doubly stochastic matrix. Show that there exist permutation

matrices Py, ..., Pk, and nonnegative scalars A1, ..., Ax that sum to 1, such
that A = Zle A:P;. Hint: Consider the assignment problem.

Exercise 7.27 Consider the transportation preblem shown in Figure 7.39, and
solve it using the prmal-dual method. Use p = (1,1,0,0) to start the algorithm.

Figure 7.33: The transportation problem in Exercise 7.27. Arc
costs are shown next to each are.

Exercise 7.28 Ttis exercise develops a more efficient method for computing ¢*
in the primal-dual method. Let § be the set of nodes whose prices are to increase,
a3 in the description of the general dual ascent algorithm. For every j € S, let

97 = min Cij +p; —pi).
{Z_ESNMKM( i + pi — i)

(a) Show that 6" = min;gq#;.

(b) Suppose that some nodz k ¢ S satisfies §; = 8, so that node k enters the
set § subsequent to the price increase. Let

f; = min (cis +p5 —Pi)s

g SU{k}.
{iesu{k]|(é.5)eA} i¢ k)

Show that 8; = min{0 cxj +p; — p}-
(¢} Explain how to carry out each dual update in time proportional to n times
the number of previously unlabeled nodes that become labeled.

(d} Show that the primal-dual method can be implemented so that it runs in
time O(n®B), where B = max; |b].

Exercise 7.29 Cuonsider a tipartite matching problem and suppose that every
node has the same degree d. Show that there exists a pe-fect matching. Hint:
Convert to a maximum flow problem and use the max-flow min-cut theorem.
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Exercise 7.30* (The primal-dual method zs steepest dual ascent) Cone]
sider the daal ascent algorithm. Show that the choice of the set S in the primal-]
dual methed maximizes (d¥}'b over all sets S for which d° is a feasible direction.]

Exercise 7.31 (Dual simplex method for network fiow problems) Cono
sider the uncapacitared network flow problem.

(a) Show that every spanning tree determines a basic solution to the duad
problem.

(b} Given a basic fzasible solution to the dual problem, associated with a cert
tree, show that it is optimal if and only if the correspanding tree soluti
to the primal is feasible.

(c) If the tree solution in part (b) is infeasible, remove an arc that ca;
negative flow. Given that we wish to maintain dual fasibility, how sho
an arc be chosen to enter the tree?

(d) Notethat the entering arc divides the tree into two parts. Consider the dual
variables following a dual simplex update. Show that the dual variables ing
one part of the tree remain unchanged and in the ather part of the treeg
they are all changed by the same amount. ]

Exercise 7.32 {Termination of the auction algorithm) Consider a varif
ation of th2 assignment problem in which we are given a subset .4 of the set -;‘_
person-project pairs, and we allow fi; to be nonzero only if {7, ) € A. We mods
ify the bidding phase of the auction algorithm as follows. A person i takes intd
consideration only the profits p. — c;x of those projects k for which (4, k) € 44
Suppose that this form of the auction algorithm fails to terminate. Let I be thé
set of persons that bid an infinite number of times. Let J be the set of project$
that receive an infinite number of bids.

(a) Show thatifie I and {(i,j) € A, then 5 € J. E
{b) Show that the cardinality of I is strictly larger than the cardinality of J. ?_
(c) Show the problem must be infeasible. '

Exercise 7.33 (Shortest path lengths and Bellman's equation) Consid
the all-to-cne shortest path problem, and let p* be the vector of shortest paih
lengths.
(a) Show that if every (directed) cycle has positive length, then Bellman's
equasion has a unique solution, equal to the shortest path lengths.

(b) Show that if every (directed) cycle has nonnegative length, and if p is a
solution to Bellman’s equation, then p < p*. Hiné: Consider max{p;, p;}4

Exercise 7.34 (From shortest path lengths to shoriest paths} Suppose]
that all dirscted cycles in a directed graph have nonnegative costs. Furthermore,
suppose that the shortest path length p] from any node to node n is known.!
Provide an algorithm that uses this information to determine a shortest path
from node 1 to node n.

Exercise 7.35 (Convergence of the Bellman-Ford algorithm) This ex-|
ercise develops an alternative proof of the convergence of the Bellman-Ford algo-;
rithm. Assime that the length of every cycle is nonnegative. :
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(a) Prove that p(t+ 1) < p{i} for all ¢,
(b) Prove that p(t) > p* for all ¢, and conclude that p(¢) has a limit,

(c) Prove that p(t) can take only a finite number of values and therefore con-
verges.

(d) Prove that the limit satisies Bellman’s equation.

(e) Prove that the algorithm converges to p*.

Exercise 7.36 (Minimization of the mean cost of a cycle using linear
programming) Consider a dirscted graph in which each arc is associated with
a cost ¢;;. For any directed cycl:, we define its mean cost as she sum of the costs
of its arcs, divided by the number of arcs. We are interested in a directed cycle
whose mean cost is minimal. We assume that there exists at least one directed
cycle.

Consider the linear programming problem

maximize A

subject to  pi +A < p; + ¢y, for all arcs /4, 5).

(a) Show that this maximization problem is feasible.

(b) Show that if (A, p} is a fessible solution to the maximization problem, then
the mean cost o every ditected cycle is at least A.

(¢} Show that the maximization problem has an optimal solution.

(d} Show how an optimal solition to the maximrization problem can be used
to construct a directed cy:le with minimal mean cost.

Exercise 7.37 (Minimizaticn of the mean cost of a cycle using the
Bellman-Ford algorithm) Censider a directed graph in which each arc is as-
sociated with a cost ¢;;. For any directed cycle, we define its mean cost as the
sum of the costs of its arcs, divided by the number of arcs. We are interested in a
directed cycle whose mean cost 's minimal, We assume that there exists at least
one directed cycle.

(a) Consider the algorithm

i(t+1) = mi i (i for all ¢
P(t+1) = min ey +p,0)},  foralls,

initialized with £:(0) = 0 for all . Show that p;(f) is equal to the length of
a shortest walk that starts at ¢ and and traverses ¢ arcs.

(b) Prove that the optimal mean cycle cost A satisfies

A= mi1  1ax (p_%_i(n)—p,(k))j

i=1,..,n 0<k<n-1 n—k
where n is the number of nodes.

Exercise 7.38 (Floyd-Warstall all-pairs shortest path algorithm) Con-

sider the all-pairs shortest path sroblem and assume that there are no negative
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In discrete optimization problems, we seek to find a sohution x* in a discre :
set F that optimizes (minimizes or maximizes) an objsctive function of
defined for all x € F. Discrete optimization problems arise in a grey
variety of contexts in science and engineering. A natural and systemati
way to study a broad class of discrete optimization problems is to expres
them as irteger programming problems. j
The (linear} integer programming problem is the same as the line
programming problem except that some of the variabes are restricted #
take integer values. In general, given matrices A, B, end vectors b, ¢, :
the problem
minimize ¢x+d'y
subject to Ax+By=Dhb
xy=>0
X integer,

is the mized integer programming problem. Notice that even if there ang
inequality constraints, we can still write the problem in the above forng
by adding slack or surplus variables. If there are no continuous va.ria.bl'
¥, the prodlem is called the integer programming problem. If furthermors;
there are no continuous variables and the components of the vector x ard
restricted to be either 0 or 1, the problem is called the zero-one (or binas
integer programming problem (ZOIP). Finally, it is customary to assurmd
that the entries of A; B, b, c, d are integers.

Integer programming is a rather powerful modeling framework tha
provides great flexibility for expressing discrete optimization problems. On
the other hand, the price for this flexibility is that irteger programming
seems to be a much more difficuit problem than linear programming. Inj
this chapter, we introduce general gnidelines for obtainng “strong” integes§
programming formnulations for discrete optimization problems. We intro+
duce modeling techniques, discuss what constitutes a strong formulation,
and compare alternative formulations of the same problem. ;

10.1 Modeling techniques

In this sec:ion, we outline same modeling techniques that facilitate the for- §
mulation of discrete optimization problems as integer programming prob-
lems. In comparison to linear programming, integer programming is signifi-
cantly richer in modeling power. Unfortunately, there is no systematic way }
to formulate discrete optimization problems, end devisng a good model is {
often an a-t, which we plan to explore through examplzs.

Binary choice

An important use of a binary variable z is to encod: a choice between }
two alternatives: we may set x to zero or ore, depending on the chosen }
alternative. ‘
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Example 10.1 (The zero-one knapsack problem) The knapsack problem
was introduced in Chapter 6. We discuss here another variant of the problem, in
which the decision variables are constrained to be binary. We are given n items.
The jth item has weight w; and its value is ¢;. Given a bound K on the weight
that can be carried in a knapsack, we would like to select items to maximize the
total value. In order to model this problem, we defiae a binary variable z; which
is 1 if item j is chosen, and 0 otherwise. The problem can then be formulated as
follows: N
maximize ch:cj
i=1

L3
subject to ijmj <K
i=1

;€{0,1}, j=1,..n

Forcing constraints

A very common feature in dicrete optimization problems is that certain
decisions are dependent. In particular, suppose decision A can be made
only if decision B has also been made. In order to model such a situation,
we can introduce binary variables x (respectively, y) equal to 1 if decision
A {respectively, B) is chosen, and 0 otherwise. The dependence of the two
decisions can be modeled using the constraint

x <y,

ie, if y = 0 (decision B is not made), then = 0 (decision A cannot be
made). Next, we present an example where forcing constraints are used.

Example 10.2 (Facility location problems) Suppose we are given n poten-
tial facility locations and a list of m clients who need to be serviced from these
locations. There is a fixed cost ¢; of opening a faciity at location j, while there
is a cost d;; of serving client i from facility 7. The goal is to select a set of facility
locations and assign each client to one facility, whils minimizing the total cost.

In order to model this prcblem, we define a binary decision variable y; for
each location j, which is equal ;o 1 if facility 7 is selected, and 0 otherwise. In
addition, we define a binary variable z;;, which is equal to 1 if client i is served
by facility j, and 0 otherwise. The facility location problem is then formulated
as follows:

L3

minimize Z c;y; + i i di; T

i=1 =1 j=1
subject to Zm—,— =1, Y 4, (10.1)

§=1

Ty < Y v i,4,

Ty, Y5 € {051}1 Vi,]



xeuwuoneziwndo reaul|

456 Chap. 10 Integer programming formulations §

Parition

Figure 10.2: A cover, a partition, and a packing.

k
minimize Z/\,- Fle:)
i=1
k
subject to Z A =1,
i1
Al < Y1,
A S Yo+, 1=2,....k-1,

Ak < -1,
k—1

Eyi = 15
i=1

)\i 2 Da

¥ € {01 1}'
Notice that if y; =1, then A; = 0 for ¢ different than jor j + 1.

The previous collection of examples is by no mears an exhaustive list §
of possible modeling devices. They only serve to illustrate the power of
modeling with binary variables. In order to acquire more confidence, we ]

introduce some more examples.

Example 10.3 (The set covering, set packing, and set partitioning
problems] Let M = {1,...,m} and N = {1,...,n}. Let M\, Ma,..., M, bea ]
given collection of subsets of M. For example, the collection might consist of all }

subsets of size at least k. We are also given a weight ¢; far each set M in the

collection. We say that a subset F' of N is a cover of M if Ujcpr M; = M. We say 1
that F is a packing of M if M; N M, is empty for all j,k € F, j # k. We say that }
F is a partition of M if it is both a cover and a packing of M (see Figure 10.2). }

The weightof a subset F of N is defined as 3, _ . ¢c;.

‘ In the set covering problem we would lif(e to find a cover F of minimum 1
weight, in the set packing problem we would like to find a packing F of mazimum |
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weight, while in the set partitioning problem both minimization and maximiza-
tion versions are possible. In erder to formulate these problems as integer pro-
gramming problems, we introduce the m x n tncdence matriz A of the family
{M; | j € N}, whose entries are given by

1, ifieM;
%3= 1 0, otherwise

We also define a decision variable x;, § = 1,...,n, which is equal to 1 if j € F,
and 0 otherwise. Let x = {x1,...,2n). Then F is a cover, packing, partition if
and only if

Ax > e, Ax <e, Ax =e,

respectively, where e is an m-dimensionsl vector with all components equal to 1.

The previous formulation types encompass a variety of important prob-
lems such as the assignment problem, crew scheduling problems, vehicle routing
problems, etc.

A sequencing problem with setup times

A flexible machine can perform m operations, indexed from 1 to m. Each
operation j requires a unique tool j. The machine can simultanecusly hold
B tools in its tool magazine, where B < m. Loading or unloading tool
j into the machine magazire requires s; units of setup time. Only one
tool at a time can be loadec or unloaded. At the start of the day, n jobs
are waiting to be processed by the machine. Each job ¢ requires multiple
operations. Let J; denote the set of operations required by job ¢, and assume
for simplicity that for all 4, |.;| is no larger than the magazine capacity B of
the machine. Before the machine can start processing job ¢, all the required
tools belonging to the set J; must be setup on the machine. If a tool § € J;,
is already loaded on the macnine, we avoid the setup time for tool j. If tool
j € J; is not already loaded, we must set it up, possibly (if the tool magazine
is currently full) after unloading an existing tool that job ¢ does not require.
Once the tools are setup, all |.J;| operations of job i are processed. Notice
that, because of commonality in tool requirements for different jobs and
the limited magazine capacity, the setup time required prior to each job
is sequence depencent. We want to formulate an integer programming
problem to determine the optimal job sequence that minimizes the total
setup time to complete all the jobs. We assume that at the start of the day,
the tool magazine ‘s completely empty. We define decision variables that
capture the job sequence:

o 1, if job ¢ is the rth job processed,
Tir = 1 0, otherwise.
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time algorithm for the matching problem and showed that the con-
vex hull of the integer feasible solutions to

given by P.mat.:h;ng. For a textbook ex
see Papadimitriou and Steiglitz (1982), and Nemhauser and Wolsey "

(1988). Much more information on the traveli p
elin 1 ‘
can be found in Lawler et al. (1985). § salesman problem }

-he matching problem ig
position of matching algorithms §
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Unlike linear programming problems, integer programming problems are
very difficult to solve. In fact, no efficient general algorithm is known for
their solution. In this chapter, we review algorithms for integer program- 1
ming problems, we develop a duality theory tha: facilitates algorithmie
development, and discuss evidence suggesting that that these problems are

inhereatly hard.
There are three main categories of algorithms:

(a) Exact algorithms that are guaranteed to find an optimal solution,
but may take an exponential number of iterations. They include ]
cutting plane (Section 11.1), branch and bound and branch and cut 1

(Section 11.2), and dynamic programming methods (Section 11.3).

(b) Approximation algorithms that provide in polynomial time a sub- {
cptimal solution together with a bound on the degree of suboptimality

(Section 11.5).

(c) Heuristic algorithms thas provide a suboptimal solution, but with- #
cat a guerantee on its quality. Although the running time is not 4§
guaranteed to be polynomial, empirical evidence suggests that some
cf these algorithms find a good solution fast. As examples we intro- 1
duce loca. search methods (Section 11.6), ard simulated annealing 4

(Section 11.7).

Duality theory is central to linear programming. Integer program- i
ming also has a duality theory, presented in Secticn 11.4, which provides _'
bounds on the optimal cost. These bounds are very useful in exact al- §
gorithns, as they can be used to avoid enumerating too many feasible §
solutions, and in approximation algorithms, as they provide performance }

guarantees.

Civen our inability to solve integer programming problems efficiently, {

it is nasural to ask whether such problems are inherently hard. Complexity

theory, reviewed in Section 11.8, offers some insights on this question. It

provides us with a class of problems with the followng property: if a poly-
nomial time algorithm exists for any problem in this class, then all integer
programming problems can be solved by ax efficiens algorithm, but this is
considered unlikely.

11.1 Cutting plane methods
We comsider the integer programming problem

minimize ¢'x

subjectto Ax = b
x>0
X integer,

(11.1)
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and its linear programming relaxation

minimize ¢'x
subject to  Ax
x

b (11.2)
0.

vl

The main idea in cutting plane methods is to solve the integer programming
problem (11.1} by solving a sequence of linear programming problems, as
follows. We first solve the linear programming relsxation (11.2). and find
an optimal solution x*. I x* is integer, then it is an optirpal solu.tlon to the
integer programming problem (11.1). If net, we find an mequa‘.ht.y that .all
integer solutions to (11.1) satisfy, but x* does not. We add thl?, inequality
to the linear programming problem to obtain a tighter relaxation, and we
iterate this step.

A generic cutting plane algorithm . -
1. Solve the linear programming relaxation (11.2}. Let x* be an
optimal solution.
2. If x* is integer slop; x* is an optimal solution to (11.1).

3. If not, add a linear inequality constraint to (11.2) that all integer
solutions to {11.1) satisfy, but x* does not; go to Step 1.

Note that this method is just a variation of the cutting plane algo-
rithm introduced in Seciion 6.3. As in that section, the main idea‘is to
generate a violated constraint, whenever the relaxed problem gives rise to
an infeasible solution. The performance of a cutting plane method depends
critically on the choice of the inequality used to “cut”. x*. We reviev:z next
ways to introduce cuts tkat give rise to particular cutting plane algorithms.

Example 11.1 (An example of a cut) Let x* be an optimal basic feasible
solution to {11.2) with at least one [ractional basic variable. Let N be the set
of indices of the nonbasic variables. Consider any solution to the mFeger pro-
gramming problem such that z; = 0 for all i € N. Then, it is a SOlutl.OIl to .the
linear programming problem as well, and it must be the same as the basic feasible
solution x*. Since x* is not feasible for the integer programming problem, then
all feasible integer solutions satisfy

Z z; =2 1.
JEN

This is the inequality that we add to the relaxation (11.2). Note that all integer
solutions to (111) satisfy it, while the optimal solution x* to the relaxation

violates it.
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The Gomory cutting plane algorithm

'The first finitely terminating algorithm for integer programming was a cut- i
ting plane algorizhm proposed by Gomory in 1958, waich uses some detailed §

informeation from the optimal simplex tableau.

We solve the standard form linear programmiag problem (11.2) with
the simplex method. Let x* be an optimal basic feasible solution and let
B be an associated optimal basis. We partition x into a subvector xg ]
of basic variables and a subvector x of nonbasic variables. Recall from
Chapter 3 that a tableau provides us with the coeflicients of the equation ]
B~'Ax = B7!b. Let N be the set of indices of nonbasic variables. Let }
Ay be the submatrix of A with columns A,, i € N. From the optimal :_

tableau, we obtain the coefficients of the constraints

XB +B_1ANXN =B b,

Let @; = (B™'A;), and @ = (B~ 'b),. We consider one equality from §

3

the optimal tableau, in which @;y is fractional:

xr; + E Eijxj = a;n.
JEN

Since z; > 0 for all j, we have

Ty —+ ZLEUJE}' S i + z Eﬁjl‘j = aio.

JEN jEN

Since x; should be integer, we obtain

2t Y |@yl7; < @)
JEN
This inequality is valid for all integer solutions, but i; is not satisfied by x*.
The reason is that &} = 80, } = 0 for all nonbasic j € N, and {T;p] < @i
(since @y was assumed fractional),

It has been shown that by systematically adding these cuts, and us-
ing the dual simplex method with appropriate anticycling rules, we obtain
a finitely terminating algorithm for solving general integer programming
problems. See Section 5.1 on how to apply the dual simplex method, when
new inequality constraints are added. In practice, however, this me:hod
has not been particularly successful.

Examgple 11.2 (Illustration of the Gomory cutting plane algorithm)
We consider the integer programming problem

minimize 1 — 2z

subject to —4x; + 6x2 < 9
1 + x££ 4
1,T2 Z 0

x1, Tz .nteger.
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2

Figure 11.1: The Gomory cutting plane algorithm for Example
11.2. The shaded region is the feasible set of the linear program-
ming relaxation.

We transform the problem in standard form

minimize T — 213

subject to —4x; + B2 + z3 =9
rn + T + 1 = 4
X1y --3T4 2 0
Z1,...,T4 iNTEgEr.

We solve the linear programming relaxation, and the optimal solution (in terms
of the original variables) is x' = (15/10,25/10). One of the equations in the

optimal tableau is
LI S
T2+ 10°3 105~ 10
We apply the Gomory cutting plane algorithm, and we find the cut

z2 < 2.

We augment the linear pregramming relaxation by adding the constraints zz +
x5 = 2, 5 > 0, and we find that the new opt:mal solution is x% = (3/4,2). One
of the equations m the optimal tableau is

1
1 — Z-TS + 13'55: Z
We add a new Gomory cul

zy — 23+ x5 <0,
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which, in terms of the original variables 1, z3, is

—3z1+ 522 < 7.

We add this constraint, together with the previously adled constraint z3 < 2,
and find that the new optimal solution is x* = (1,2). Since the solution x® ia |

integer, it is an optimal solution to the original problem; see Figure 11.1.

A difficulty with general purpose cutting plane algorithms is that the?
added irequalities cut only a very small piece of the feasible set of the ]
linear programming relaxation. As a result, the prastical performance of §
such algorithms has not been impressive. For this reason, cutting plane
algorithms with deeper cuts have been designed. These cuts utilize the ]
structure of the particular integer programming problem. We illustrate i

such methods with an example.

Example 11.3 (The weighted independent set problem) Given an undi- §
rected greph G = (N, £} and weights w; for each i € NV, the weighted independent
set problem asks for a collection of nodes § of maximum weight, so that no two
nodes in § are adjacent. We let z; = 1 if node ¢ is selecied in the independent i

set, and z; = 0, otherwise. The problem can then be formulated as follows:
maximize Z WhiT;
i=1
subject to  x; +x; < 1, (,,7) €&,
xz; € {0,1}, ieN.

A collection of nodes U such that for any ¢, € U we have (4,5) € &, is :
called a digue. Clearly the following inequality is valid for all feasible solutions !

to the independent set problem:

Zzi <1, for any clique U.
ieU

A set of nodes U = {iy,..., i} is called a cyele if the only edges joiring
nodes in U are {i1,42}, {{2,43},...,{ix,4:1}. For any cycle U of odd cardinality,
there can be no more that (|U| - 1) /2 nodes in an independent set; otherwise,
two of these nodes will be adjacent. Therefore, the inequelity

Zmi < MTMI, for any cycle U such that |U] is odd,

ieU
must hold.

The inequalities we derived above utilize the particular combinatorial struc-
ture of th: maximum independent set problem. If we use these inequalities in the
generic cutting plane method we described, the performaice of the algorithm is
greatly erhanced. However, given an x*, we must search for a violated inequality
of either type, which can be difficult. i
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11.2 Branch and bound

Branch and bound uses a “divide and conquer” approach to explore the
set of feasible integer solutions. However, instead of exploring the entire
feasible set, it uses bounds on the optimal cost to aveid exploring certain
parts of the set of feasible integer solutions.

Let F' be the set of feasible solutions to the problem

minimize ¢'x
subject to x € F.

[For example, F cculd be the set of integer feasible solutions to the problem
(11.1).] We partition the sef F’ into a finite collection of subsets Fy, . .., F,
and solve separately each one of the subproblems

minimize ¢'x
subjectto xeF;, i=1,...,k

We then compare the optimal solutions to the subproblems, and choose
the best one. Each subproblem may be almost as difficult as the original
problem and this suggests trying to solve each subproblem by means of the
same method; that is, by splitting it into further subproblems, etc. This is
the branching part of the method and leads to a tree of subproblems; see
Figure 11,2,

Figure 11.2: A tree of subproblems: the feasible set F is parti-
tioned into Fy and F%; also, F: is partitioned inte F3 and Fi.

We also assume that there is a fairly efficient algorithm, which for
every F; of interest, compnutes a lower bound b(F;) to the optimal cost of
the corresponding subproblem; that is,

) < min ¢'x.
b(F;) < min c

The basic idea is that while the optimal cost in a subproblem may be
difficult to compute exactly, a lower bound might be a lot easier to obtain.
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A popular method to obtain such a bound is to use the optimal cost of the §
linear programming relaxation. 3

In the course of the algorithm, we will also occasionally solve certain
subproblems to optimality, or simply evaluate the cost of certain feasibley
solutiens. This allows us to maintain an upper bound U on the optimall
cost, vhich could be the cost of the best feasible solution encountered thusi
far, :

The essence of the method lies in the following observation, [f the]
lower bound b(F;) corresponding to a particular subproblem satisfies b(F;) >
U, then this subproblem need not be considered further, since the optimal §
soluticn to the subproblem is no better than the best feasible soluticn en-
countered thus far. ‘.

The following is a high-level description of the resulting algorithm. 3
At any point, the algorithm keeps in memory a set of outstanding (active) ‘
subpreblems and the cost I7 of the best feasible solution so far. Initially, U 1
is set either to oo or to the cost of some feasible solution, if one happens to §
be avalable. A typical stage of the algorithm proceeds as follows.

A generic branch and bound algorithm
1. Select an active subproblem F. By
2. If the subproblem is infeasible, delete it; otherwise, compute b(F,

for the corresponding subproblem.
3. If (F;) > U, delete the subprobler. .
4. Ifb(F;} < U, either obtain an optimal soluticn to the subproblem;

or break the corresponding subproblem into ‘urther subproblerns,
which are added to the list of active subproblems. '

There are several “free parameters” in this algorithm. The best §
choices are usually dictated by experience.

(a) There are different ways of choosing an active subproblem. Two ex- §
treme choices are “breadth-first search” and “lepth-first search.”

(b) There may be several ways of obtaining a lower bound b(F;) on the }
optimal cost of a subproblem. One possibility that we have already |
mentioned is to consider the linear programming relaxation. We con-
sider other possibilities in Section 11.4.

{¢) There are usually several ways of breaking a problem into subprob- 3
lemns. ‘

As an illustration, we use as a lower bound ¥ F;) the optimal cost

of the linear programming relaxation whereby the integrality constraints
are ighored. If an integer optimal solution to the 1elaxation is obtained,
then it is automatically an optimal solution to the corresponding integer
programming problem as well, and there is no need for expanding into
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Figure 11.3: Branch and bound in Exemple 11.4.

further subproblems. We only need to update U (if the cost of this optimal
solution is better than the previous value of U), a.nd.we can delete 1_:he
current subproblem. If the optimal solution x* to the linear l?rogr?n.lmmg
relaxation is not integer we choose a component z; for which x} is not
integer and create two sthproblems, by adding either of the constraints

x; < |xy), or x> [x}].

(Note that both constraints are violated by x*. If x* is the ‘unique optlmal
solution to the linear prozramming relaxation, then the optimal cost m.the
relaxation of either of the new subproblems will be strictly largef.) Given
that a subproblem differs from its parent only in the fact thaF a single new
constraint has been added, we can solve the linear programming rela:iatlon
of a subproblem by means of the dual simplex method, st.artmg from x*. We
may then expect than an optimal solution to the new l.mear‘programmmg
problem will be obtained after only a small number of iterations.

Example 11.4 {Illustration of branch and bound-)-We solve the problem
of Example 11.2 by branch and bound; see Figure 11.3. Imtllally,.U =1 oo, We solve
the linear programming relaxation and the optimal solution is x* = (1.5,2.5).
Then, b(F) is the optimal cost of the relaxation, i.e., ¥F) = —3.5. We create
two subproblems, by adding the constraints z3 = 3 (subproblem -Fl), or 2z <2
{subproblem F%), The active list of subproblems is {F1, Fz}. The linear prograin-
ming relaxation of subproblem F is infeasible and, therefore,‘ we can delete t.hlS
subproblem from the activa list. The optimal solution to the linear programming
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relaxatior of subproblem F3 is x* = (3/4, 2), and thus b(F) = —3.25. We further 1
decompose subproblem F3 into two subproblems. since either z; > 1 (subproblem:
F3), or z; < 0 (subproblem Fj). The active list of subprdblems is now {Fs, F4}.]
The optinal solution to the linear programming relaxaticn of Subproblem F;

® = (1,2), which is integer and therefore, U = —3. We delete subproblem Y
from the active list. The optimal solution to the linear programming relaxation §
of subproslem Fj is x* = (0,3/2), and thus b(F) = —3. Since b(Fy) > U, we do
not need to further explore subproblem Fy. Since the active list of subproblems
is empty, we terminate. The optimal integer solution is x* = (1, 2). 1

Example 11.5 (A branch and bound method for the directed traveling §
salesman problem) Given a directed graph G = (N, A) with n nodes, and a§
cost ¢;; for every arc, we want to solve the traveling salesman problem on G using
branch and bound. The objective is to find a tour (a directed cycle that visits all §
nodes) of minimum cost. We let z;; equal to 1, if 4 and j are consecutive nodee ”
in a tour, and 0, otherwise. The optimal cost in the problm

n n
minimize E E CijTij

i=1 j=1

subject to Z.’D;‘j =1, i=1..,n,
ZJJQ‘:I, i=1,...,n,
=1
X35 S {071}:

provides ¢ lower bound on the cost of an optimal tour, because every tour must
satisfy the above constraints. We recognize this as an assignment problem. How- §
ever, not every feasible solution to the assignment problem corresponds to a tour, |
and for this reason the optimal costs for the two problems are not the same. In |
particular, an optimal solution to the assignment problem may correspond to a
collection of “subtours”; see Figure 11.4. ;

Suppose now that we use the assignment problem t< obtain a lower bound 4
on the cost of the traveling salesman problem. If the optimal solution to the |
assignmert problem corresponds to a tour, such a tour is optimal for the traveling ]
salesman problem. If not, we split the problem into subproblems. Each additional -
subproblen involves a single additional constraint of the form z;; = 0. This is
equivalent to prohibiting (i, j) from being consecutive nodes in a tour, and can
be also accomplished by setting ¢;; to a prohibitively high value. Note that
adding such a constraint to the traveling salesman or to the assignment problem,
still leaves us with a traveling salesman or assignment problem, respectively.
Therefore, all subproblems constructed in the course of the branch and bound
algorithm will also correspond to instances of the travelng salesman problem
and lower bounds can be obtained by solving the related assignment problems.
The only remaining issue is how to decide which constraiits z;; = 0 to add. A
natural alternative is to choose one or more subtours and let each subproblem
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Figure 11.4: Consider a dirscted traveling salesman problem
with seven podes. The vector x corresponding to these two sub-
tours is a feasible solution to the assignment problem.

prohibit one of their arcs. For exampile, if the optimal solution to the assignment
problem is as in Figure 11.4, we can create subproblems by adding one of the
constraints £12 = 0, 23 = 0, T34 =0, £41 =0, x56 = 0, Tev = 0, 75 = 0. If the
current assignment problem tas a unique optimal solution, this solution is made
infeasible by the constraints that are added during branching. For this reason,
the optimal cost in each subpioblem is strictly larger, and improved lower bounds
are obtained.

It should be clear that the success of branch and bound methods
depends critically on the awailability of tight lower bounds. (In Section 11.4
we introduce a duality theory for integer proegrammirg that leads to such
bounds.) While the branch and bound algoritam may take exponential time
in the worst case (see Exercise 11.4), it often produces acceptable solutions
in a reasonably short amownt of time, especially when tight lower bounds
are available.

Branch and cut

Another variant of the method, often called branch and cut, utilizes cuts
when solving the subproblems. Tn particular, we augment the formulation
of the subproblems with additional cuts, in order to improve the bounds ob-
tained from the linear programming relaxations. We illustrate the method
with an example.

Example 11.6 (Illustration of branch and cut} We solve the problem of
Example 11.2 by branch and ¢ut. We first solve the linear programming relaxation
and find the optimal solution x' = (1.5,2.5). As before, we create subproblems
F, (corresponding to @z > 3) and F: (corresponding to 2 < 2). We delete
subproblem Fy, because its linear programming relaxation is infeasible. In order
to solve subproblem Fu, we add the constraint —z; + 22 < 1 which is satisfied
by all integer solutions to subproblem F:. The optimal solution to the linear
programming relaxation is now x = (1,2), which is integer, and thus we terminate
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with th: optimal solution. Note that by adding the cut —z1 +z, < 1, we avoide ..
further enumeration. This is typical in branck and cu;. If we can add “dee

cuts, we can accelerate branch and bound considerably. However,

finding suc}
cuts is nontrivial.

11.3 Dynamic programming

In the previous section, we introduced branch and bound, which is an exact]
intelligent enumerative technique that attempts t¢ avoid enumerating g
large portion of the feasible integer solutions. In this section, we introducel
another exact technique, called dynamic programming, that solves integes
prograriming problems sequentially. 2

We illustrate the method by deriving a dynamic programming algo-3
rithm for the traveling salesman problem. We will then discuss genersky
principles on how to develop dynamic programming algorithms for gthe
integer programming problems. :

4
Examgple 11.7 (A dynamic programming algorithm for the traveling;,
salesmzn problem) Let G = (A, 4) be a directed graph with n nodes and let
ci; be the cost of arc (4, 7). We view the choice of a tour s a sequence of choic
we start at node 1; then, at each stage, we chocse which node to visit next, After §
a number of stages, we have visited a subset § of A and we are at a current node
k € 8. Let C(S,k) be the minimum cost over all patls that start at node
visit all nodes in the set § exactly once, and end up st node k. If we call (S, k)%
a stafe, this state can be reached from any state of the form (.S' \{k}, m), with. 3
m € S\ [k}, at a transition cost of c,,.. Thus, C(8, k) can be interpreted as the
least possible sum of transition costs, over all sequences of transitions that take }
us from state ({1}, 1) to state (S, k). Therefore, we have the recursion

& = i k mk |y i .
(S.)= min_ (0(5\{ Yom) + e k) kes (11.3)
and C({l}, 1) = 0. There are 2™ choices for S, O{n) choices for k, and a total
of O(n2’) states (5, k). Fach time that C(S, k) is evalusted for some new state

according to Eq. (11.3), O(n) arithmetic operations are needed. Therefore, with

O(n22") operations, we can obtain C({l,. . A k) for all k. The length of an
optimal tour is then given by

mkin (C({l, ., m}, k) + ckl),

This algerithm, aithough exponential, is much better then exhaustive enumera-
tion of all n! tours. Realistically, it can only be used tc solve instances of the
traveling salesman problem involving up to 20 nodes.

Mare generally, devising a dynamie programming algorithm for an
integer programming problem involves the following steps.
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Guidelines for constructing dynamic programming alfgzrﬂ-;lfms
| View th ib i nce of decisions
iew the choice of a feasible solution &s a sequle
o mg in stages, and so that the total cos: is the sum of the
" costs of individual decisions. o
2. Deﬁne the state as a summary of all relevant past decisions.

3. Determine which state transitions are possible. Lfet the fzolst of
. each state transition be the cost of the corresponding decision.
4 Write a recursion on the optimal cost from the origin state to a

destination state.

The most crucial step is usually the definition of a suitable state. Let
us apply the method to another problem.

A dynamic programming algorithm for the zero-one
knapsack problem

Let us consider the versior of the zero-one knapsack problem we intreduced
in Example 10.1:

n

maximize E C;Lj
i=1

subject to ij$j <K

j=1
T; € {0, 1}.

We assume that K and all ¢;, w; are positive integers. ‘We derive 3 dynarglstf
programming algorithm for the zero-one knapsack problem ]ﬁy tecr(;:elp >
ing it into stages. Insteal of picking a vector (z1,... ,zc(;a) ff:;r g,neoiteril e
i i in which decisions are ma :

visualize the problem as one in w ' _ one item at

i ; isi decided which ones out of the

me. After 4 decisions, we have :
?tetrlns are to be included in the knapsack, and have therefore detelegeg
values for the veriables zi,...,%;. At that point, the value accumulate

g i ig S e
S _ ¢;z; and the weigh: accumulated is ) ;Wi .

" Let W;(u) be the least possible weight that has to be accumu L
order to attain a total value of u using only items i the set {él, e i .Onl
Wi(u) = oo, if it is impaossible to accumulate a total value of u us1fg f;
th:e first ¢ i;,ems. We us® the convention Wy(0) = 0, and Wg(u) 1 oos, i
u # 0, which reflects the fact that the value accumulated using no item
ZETO. ,We then have the following recursion:

Wz-+1(u) =min {Wi(u), W,;(u - Ci+1) 4wy } (11.4)

. . a
In words. this recursion means the following. If we w1§h to a.ccull'm;.lateas
total vah;e of u, using seme of the first 4 + 1 items, while accumulating
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little weight as possible, there are two alternatives depending on whether
itern ¢ +1 is used or not. If item ¢ +1 is not used, then the best we can do is.é
to accunulate a total value of u, while using only some of the first itemsj
and do that with the least possible accumulated weight, which is Wiu).4
Alternatively, if item i 41 is used, since it has a valueof €i+1, We must have}
accumuhted a total value of # — ¢;.; using the first i items. Of course, the}
first ¢ decisions should be made so that the value % — €i+1 is accumulated
with the least possible weight, which is W;(x— ¢4, ), and to which we must
then add the weight of item ¢ + 1. We can now interpret recursion (11.4
as stating that Wi, i(u) is given by the best of the two alternatives that we |
have just described. ]

We continue with a slightly different interpretation of recursion (11.4). §
Let us say that we are at state (i,u) if we heve considered the first i items, §
have picked some of them, and have accumulated a total value of 1. We ]
then build a state transition diagram indicating whichstates can be reached 1
from which other state. Notice that when in state (i, u) we can either decide }
to pick item 7 + 1 and move to state (i 4+ 1,u ¢i+1) or we can decide to 4
skip item ¢ + 1 and move to state (i + 1,1). We represent states as nodes !
and possible transitions by directed arcs; see Figure .1.5. '

Figure 11.5: The state transition diagram for tle dynamic pro-
gramming approach to the zero-one knapsack problem.

In addition, we associate a weight to each arc ‘or transition) which
is the additional weight added in the course of this transition. Thus, the
transition from (#,«) to (i + 1,u) carries zero weight, while the transition
from (i,¢) to (i +1,u + c;4y) carries weight w;_ ;.

Initially, we are at state (0,0); no item has been considered and no
value has been accumulated. A sequence of decisi>ns, involving items
l,...,% corresponds to a directed path from node (0,0} to some node of
the form (i,u). Furthermore, the sum of the weights along the path cor-
responds to the accumulated weight. We conclude that W;(u) is equal to
the least weight of all paths from node (0,0) to nods (i,u), and is equal
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to infinity if no such path exists. We may then recognize Eq. (11.4) as Fhe
Bellman equation associated with this shortest path problem (see Section
7.9).
Let .

If & > Nemax. then no state of the form (¢,n) is reachable. By restricting
to states of the form (i, u) with u < neyay, we see that the. total number
of states of interest is of the order of ncmax. Using recursion (11;4), the
value of W;(u) for all states of interest, can be computed in time O(n?emax)-
Once this is done, the optimal value u* is given by

u* = max {u | Wy (u) < K},

which can be determined vith only an additional O{nctmax) eﬁ'ort.. Optimal
values for the variables x1.. .., T, are then cetermined by an optlmal path
from node (0, 0) to node (m, u*). We have thus proved the following result.

Theorem 11.1 The zero-one knapsack problém can be solved in time
O(n%cimex)- : :

An alternative, and somewhsat more natural, dynam.ic programming
algorithm for the same problem could be obtained by defining Ci(w)' as the
maximum value that can be accumulated using some o‘f th(? first ¢ items
subject to the constraint that the total accumnulated weight is equal to w.
We would then obtain the recursion

C,-+1(w) = max {C’i(w), Ci{w —wip1) + Ci+1}.

By considering all states of the form (4, w) with w < K, an cfn,lgorithm _Wlth
complexity O(nK) would be obtained. However, our previous algmtxthm
is better suited to the purposes of developing an approximatien algorithm,
which will be done in Secsion 11.5. o .

The algorithm of Theorem 11.1 is an exponential time a.lgorlthn-l.
This is because the size of an instance of the zero-one knapsack problem is

O(n( 10g €max + 108 Wmax) + 108 K),

where wmax = max; w;. However, it becomes polynf)mial if emax 18 bounded
by some polynomial in n. More formally, for apy.mteger d., we can d?ﬁﬁe
the problem KNAPSACK(d), as the problem conms’gng of all .mstances of the
zero-one knapsack problem with ¢ < n? for all 4. Ac.cor(‘ilng to Th(.eorem
11.1, KNAPSACK[d)} can be solved in time O(n#*2), which is polynomial for
every fixed d.
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11.4 Integer programming duality

In this section, we develop the duality theory of integer programming. This
in turn leads to a method for obtaining tight bounds, that are particularly
useful for branch and bound. The methodology & closely related to the
subject of Section 4.10, but our discussior. here is self-contained.

We consider the integer programming problem

minimize ¢'x
subject to Ax > b
Dx > d
X integer,

(11.3)

and assume that A, D, b, ¢, d have integer entries. Let Zp the optimal
cost and let

X = {x integer | Dx > d}.

In order to motivate the method, we assume that optimizing over the set
X can be done efficiently; for example X may represent the set of feasible
solutions to an assignment problem. However, adding the constraints Ax >
b to the problem, makes the problem difficult to solve. We next consider
the idea of introducing a dual variable for every corstraint in Ax > b, Let
P > O be a vector of dual variables (also called Lagrange multipliers) that
has the same dimension as the vector b. For a fixed vector P, we introduce
the problem

minimize <x +p'(b — Ax)

subject to x € X, (11.6)

and denote its optimal cost by Z(p). We will say that we relaz or dualize
the constraints Ax > b. For a fixed p, the above problem can be solved
efficiently, as we are optimizing a linear objective over the set X. We next
observe that Z(p) provides a bound on Zp.

Lemma 11.1 If the problem (11.5) hes an optimal solution and if
p 20, then Z(p) < Zyp.

Proof. Let x* denote an optimal solution to (11.5). Then,b— Ax* <0
and, therefore,
c'x* + p’(b —Ax") <c'x* = Zp.
Since x* € X,
Z(p) £ x* + p'(b— Ax"),
and therefore, Z(p) < Zp. O

Since problem (11.6) provides a lower bound to the integer program-
ming problem (11.5) for all p > 0, it is natural to consider the tightest such
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Z(p)

Ll e T

*
3

Figure 11.6: The function Z(p) is concave and piecewise linear.

bound. For this reason, we introduce the problem

maximize Z!p) 11.7)
subject to p > 0.

We will refer to problem (11.7) as the Lagrangean dual. Let

Zp = max Z(p).

Suppose for instance, that X = {x!,...,x™}. Then Z(p) can be also

written as _ _ ’
Z(p) = Ilnin (e'x" +p'(b — AX")). (11.8)
1=1,...,m

The function Z(p) is concave and piecewise linear, since it is the minimum
of a finite collection of linear functions of p (see Theorem 1.1 in Section 1.3
and Figure 11.6). As a consequence, the problem of computing Zp [namely,
problem (11.7)] can be 1ecast as a linear programming problem, but with
a very large number of constraints.

It is clear from Lemma 11.1 that weak duality holds:

Theorem 11.2 We have Zp < Zip.

The previous theorem represents the weak duality theory of integer
programming. Unlike linear programming, integer programming does not
have astrong duality theory. (Compare with Theorem 4.18 in Section 4.10.}
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Indeed in Example 11.8, we show that it is possible to have Zp < Zd
The procedure of obtaining bounds for integer programming problems
calcuating Zp is called Lagrangean relozation. We next investigate tj
qualily of the bound Zp, in comparison to the ore provided by the linej
programming relaxation of problem (11.5). 4

On the strength of the Lagrangean dual

The characterization (11.8) of the Lagrangean dual objective does not prd
vide particular insight into the quality of the bound. A more reveslig
characterization is developed in this subsection. Let CH(X) be the convey
hull of the set X. We need the following result, whose proof is outlined
in Exercise 11.8. Since we already know that the convex hull of a fini§
set is a polyhedron, this result is of interest when the set {x | Dx > d} §
unbounded and the set X is infinite. ]

Theorem 11.3 We sssume that the system of linear inequaﬁtiész )
d has a feasible solution, and that the matrix I} and the vector
integer entries. Let

X = {x integer | Dx > d}.

" Then CH(X ) is & polyhedron.

The next theorem, which is the central result of this section, charac-}
terizes the Lagrangean dual as a linear programming problem.

Theorem 11.4 The optimal value Zp of the Lagrangean dual is equ
to the optimal cost of the following linear programming problem:

minimize ¢'x
subject to Ax>b
x € CH(X).

Proof. By definition,
__ s ! ! _
Z(p) = mi (¢'x+p'(b — Ax)).

Since the objective function is linear in X, the optimal cost remains the 1
same if we allow convex combinations of the elements of X Therefore,

— 3 ! ! _
AP0~ Bl (¢34 ¥ 6 A),
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and hence, we have

— i c'x + p’(b — AX))
Zp =max min

j € J, be the extreme points and a complete set
1 H

k d wi
Let X', k € K, a0 W respectively. Then, for any fixed p, we have

of extreme rays of CH{X), |
if (¢ —p'A)w? <0,

e for some j € J,

B P R
kEK

. imal
Therefore, the Lagrangear dual is equivalent to and has the same optima

value as the problem
. k
maximize }Crélg (t:’x"c +p'lb— Ax ))
subject to (¢’ — p'Ajw’ >0, J€d
P > 0!
or equivalently,

maximize ¥

subject to y + p'(Ax* —b) < c’x’“‘, ’?E K,
p'Aw’ < c'w?, j e,
p=0

Taking the linear programming dual of the above problem, and using strong

duality, we obtain that Zp is equal to the optimal cost of the problem

k )
minimize ¢’ E X +E Biw

keK J€J
subject tc Z ap =1
kEK
A Zakxk —LZ,ijj >b
keK ied
a3 = 0, keK,jeld
Since,
' = ‘>0,keK,jeJ},
CH(.X) = { Z akxk-l—z ﬁij Z G = 1, ak,ﬁj Pt
keK JEJ kEK

A

the result follows.
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In previous chapters, we developed the theory of linear optimization. In
this chapter, we turn our attention to the art in linear optimization, i.e.,
to the process of modeling, exploiting problem structure, and fine tuning
of optimization algorithms.

In recent years, the availability of workstations and optimization k-
braries has advanced optimization capabilities significantly. Large scale lin-
ear optimization problems arising in practice involve thousands (sometimes
millions} of variables and constraints. Therefore, these constraints must be
described efficiently. Towards this goal, special modeling languages have
been devebped. We briefly discuss modeling languages in Section 12.1. In
Section 122, we mention some powerful linear optimization libraries, with
particular emphasis on the size of the problems they can solve. We also
make some general observations on the relative merits of different methods.

Especially for large scale problems, it is important to utilize their spe-
cial structure in order to solve them efficiently. Although there are some
general approaches (cf. Chapter 6), solving large scale problems involves
imaginative modeling as well as creative use of optimzation libraries. In
Section 123, we illustrate the art in using optimization algorithms, in the
context of the fleet assighment problem, a large scale irteger programming
problern in air transportation. In Section 12.4, we illust-ate the art in mod-
eling linear optimization problems, in the context of controlling air traffic
in a network of airports. In Section 12.5, we iLustrate the art of combining
formulations, optimization algorithms, and heuristics, in the context of job
shop scheculing,.

12.1 Modeling languages for linear
optimization

Most realistic problems involve a large number of variatles and constraints.

As a result, it would be cumbersome to form a linear optimization problem
such as
minimize <'x
subjectto Ax = b
x>0
X integer,
by entering the entries of A, b, and ¢ one at a time. Practical linear
optimization problems, however, involve classes of constraints that follow
a particuler pattern. For example, in the assignment jroblem, one set of
constraints can be described cornpactly as

7
Z.’l’:q‘j=1, ]I]_,,’ﬂ
i=1

Mod:ling languages are software packages that recognize compact de-
scriptions of formulations and output the matrix A and the vectors b,ec.
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Although conceptually simple, these programs are very useful as they sig-
nificantly cut the time fromr model conception to actual solution. Modeling
languages are then connectzd with particular solvers that on input A, b, c,
output an optimal solution to the problem. Two particular modeling lan-
cuages are GAMS and AMPLE.

Example 12.1 Ifn = 100, the previous family of constraints for the assignment
problem can be written in GAMS as:

SET

I /1%100/

J /1 %100/
VARIABLES

X(L JY;
EQUATIONS

Constraint(J);

Constraint(Jf)...SUM(I,X(I,J))=E=1

12.2 Linear optimization libraries and
general observations

There are over 200 different commercial linear optimization libraries in
the marketplace. These libraries vary by their degree of flexibility, user-
friendliness, ability to handle large problems, platforms, support, etc. We
mention three of them that have been used to solve large scale linear opti-
mization problems. Our choice of libraries is only for illustration and does
not imply that they are beiter than others.

{a) OSL, which s an optimization subroutine library from IBM; its linear
programming code is an implementation of the simplex method. It
also includes a branck and bound algorithm for integer programming.

(b) OB1, which is an implementation of interior point methods (variations
of the path following methods discussed in Sections 9.4 and 9.5).

(c) CPLEX, which contains implementations of the simplex method, in-
terior point algorithms, and a branch and bound algorithm for integer
programming.

These software packages run on a wide variety of computational en-
vironments {PCs, workstations, mainframes, supercomputers). In order to
give some insight into the size of problems these codes can solve, we report
in Table 12.1 examples of the performance of these software packages that
have been reported in the literature (all examples are linear programming
problems). The reason for presenting these examples, which involve very
different problems, is to ouly offer a rough indication of the size of prob-
lems that have been successfully solved in practice. However, the reader
should be warned that the running times of the same package on different
problems of the same size could be vastly different.
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Ccde Constraints | Variables Time Computer
OSL 105,000 155,000 | 240 mins | IBM 3090
OSL 750 12,000,000 | 27 mins | IBM 3090
0OB1 10,000 233,000 | 12 mins | IBM 3090
CPLEX 145 1,000,000 6 mins | Cray Y-MP
CPLEX 41,000 79,000 3 mins Cray 2

ber

times are also significantly affected by implementation issues like the nue;

merical linear algebra techni :
al 1 ques used, the data structure
sparsity s exploited, etc. ’ " employed how'

the

(a) Th2 a priori availability of a basis greatly affects the performance o

(b)

(d)

Table 12.1: Sample performance of various linear programming codes.

f.Some ke?y problem parameters that affect performance are the num:
of constraints and the sparsity of the constraint matrix A. The runnin

We now present some iri i
general, mostly empirical, guidelines regarding3
perfarmance of various algorithms: ¢ gﬂrdlﬂﬁi

Fhe si.mplex method. If we can start with a bass, significantly fewer!
1tela.t10ns may be required, particularly if a problem is similar to a';
prfamously solved one. Even if the problem is significantly different ]
using an advanced basis might help. For example, if we are combining
several smaller models into a larger one, using an optimal basis ﬁ‘;lgl {

one of the smaller probl i '
o problems can help the solution to the larger problem 1

Many linear programming problems sclve faster using the dual sim-
plex method rather than primal simplex. In particular, highly de- }
gfsnerate problems with little variability in the right—hami side c};eﬂi-
cients, but significant variability in the cost coefficients, solve much 1
faster using the dual simplex method. ’

If & linear programming problemn has some portion with a network ]
str_ucture, the r}erfwork simplex method can be often used to obtain i
quickly a good initial basis for the larger problem. 1

Certain large, sparse problems solve faster using interior point meth-

ods. ‘Examples include problems with over 10J0 rows or columns, 7
containing & relatively small number of nonzeros per column anci 3
pr.oblems with staircase or banded structures in the constrain‘; ma- 1
trix. In general, the performance of interior point methods is highly
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dependent on the number of nonzeros in the Cholesky factors, and is
also affected by the presence of columns with a relatively high number
of nonzero entries.

Simplex and mterior point methods have different numerical prop-
erties, sensitivities, and behavior. We next discuss some of their major

differences:

(a) Solutions provided by the simplex method are always basic, whereas
optimal solutions found by an interior peint algorithm are not neces-
sarily basic. In the case of multiple optimal solutions, interior point
algorithms find a solwion in the interior of the set of optimal solu-
tions. Therefore, when an interior point algorithm is used alone, we
do not obtain a basis taat can be used for reoptimization. In practice,
it is rare that one wams to solve only one instance of an optimization
problem. Typically, cne would like to solve a series of instances of
a problem that are small variations of each other. In that case, the
simplex method has en advantage compared with an interior point
algorithm. Also, since an interior point solution is not basic, there is
no information available for sensitivity analysis. A common solution
technique for large scale, sparse problems is to use an interior point
algorithm to find an optimal solution, convert it to an optimal ba-
sic feasible solution, and then use the simplex method for sensitivity
analysis and reoptimization.

(b} Interior point algorithms are sensitive to the presence of an unbounded
set of optimal solutions, whereas the simplex method is not. On the
other hand, the simplex method is sensitive to the presence of degen-
eracy, whereas intericr point algorithms are less so.

(c) Simplex anc interior point methods have different memory require-
ments. Interior point algorithms can require significantly more merm-
ory than the simplex method, depending on the sparsity of the Chole-
sky factors.

We revisit most of these isues in the next sections.

12.3 The fleet assignment problem

In this section, we illustrate the art in using optimization algorithms, in
the context of the fleet assignment problem, a large scale integer program-
ming problem in air transportation. Given a flight schedule and a set of
aircraft of different types, the fleet assignment problem faced by an airline
is to determine which type of aircraft should fly each flight segment on the
airline’s daily (or weekly) schedule. These strategic decisions have a major
impact on revenue. For this reason, many airlines around the world have
devoted a lot of resources to solving this problem. We describe some re-
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lated research that offers general insights into many cf the issues we have

introduced throughout the book.

We use the following notation. There is a set of available fleets, i.e.,

aircraft types, denoted by F. The number of aircraft available in fleet feF ‘
is denoted by S(f). There is also a given schedule. The set of cities served }
by the schedule is denoted by C. The set of flights in the schedule is denoted ‘
by £, with elements (o, d,t}, where o,d € C represen; the origin and the
destination of the flight, respectively, and ¢ represents time of scheduled 3
departure There are costs cs,q; for assigning an aircrait from fleet Fftothe §

flight (o,¢,t). We pick a particular reference time t, (for example 3 a.m.
eastern standard time). Time is partitioned into intsrvals of equal size,
We have a sequence of times #;,.. <1 tn, and we assume that arrivals and
departures only happen at these discrete instances. We use = to denate
the time preceding ¢, and ¢, to denote the following time. We iet ¢(f, o, d)
be the time fleet f takes to travel from the origin o to the destination d.
We let O(fo) be the set of all flights (0, d, ¢) € £ that zre flying during the
interval [ty, t], which we assume to be fixed ahead of time. There is also
a set H of pairs of flights that must be performed by an aircraft of the
same fleet. These flights are called “requirec through.” In the following
discussion, we will ignore issues related to maintenance and crew planning,
so that we can focus on the most important issues.

The objective is to assign an aircraft from some fleet S to each flight
(0,d,t) so as to minimize the total cost. For every f € F and (o,d,¢t) € £,
we introduce the following decision variables:

1, if fleet f is used for the flight fron o to d
Tfodt = departing at time ¢,
0, otherwise,

Y7ot = number of aircraft on the ground from fleet f that stay
at city o during the interval [¢,t*],

Zfot = number of aircraft from fleet f that arrive
at city o at time £.

The variatles z¢,, and z fodt are related as follows:

Zfot = Z Tfdor-
{(d,o,r)6£|T+t(f,d,o)=E}

The model can be formulated as an integer programming problem:

minimize E E Clodt® fodt

FEF (odt)eL
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subject to the constraints

S zpoar = 1, Y (0,d,t) € £,
feF
Z2fot + Yfor— — meodt —Yfor = Ol v f: o,
deC
Yfodt — Tfdd’tr = 0: v f <€ f1

¥ ((o,d,t), (d,d,t")} € H,
S wpea+ Y e < S, VFETF,

(0,d,)E0(2a) ocC
T fodt S {011}5
Yfo: = 0,
Y fot iNbegeEr.

The first set of constraints requires that each flight should be ﬂovfrn by
exactly one fleet. The secord set of constraints represents conser.va.tlon of
flow of aircraft. The third set of constraints enforce_s that an aircraft of
the same type flies both legs of “required througl{” ﬂlght:,s. The fourth set
of constraints requires that the total number of alr(fraft m-ﬁeet f that are
cither flying or are on the ground at the reference t.1me #0 is aft most S(f).
Because of flow conservation, if this set of constraints is satisfied for one
time period, it will be satisfied for all time periods.

We consider three problem instances. The ﬁrst‘ is_ a hypot}.letxca.l
smaller instance that is used to test various algorithmu? 1de:.as, while the
other two are real ‘nstances faced by Delta airlines in t.helr daily sphedules.
We first discuss the soluticn to the linear programming relaxation. The
sizes are reported in Table 12.2.

Inst. | Fleets | Flights | Var. | Rows | Col. | Nonzeros
A 4 1709 6236 | 13689 | 17148 42371
B 11 2559 22679 | 47994 | 656254 159064
C 11 2589 22746 | 48109 | 65164 163472

Table 12.2: Problem sizes for fleet assignment instances. The
last column indicates the number of nonzero elements of the con-

straint matrix A.
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The effect of preprocessing

Several optimization codes have an algebraic preprocessing option that re- §
duces the size of the problem by eliminating variables whose values are fixed
by other variables. For example, a constraint y = 3, a;x;, allows y to be "‘
removed from the problem, along with this constrain:, Preprocessing can §
also identify empty rows or columns, and can eliminate redundant rows.é

The effect of preprocessing in instance A is shown in Table 12.3. The table

also reparts solution times for the linear programming relaxation of the
p'roblem on an IBM RS/6000 Model 320, using OSL Release 2 with primal
S}mplex. It can be seen that preprocessing can dramatically decrease the ]
size of the problem and the computation time, which decreases by a factor

of four.

Instance A Rows | Columns | Iterations | CPU seconds

no prepr. 13689 17148 39429 10094
prepr. 5579 9508 18975 2381

Teble 12.3: Preprocessing can dramatically decrease the size and
the computation times.

Which simplex algorithm?

As we.have seen in earlier chapters, one can use either the primal or the
dual SImpl‘ex algorithm, as well as different pivoting rules to solve linear
programming problems. We next illustrate that the use of different simplex
variants can have a significant impact on the computztion times. In Table
l?.4, we report computational results for instances B and C, using three
simplex variants, known as:

{a) The primal devex simplex.

(b) The primal steepest edge simplex.

(c) The dual steepest edge simplex.

. The computations were performed on an IBM 38/6000 Model 550,
using OSL. Wl‘ule the two primal simplex variants ar¢ very close, the dual
steepest edge simplex algorithm takes approximately half as many iterations

and half the time.
Simplex versus interior point methods

T‘he results of Chapter 9 suggest that interior point algorithms take a sig-
nificantly smaller number of iterations to find an optimal sclution. In Table
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Simplex variant Tterations | Time | Iterations | Time
Inst. B Inst. B Inst. C Inst. C

Primal Devex 33101 3257.5 29463 2779.9
Primal SE 32097 3194.5 32811 3199.1
Bml SE 15408 1431.8 14954 1461.5

Table 12.4: The effect of different pivoting rules for different
simplex variants. The time is in CPU seconds.

12.5, we report computational results for all instances using OSL’s interior
point code, which is a variant of the path following method covered in
Secticns 9.4 and 9.3.

The number of iterations of the interior point algorithm is significantly
smaller than the number of iterations of any simplex variant. While the
computation time is smaller than that of the primal simplex variants, the
dual steepest edge simplex is still faster than the interior point method.
However, this conclusion might depend on the structure of the particular

instances.

Instance Iterations | Time
A 32 213.3
B 38 2141.8
C 39 2205.21

Table 12.5: The performance of intzrior point methods.

Avoiding degeneracy through perturbation

The fleet assignment problem is vastly primal and dual degenerate. In order
to improve performance, we can randomly perturb the cost vector. This
reduces the degree of dual degeneracy and improves the performance of the
dual simplex algorithm. Tte performance of the interior point algorithm is

generally not affected.

The crossover problem

Due to dual degeneracy, and when the cost vector wes not perturbed, the
problem had many optimal solutions. The interior point algorithm did not
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converge to a basic feasible solution, but rather to an interior point of the i
set of optimal solutions to the linear programming relaxation. For problems |
of this type, it has been observed that an optimal basic feasible sclution 1
has many variables equal to either zero or one. Thus, if we could extract
a basi: feasible solution, we would have made progress towards an integer {
solution. For this reason, it is desirable to extract an optimal basic feasible f
solution from the optimal interior solution, which is known as the crossover X

problen.

interior point method, but this may not hold in general.

Given that we are interested in an integer solution, the following §
rounding scheme was used. If a variable is larger than 0.99, it is fixed to
1. If we first fix these variables, then use the preprocessing routines to fix 1
other variables and remove redundant rows, and fially use the crossover }
routines, the crossover time goes down from 284 seccnds to an astonishingly .

fast 2.2 seconds.

The effect of heuristics in branch and bound

After finding an optimal basic feasible solution to the linear programming ]

relaxation and fixing to 1 the variables that were at least 0.99, we still need
to find an integer solution for the remaining variables. For this purpose,
the branch and bound routine of OSL was used. One could use the de-
fault branching strategies provided by the package or develop specialized
branching rules. Table 12.6 compares the default option and two heuristic
branching rules. It can be seen that different branching rules that exploit
the structure of the problem can significantly affect performance.

Overall performance
"The overall algorithms, using the dual steepest edge (respectively, the path
following) algorithm, are as follows:

(1) Use optimizer’s preprocessing.

(2) Perturb all costs.

(3) Run the dual steepest edge simplex (respectively, the path following)
method.

{(4) Remove perturbation.
(5) Reoptimize with original cost.
(6) Fix variables with value at least 0.99, to 1.

Sec. 12.3  The feet assignment problern

Because OSL allows its simplex algorithm to begin with a nonbasic 1
soluticn, the code does solve the crossover problem. The interior point 3
algorithm needed 32 iterations and 213.3 CPU seconds to solve instance 3
A. The crossover problem was solved by OSL’s primal simplex method in 1
5873 iterations and 284 seconds. In this example, the time to solve the }
crossover problem exceeded the time to solve the original problem by an 3
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Rule Nodes in B&B | Time | Nodes in B&B | Time
Inst. E Inst. B Inst. C Inst. C

D 2000+ 6743.3 499 809.3
R,y 46 258.9 111 703.2
R, 96 591.2 60 249.3

Table 12.6: The effect of various branching rules in the b.ra.nch
and bound code. Rule D refers to the default option, while Rs
and R refer to two branching rules that are particular tf) the fleet
assignment problem. The time reported here is the tfme sp.ent
for branch and bound, after obtaining an optimal basic feasible
solution to the linear programming relaxation.

(7) Use optimizer’s preprocessing to further reduce the size.
(8) Run the dual steepest edge simplex method.
{9) Branch and bound

Notice that in bot1 cases, we use the simplex method to reopt{m1ze.

As a general rule, the simplex method has a clear advantage whenever we
i optimal sclutions.

Srart ¥:§1;812.7pand 12.8 illustrate the performance. of thr.a overall lalllgo-
rithm using the dual simplex method and the .iIZ-tEI"IOI' point algontzni
respectively. Notice that the degree Qf suboptlma'.hty, def(iined C?SZ( .
Z1p)/Z1p, where Z is the cost of the mt..eger' solution foun ,Ha.n I;il; °
the cost of the linear programming relaxatlon,-ls extr‘emely small regardles
of the method of solution, and the computational times are quite reas;n—
able. In Tables 12.7 and 12.8, the column % IP-LP represents 100 x (Z -

ZLp)/Zip.

i i i Y% Total

Inst. | Iterations Time Time .
" Dual SE | Dual SE | in B&B | IP-LP | Time
B 15351 1501.8 3360.8 0.020 | 5027.9
C 14177 1376.0 636.5 0.012 | 2176.3

Table 12.7: The performance of the overall algorithm, using the
dual steepest edge simplex method.

This example offers several insights that seem to have wide applica-
bility. We surmarize them next:
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Inst. Time- Time Time % Total
of Interior | of Simplex | in B&B | IP-LP | Time

B 2141.8 15.33 258.9 0.013 2551.6
C 2205.2 27.11 703.2 0012 | 3069.4

Ta]:.)le 12.8: The performance of the overall algorithm based on
the interior point algorithm.

(a) Preplocess-ing can significantly decrease the size of 2 model and, there-
fore, drastically improve performance. ’

(b) Different simplex variants have quite different behavior. Dual steepest

edge simplex seems to perform better. I .
. In .
default option. several codes, it is the

{c) Interir point algorithms take few iterations to coaverge. As the size

of the problem increases, the
 prc , they seemn to perform better than
not al, simplex variants. many, but

(d) As degeneracy can affect performance of the simplex method ad-
versely, perturbation of the cost vector decreases (and often eradi-

C&tes‘ dual degEIleracy Whlch nproves the er fO]'IIla.Ilce ()f t lle dual
pl H
p

(e) Espedally for solving integer programming problens, it is important
to oblain an optimal basic feasible solution to the line;u programmir
rel'axation. Fixing some variables first in an optimal interior solutiong
using prepr.ocessing again, and then calling the simplex algorithm tc;
find an optimal basic feasible solution seems advantageous.

() Fi-xing some ‘variables in an optimal solution to the linear program-
ming relaxation to zerc or one, and using branciing rules tailored

to the particular problem at hand, ] -
, leads t :
advartages. o significant computational

12.4 The air traffic flow management
problem

VV‘hile‘ the prex.rious section illustrates the art in developing practical opti-
Fnzamontz-ﬂgorlthms this section illustrates the art in developing effective
inear optimization m i i
pnear P odels, in the context of the problen of controlling air
" bThI:OLghOlJ:t tke United States and Europe, demand for airport use
as been increasing rapidly in recent years, whiie airport capacity has been
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stagnating. Acute congestionin many major airports has been the unfortu-
nate result. For example, each of the thirty-three major airports in the US
was expected to exceed 20,000 hours of annual delays by 1997. The ground
and airborne delays caused by congestion create direct costs to the air-
lines and indirect (opportunity) costs to the passengers. Direct costs from
ground delays include crew, maintenance, and depreciation costs, while di-
rect costs from airborne delsys include, in addition, fuel and depreciation
costs. Although estimates of congestion costs are difficuit to measure, there
seems to be agreement! that they amount to billions of dollars. Given that
several European and US airlines have been suffering yearly losses that
also amount to billions of dollars?, congestion is a problem of undeniable
practical significance.

Faced with the realities of congestion, the Federal Aviation Adminis-
tration (FAA) has been using ground-holding policies to reduce delay costs.
These short-term policies consider airport capacities and flight schedules
as fixed for a given time peied, and adjust the flow cf aircraft on a real-
time basis by imposing “ground holds” on certajn flights. The FAA uses
a computerized precedure based on a first-come, first-served rule, in order
to select appropriate ground holds. These selections are further enhanced
through the experience of its air traffic controllers. The motivation for
ground-holding is as follows. Suppose it has been determined that if an
aircraft departs on time, it will encounter congestion, incurring an airborne
delay as it awaits Janding clearance at its destination airport. However,
by delaying its departure, the aircraft could arrive at its destination at a
later time when minimal congestion i expected, thus, incurring no airborne
delay. As airborne delays are more costly than ground-holding delays, the
objective of ground-holding policies is to “translate” anticipated airbome
delays to the ground by delaying departures.

In this section, we consider the effect of using a linear optimization
approach to control air trafic in a network of airports that could represent
either the national US network or the European network. The airspace is
divided into seetors. Each flight passes through contiguous sectors while
it is en route to its destination. There is a restriction on the number of
airplanes that may fly within a sector at any given time. This number is
dependent on the number of aircraft that an air traffic controller can manage
at any one time, the geographic location, and the weather conditions. We
will refer to the restrictions on the number of aircraft in a given sector at a
given time as the en route sector capacities. We formulate the problem of
minimizing the effects of congestion as 2 0-1 integer programming problem.

Consider a set of flights, F = {1,...,F}, a set of airports, K =
{1,...,K}, a set of time periods of unit duration, T = {1,...,T} {note

1For example, The Stanford Research Institute estimated ia 1990 annual costs of $5
billion in Europe due to congestion. The Federal Aviation Administration estimated in
1088 the annual costs of delays in the US at $1.4 billion.

2During the years 1991-1994, US airlines sustained losses totaling about $9 billion.
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that we have discretized time), a set of sectors J = {1,..., J}, and a set

of pairs of flights that are continuations of each other, ¢ = {(f, HIFis |
continued by flighs f}. We assume that X C 7. In particular, the first ]
and last sector in every flight’s path is an airport. Associated with every 3
continued flight f is a turnaround time s;, which is the minimum time that k

an airplare needs to stay on the ground in order to be prepared for the next

flight. We shall refer to any particular time period ¢ as the “time £.” Note

that by “fight,” we mean a “flight leg” between two airports. Also, flights

referred to as “continued” are those flights whose aircraft is scheduled to .‘
perform alater flight within some time interval of its scieduled arrival. The 3

problem input data are as follows:

Data:

Ny = number of sectors in the path of flight f
the departure airport, if 1 =1,
P(f,i) = ¢ the arrival airport, if i = Ny,
the ith sector in flight f’s path, if 5 # {1, Ny}
Py = (P(fsl)r--"P(vaf))
Dy (t) = departure capacity of airport & at time t
Ag(t) = arrival capacity of airport k at time ¢
S;(t) = capacity of sector 7 at time ¢
ds = scheduled departure time of flight f
ry = scheduled arrival time of flight f
8y = turnaround time for flight f
cft = cost of holding flight f on the ground for one time period
¢t = cost of holding flight f in the air for one time period
lf; = minimum number of time periods that flight f must spend
in sector j

T}f = set of allowed times for flight f to arrive at sector j
Ifc = first time period in the set Tf
T‘; = last time period in the set T}"

Objective:

The objective is to decide how long each flight is to be held on the ground
and in the air, in order to minimize the total delay cos:.

Decision variables:
A very important aspect of the modeling process is the choice of the decisicn
variables. For every flight f, sector 7, and time £, we intioduce the following
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R _Flight2

(R v :
A .) .

Figure 12.1: Two possible flight routes.

decision variables:

o 1, if flight f arrives at sector j by time ¢,
A 0, ctherwise.

Recall that the first and last sectors on each flight path are airports. So,
if 7 = P(f,1), then wv}'t equals 1, if flight f takes off from airport P{f, 1)
by time ¢, while if j = P(f, N¢), then w}, equals 1, if flight f lands at
airport P(f, N¢) by time . The above definition, using by time t and not at
time t, is critical to the understanding of the formulation and the practical
success of the model. Also, recall that we have defined for each flight a list
Py including the departwre airport, the pertinent sectors, and the arrival
airport, so that a variable w*}t will only be needed for those elements 7 in

the list Py. Moreover, w2 have defined T} as the set of feasible times for
flight f to arrive at sector j, so that a variable w:lt will only be nesded

for those times within T}. Thus, whenever the variable 'wJ ¢ Iis used in the
formulation, it is assumed that (f, j,t) is a feasible combination.

Example 12.2 To ensure the clarity of the model, consider two flights travers-
ing a set of sectors; see Figire 12.1. In this example, there are two flights, 1 and
2, each with the following essociated data:

P.=(1,A,C,D,E,4) and P,=(2,F,E,D,B,3).

If the position of the aircrat at time ¢ is indicated by the dots in the figure, then
the variables for these flighis at that time will be:

(o) Do E o _ 4 _
w:‘gt =1, w‘f,t =1, wi; =1 w,; = 0, wi, =0, wi, =19,
3
01 Wy

F E Do B
'wg: =1, wy, =1, wy; = 1, w3, = 0, wd,
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Having defined the variables w*}t, we can express several quantities of
interest as linear functions of these variables:

{(a) The variable w}t defined to be 1 if flight f arrives at sector j at time
t, and 0 otherwise, can be expressed as follows:

io_ .0 g
Wpy = Wy —Wey 1

=S,

<t

and vice versa,

As discussed earlier, the variables wf;i are only defined in the time

range T}f = [I"},T_’;], so that w; 1i_q = 0. Furthermore, one vari-
Ly

able per flight-sector pair can be eliminated from the formulation by
setting w; 7 = 1. Since flight f has to arrive at sector 7 by the

i

las: possible time in its time window, we can simply set it equal to 1
before solving the problem.

(b) Noticing that P(f, 1) represents the departure arport for flight £, the

total number gy of time units that flight f is teld on the ground is
the actual departure time minus the scheduled departure time, i.e.,

{¢eTF | k=P(f,1)}

= Z t(wft - w?,t—l) —dy.
{teTs | k=P£,1)}

(¢) Noticing that P(f, N, f) Tepresents the destination airport for flight f,
the total number a; of time units that flight f s held in the air can
be sxpressed as the actual arrival time minus the scheduled arrival
time minus she amount of time that the flight has been held on the

groind, i.e.,
k
af = Z tuse —ryp — gy
{telf | k=P(f N¢)}
k k )
= Z t('wft_wf,t—h_rf_gf‘

{teTy | k=P(f,Ns)}

The objective function:
The objective is to minimize total delay cost. Using the above de-

fined variables g5 and a (the ground and air delzy, respectively), the
objective function can be expressed simply as folows:

minimize Z (cfgr +c%ay).
feF
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A 0-1 integer programming formulation

Substituting the expressions we derived adove for :he variables g and ay

; . . -Soon
in terms of w}!, omitting those terpls that do rfot depemil En t.he decisi
variables, and rearranging, we obtain the following formulation:

K k
minimize Z [ (C‘;’r — C?c) Z t(wy, — wi,_1)

feF {teT} k=P(£,1)}

v Y b))

UET] | k=P(f.N)}

subject to the constraints

Z (w?t, - w’f,t—1)
(FIP(f )=k}

Z (whe — why1)

{fI1P(f.N,)=k}

Z (Wj't - 7"‘—};)

{3 PFA)=5 P+ 1)=]"d<N;s}

IA

Di(t), Vkek, teT,

IA

Ar(®), Vkek, teT,

IA

Si(t), Vijed, teT

i ; Y feF, teTi, j=P(f,i), such
a —wh, <0, ) _’ _
Sttty ft that ¢ < Ny, and j'=P(f i+ 1),
Y (f',f)€C, t €T}, such that
k k
i e S0 k= PURD = PULNY)

. . _ }
wi‘ﬁt _wf’f,t—l 0, VfeF, ichy, tGT_,

- ¢ ]
wp, € {01}, VfeF, jePy teTy.

The first three seis of constraints take into account the capacities of
various aspects of the system. The first set of constraints ensures thlat the
number of flights whica may take off from airport k i-it tl}rle t, will not
exceed the departure capacity of airport k at time ¢. lelewme, the sgcond
set of constraints ensures that the number of ﬂight.s whxch may arrive at
airport k at time £, will not exceed the arrival capacity of airport k at tn;lle
t. In each case, the difference w}“t — w’},t_l will be equal to 1, on].z Whel:; the
first term is 1 and the second term is 0. Thus, the‘differences Wy —w flt)lf
capture the time at which a flight uses a given a.urport. The} third set:, o
constraints ensures that the sum of all flights which may be 1n_sector j at
time ¢ will not exceed the capacity of sector j at time ¢. The difference

Z (w—}t - wj:t)
r.J

is the number of flights that are in sector j at time £, since the first term
will be 1 if flight f has arrived at sector j by time ¢, and the second term

N
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will be 1 if flight f has arrived at the next sector by time t. So the only
flights that will contribute a value of 1 to this sum are tke flights that have
arrived at j and have not yet departed by time t.

The fourth, fifth, and sixth sets of constraints represent the three
types of coinectivity in the problem: connectivity between sectors, con-
nectivity within airports, and connectivity in time. The fourth set of con-
straints represents connectivity between sectors. It stipulates that if a flight
arrives at sactor j' by time t+ ly;, then it must have arrived at sector j
by time %, where j and j' are consecutive sectors in th: path of flight f.
In other werds, a flight cannot enter the next sector on its path until it
has spent as least I;; time units (the minimum possible) traveling through
sector j, the current sector in its path.

The fifth set of constraints represents connectivity within airports. It
handles the cases in which a flight is continued, i.e., the flight’s aircraft is
scheduled to perform a later flight within some time interval. We call the
first flight f* and the following flight f. This set of constraints states that
if flight f departs from airport k by time ¢, then flight f must have arrived
at airport & by time ¢ — s/, where sy is the turnaround time.

Finally, the sixth set of constraints represents cornectivity in time.
Thus, if a flight has arrived at sector § by time ¢, then w}t, has to have a
value of 1 for all later time periods, ¢’ > ¢.

The major reason we used the variables wj’;t, as opposed to the vari-
ables u},, is that the variables w7}, nicely capture the taree types of con-
nectivity in the air traflic control problem: connectivity between sectors,
connectivity between airports, and connectivity in time.

Computational results

The preceding formulation has been extensively tested using real data from
both the US and the European networks. As an example, two realistic
size data seis obtained directly from the Official Airline Guide (OAG) were
provided by the FAA. The first one consisted of of 278 flights, 10 airports,
and 178 sectors, tested over a 7 hour time frame with § minute intervals.
The second of these data sets consisted of 1002 flights, 1¢ airports, and 305
sectors, testad over an 8 hour time frame with 5 minute intervals. The sector
crossing times, sector and airport capacities, and required turnaround times
were all provided by the FAA. These data sets are comgarable to those in
the problem being sclved daily by the FAA.

For the first problem, consisting of 43226 constraints and 18733 vari-
ables, an optimal solution to the linear programming relaxation was found
in approximately 30 minutes on a SUN SPARC 20 workstation using CPLEX
3.0 as the optimization solver and GAMS 2.25 as the modeling language.
Furthermore, the solution obtained was completely integer. In other words,
there is no need to use any integer programming methods. The second and
larger data set consisting of 151662 constraints and 69497 variables, was
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solved to optimality in approximately 2 hours, again achieving completely
integer solutions.

Similar results were obtained for the Furopean network. For a data
set provided by EUROCONTROL, a problem: involving 2293 flishts, 25 sec-
tors, and with all costs equal to 1 (i.e., the objective is to minimize the total
delay), an optimal completely integer solution was found in approximately
one hour on a SUN 10 workstation. The total delay in the optimal solution
was 60% lower than the delsy under the first-come-first-serve heuristic that
is exercised by EUROCONTROL. This illustrates the significant impact
that linear optimization can have in practice.

Another observation that is important for achieving short computa-
tion times, is that in the absence of capacity constraints, the remaining
inequalities define the dual of a network flow problem, for which we know
that an integer optimal sclution exists and can be found by the network
simplex method. As a result, the model is first ran as a network flow prob-
lem, ignoring the capacity constraints, and a basis is found. Then, the
capacity constraints are introduced and the problem is solved using the
dual simplex method.

While the linear programming relaxation does not always have integer
optimal solutions, this tumed out to be the case for these and other test
problems. Compared with other formulations that have been proposed in
the literature, the preceding formulation performs significantly better. One
naturally wonders why this has been the case. A partial explanation is that
the three sets of constraints that express the three types of connectivity in
the problem are “facets” of the convex hull of the set of feasible solutions.

We summarize the principal insights from this example, which have
wide applicability:

(a) Defining the “right” set of variables for a linear optimization problem
can have an important impact on the size and quality of the formu-
lation, as well as on the solution time.

(b) The key to solving large scale integer programming problems is to
obtain strong formuletions, i.e., formulations thet closely approximate
the convex hull of tke set of integer solutions. This can be achieved
by introducing constraints that are “facets” of the convex hull of the
set of feasible soluticns.

(c) Extracting a network subproblem is important in achieving short corn-
putational times. The network simplex algorithm, for example, is
significantly faster than the general simplex method, and provides a
useful initial basis for the solution to the complete problem.

12.5 The job shop scheduling problem

Our objective in this section is to show that strong formulations, even
involving an exponential number of constraints, coupled with heuristics



xeuwuoneziwndo reaul|

552 Chap. 12 The art in linear optimization J

and branch and bound methods, can lead to efficient algorithms for large .'
scale Inear optimization problems. We start with a simple one-machine 1
scheduling problem, and continue with the job shop scheduling problem, in §
which several jobs need to be processed by several machines, '

A single machine scheduling problem

Aset N ={1,... yn} of jobs needs to be scheduled on a single machine, -
The processing time of job i € A is some positive sumber p;, A schedule
is callel nonpreemptive if, once the machine begins processing a job, it ]
must comnplete processing before starting another job. A schedule is called ;
nonidliag if the machine can only stay idle after all jobs have been processed. }
A schedule is called feasible if it is nonpreemptive and the machine works |
on at most one job at a time. |

Let C; be the completion time of Job i, i € N, The objective is to }
find a feasible schedule that minimizes

Z w’iCi,

€N

where w; > 0, i € NV, are given weights. A natural question is to charac-
terize the set of vectors (Cy, ... » Cr) that correspond to feasible schedules, 4
Clzarly, the following conditions need to be satisfied

Cj 2 pj 3 j € N H
C;2Ci+p; or Cy 2 C; +py, hkeN, j#k
The last condition states that in every schedule, either job % is processed
before job 7, or job j is processed before job k. Figure 12.2 depicts the set
of all feasible completion times vectors for N ={1,2}, and shows that this
set is not convex.
Next, we find constraints on the convex hull of the set of feasible

completion time vectors. Towards this goal, we need the following charac-
terization of the aptimal schedule.

Theorem 12.1 =Assume that

: 21_-21”_2_)_..;2.?‘32'
kP2 Topg

Then, the sequence of joﬁ)s 1,2,...,n i5 optimal,

Proof. Suppose that there is another optimal schedule. Then, there are
two jobs 4,7, such that job J is processed just before Job 4, j > 4, and
wi/pi > u;/p;. Hence,

CGi=CHp;  Ci=C+p+p;
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Figure 12.2: The set of all feasible completion times v"ectors
(C1,C2) for N' = {1,2}. Unfortunately, the feasible set is the
union of two disioint polyhedra. It is not a convex set.

where ( is the completion time of the job that precedes j.ob jin the schet'iuée..
Let Z =5 wy,Cr. Consider now a schedule in which we process jo ﬁ
before job jkeaﬁd which is otherwise the same. Ugder the new scht'e_g;le, aw
completion times except for those of jobs ¢ and j are the same. e ne
completion times of jobsi and j become:
C£:C+Pi, C;=C+p@+pj.
Let Z' = ¥, v wrCp. The difference in cost between the two schedules is
= 2oke :

Z'-Z

w;Cf +w; € —wilCy — w; Cj
wi(C+Pi)+wi(C+pi+p«")
—w; (C + p;) —w;(C+p +Pj)

= wip: — Wibj

and therefore, the new schedule is also optimal. Pfarfo.rming more pa1rz1.se
interchanges ,we concluce that the schedule in which jobs are processed in

the sequence 1,2,...,n ‘s optimal. -
Suppose that w,; = p; for all i. Then, from T.heorem 12.1, it folllov‘vs
that all nonidling schecules are optimal. In particular, the schedule in
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which the ith job processed is job ¢ is optimal. The conpletion time of job
i in this schedule is C} = > %=1 Pk Therefore, for all schedules,

n n
ZPiCi > Zpic':
i=1 =1
n i
= ZP{ZPk
i=1 k=1
1 T 1 e 2
= §ZP?+§(Zm) :
i=1 i=1

Consider aset § C NV of jobs. Applying the previous inequality to that set,
we obtain

2
ZpiCiE%ZP?‘F%(ZPi) ., VSCN. (12.1)

i€ES ics €S

Note that we have exponentially many inequalities.

We have shown that the completion times {C1,...,C,) associated
with any feasible schedule must satisfy Eq. {(12.1). There is also a converse
result whose proof we omit: every vector (Cy,...,Cy,) that satisfies Eq.
(12.1} belongs to the convex hull of feasible completion time vectors.

For N = {1, 2}, the convex hull of the set of feasible completion time
vectors (see also Figure 12.2) is

Ch

Zm
Cy 2 p
p1C1 + p2Ch > pi + p3 = pipa.

Based on the above discussion, the single machine scheduling problem
is equivalent to

n
minimize E ;O
i=1

\ 2
subject to ZpiCiE%pr+%(Zp,-) , VSCWN.

€S ies €S

(12.2)

The function
1 1 2
[ 24 - .
w8 =5 i+ ()
ieS i€ES
turns out to be supermodular, i.e., for all S§,TCWN,

PIS)+p(T) <p(SNT) +p(SUT).
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3
ion i if —p(9) is submodular”.
t a function is supernodular if —p( : .
Nore ‘i‘: discussed in Chapters 6 and 11, when solving problems with a lz_a,rg::
number of constraints, it is important to be able to chec%; whe(tlah.er aﬁill‘;t
ector is feasible, and if not, to be able to generate a violate ineq ) 5y).
‘(rThjs has been referred to as the separation problen;; sePi ;:fo Sectlf;l). it
i i the optimization problem eorem 12.1),
Since we can efficiently solve . P oiontly
isi tion problem can also be
ot be surprising that the separa : ' .
52&1;131 IrlI‘his is accomplished by our next resul, which exploits the special
s .

structure of the function p(S).

R e e ether
: earem, 12!2 GJV&H a VGC““' (Cla’d"')’ wefz TR 2T
csniGh> plS) Tor all § € N, of find s Vi inoqulity 1 the
Pollowing algorithm: T oo T S
1. Sort. the jobs i order. of increasing C, snd let S pe thie et
- containing the first i jobs in the sorted sequence. |, . . . ...
2. Among then sets 5.,

s o fis) 20 then T 5L plE) ok Al C N O
3. If Sklgnfm “iggj?l:_}: YTt s ._’w{:M PO D
St éf»rswa inequality, involving the et By, has b o fraid

Proof. Let § be a set that maximizes the function
£8) =p(8) = Y pC,
ies

over all S € N. For j € S, we can use the definition of f(S) and p(S) to
obtain

£(S) = HS\{3}) +pji€25pi -;C;.
Since £(§\ {j}) < f(S), we obtain that forallj € S,
C; <) pi
s
For j ¢ 8, we have
ssu ) = 19 +i(pr + m=Cs)

i€s

3Theorsm 12.1 can also be proved using the results of Exercise 8.10 on submodular
function minimization.
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Since f(5U {j}) < £(S), we obtain that for all j ¢ S,

C;—pjz Zp’i-
ic8
Therefore, if j € S, then C; <37, o pi If j ¢ S, then C; > Y ics Pie
Hence, if § maximizes f(S), then j € § if and only if C; <3 ,copi. This
implies that if j € S, then for every m such that C,, < C;, we have m € S,
Therefore, we may sort the jobs in order of increasing C} and construct
the nested family of sets $,,...,5,, where §; contains the first i jobs in
the sorted sequence. The optimum subset § may then be found among
51,---,8,, and the correctness of the algorithm follows. |

Note that the most time consuming cperation is the sorting in Step 1,
which can be accomplished in O(n logn) time; see, e.g Cormen, Leiserson,
and Rivest (1990).

Single machine scheduling problems with release times,
deadlines, and precedence constraints

We next show that the separation algorithm provided by Theorem 12.2
leads to an efficient computation of lower botnds for several difficult (AP-
hard) variations of the single machine scheduling problem. Suppose that
job # must be completed between time r; and d;. Ir addition, there are

precedence constraints among jobs that are described by a directed graph
G = (N, A), where

A = {(i,7) | job ¢ must be processed beforz job i}

The problem of finding a schedule that minimizes 2 ien wiCli, in the pres-
ence of release times, deadlines, and precedence consraints, is known to
be AP-hard [Garey and Johnson (1979)]. However, the following linear
programmning problem provides a lower bound on tte optimal objective
function value:
3
minitrize ZwiC‘i

i=1

1 1 2 .
subject to ZpiCi > §pr + 5(2;);) . Y8 CWN, (12.3)

i€S €S z‘e_S
r; < Cy <4, Vie N,
C; 2 Ci+py, Y {i,7) € A.

Because of Theorem 12.2, we can solve the separation problem, i.s.,
identify a violated constraint if one exists, in polynomial time. This allows
us to use the cutting plane slgorithm of Section 6.3 to wlve problem (12.3).
From a theoretical point of view, this also leads to a polynomial time (but
impractical) method, based on the ellipsoid algorithm (cf. Section 8.5).
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[ Jot | 1) 2] 3 4|
B 2| 6] gf11
4 || 10]28]2¢]30
w; 05| 2] 3] 4

Table 12.9: Data for the single machine scheduling problem with
deadlines.

Example 12.3 We consider the 4-job, single machine problem with deadlines
d;, but without release times (all r; are equal to p:) or precedence constraints. ']“he
problem data are shown in Table 12.9. In order to solve the linear programming
problem (12.3), we start with a small number of constramts. The initial linear
programming problem is
min‘mize 05C; + 2Cy + 3C:y + 4Cy
subject to 20 + 602 + 8Ch + 11Cy > 477
2< <10
E<(Cr <28
< C €29
1< Cy < 30.

An optimal solution is C* = (C1,C3,C3,C7) = (10,28,8,20,% ), with objective
function value 166%. However, the vector C* does not correspond to a fez.a,‘.;lble
schedule, since Cf < C} < Cf + p1. We now invoke the separation algorithm.
Note that C3 < Cf < Cf < €3. Since

B =0, f({L3) =0 f({1,3,4) =6 f({1,2.3,4)=0,
the subset maximizing f(5) s S = {1,3,4}. We therefore add the constraint
A + 8Cy + 11Cy > 315.

The new optimal selution is C* = (10,27, 8,21) with value 167. Since this corre-
sponds ta a feasible schedule, it is an optimal solution to the original scheduling

problem.

It is possible, however, that the optimal solution to the linear pro-
gramming problem (12.3) corresponds to an infeasible schedule. In par-
ticular, there might be two jobs ¢ and j, such that C; < Cy < Ci +p;.
We can then propose a branch and bound algorithm, in which we brauch
by considering the cases that either job i is procesced bgfore job 7, and
therefore, C; > C; + p;, ar job j is processed before job z,'and therefore,
C; > C; + p;. We add the corresponding constraint to T,he hnea,-r program-
ming problem, find an improved lower bound, and continue until a feasible
solution is obtained.
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Even when the optimal solution to the linear programming problem 3
(12.3) carresponds to an infeasible schedule, a feasibls schedule can always ¥
be constructed as long as there are no deadlines (di = 00). Let C} be an |
optimal solution to the linear programming problem {12.3). We sort the Ct,
and we eate a feasible schedule by processing the Jjobs in the same order, {
inserting idle periods whenever needed to satisfy the constraints C; >ry

Note that the precedence constraints will automatically be satisfied. 1
Next, we provide evidence that the heuristic provides reasonable so- §

lutions ty showing that it constitutes a 1-approximsztion algorithm when 1
both release times and deadlines are absent {ri = p;, d; = o0). We assume, }
without .oss of generality, that Cf < CJ < ... < C*. In the heuristic sohs- §

tion, the completion time of job j is 63,» = Ei=1 P Bince C7 is a feasible

solution o the linear programming problem, we obtan

J I
C;d o > > pCy
k=1 k=1
i JoN2
2 %EP;% + %(Zpk |
k=1 k=1

v
b =
N
M
3
kol
g
- b

and thus, ‘
L1 1.
Cj 2 E Epk = ECJ
k=1
Let Zup = 3 ;oo wkCF. Let Zy = Yowen wiCr. We have thus shown that

Zip < 2y < 271,

i.e., the heuristic produces a solution within a factor of swo from the optimal
in the worst case, which is the best known bound for this NP-hard problem.

Job shop scheduling

We consider the problem of scheduling a set A" of n Jjobs on m machines.
Job i € N consists of k stages, each of which must be completed on a
particular machine (we assume for simplicity that all jobs have the same
number k of stages). The pair (4, 7), called task (¢,7), represents the jth
stage of the ith job. The processing time of task (i, §) is pi;- The completion
time of job £ is the completion time of the last task of job i, i.e., task (4, k).
The objective is to find a schedule that minimizes the weighted sum of job
completion times, subject to the following restrictions:

(a) Theschedule must be nonpreemptive. That is, orce & machine begins

processing a stage of a job, it must complete that stage before doing
anything else.
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(b) Each machine may work on at most one task at any given time.
(c) The stages of each jo> must be comple:ed in order. o
In order to formulate the problem, let C;; be the completion time oi
task (4,7). For each machine r, r.= 1,...,m, let M, represent the set o
tasks that must be completed on it.
The objective function:

The objective is
T

minimize E w; Cig.

i=1

Constraints: .
In order to ensure that the stages of each job are completed in order, we
add the constraints

Cii = Ci,j—l + Pijs LANE

These constraints ensure that a stage of a job cannot begin before the

ious stage is completed. '
PIeVlOIn a,dd?tion. all tasks in the set M, need to be scheduled on rpachme
r. Therefore, the completion times C;;, for (1, j) € M,, need to satisfy the
constraints (12.1) of the sngle machine scheduling problem:

2

L 2 41 y v S C M.
Z Cijpij 2 5 E Pii+a Z Pij | » r
(i)es {i,j)es (i.1)€8

Therefore, the following linear programming problem }?rovides a lowtar
bound on the optimal objective function value over all feasible schedules:

n
minimize Z w;Cik (12.4)
i=1
subject to the constraints
2
L I ii vScM,Vr
Z Cipis 2 5 Z Py t+3 Z pij | » )
(t,5)es (1.7)3=8 (1,538 N
Cij 2 Cij—1 + Pijs Yi,j.

Note that by using the separation algorithm described in I:heor?m 1.2,2 fo;
eachr. r=1,... ,m, we can solve the separation prcblem (identify violate
3 - v .
nstraints) in O{mmnlogn) time. . '
“ As in)the sir(lgle machine case with release times, deadhnes,., and prece-
dence constraints, an optimal solution to the linear programming problem
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(12.4) does not necessarily correspond to a feasible schedule for the job shop
scheduling problem. However, a feasible solution can be easily generated
by the folbwing heuristic:

Sec. 125  The job shop stheduling problem

Job shop scheduling heuristic . .
- 1. Save the lincar programming problem (12.4) byusing the euttin
plane method and the separation algorithm desaribed in. Theoretd:*
122, - o i
2. Create a feasible schedule based on the order of the optimal G
as follows. For each machine r, sort the set {C:J | GG,5) & M:i« ;
frem lowest to highest. That will give us an ordering of tasks for::
each machine, : S

%

p

Boeon

3. Each machine processes its tasks in order, as soon as the jobs
become available. : L

cutting ]

For example, suppose machine 1 must process tasks (1,1}, {2,1),
(3,4), and (4,2). Suppose that C}; =13, C3, = 8, C2, = 18, and Cyy =12,
Then, machine 1 will process the tasks in order of increasing completion
times, that is, in the order (2,1), (4,2), (1,1), (3,4). Task (2,1) is imme-
diately avzilable, sc it will be processed immediately, and the completion
time of task (2,1} will be equal to its processing time. Machine | will then
wait until stage 1 of job 4 has been completed, so that it can begin work on
task (4,2). When the machine finishes task (4, 2), task (1) is immediately
available, so it will be processed immediately.

Moreover, a branch and bound algorithm can be devised as follows.
After solving the linear programming problem (12.4), we can detect that
a schedule is infeasible if there are tasks (,) and (k,{) pracessed on the
same machine r, such that

Cis < O < C + pu-

As in the single machine scheduling problem, we branch by considering the
cases that either task (7, j) is processed before task (k,!) on machine T, and
therefore, Cy; > Ci; + pyy, or task (k,1) is processed before task {#,7) on
machine r, and therefore, Ci; 2 Cry + pi;. We add the corresponding con-
straint to the linear programming problem, find an improved lower bound,
and continue until a feasible solution is obtained.

Example 12.4 We consider a job shop with 3 machines, 3 jobs, and 3 stages
per job. The processing times p;; and the weights w; are given in Table 12.10.
The sets M, ¢ = 1,2,3 are as follows.

Ml {(1,1), (2=1)? (3=3)}1
My = {(172)) (2v3)7 (311)}3
MS {(113)7 (2’2)! (352)}‘

il
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“ stage 1 | stage 2 | stage 3 \ wiJ
job 1 2 3 2 1
job 2 3 4 1 1
job 3 2 2 2 1

Table 12.10: Processing times for a job shop with 3 machines,
3 jobs, and 3 stages per job.

We solve the linear pregramming problem {12.4). The solution i§ given in
Table 12.11. The optimal objective function value is 23.67. The ordering of the

r stage 1 | stage 2 | stage 3

job 1 2.00 5.00 7.00
job 2 5.67 9.67 10.67
job 3 2.00 4.00 6.00

Table 12.11: The job completion times Cf; provided by the
solution to the linear programming problem (12.4).

tasks for each machine is as follows. Machine 1 processes tasks in the order
(1,1), 2,1), (3,3).

Machine 2 processes tasks ir the order
(3,1), (1,2), (2, 3).

Machine 3 processes tasks in the order
(3,2), (1,3), (2:2).

However, the schedule is not feasible, because for the tasks (2,1) and (3,3) that
are processed by machine 1, we have

5 < Ci3 < C7y +pas.

The job shop heuristic then gives the schedule shown in Table 12.12, with objec-

tive function value of 26. ' .
If we apply the branch and bound algorithm to the solution to the linear

programming problem (12.4), we add the constraint Cas — Co1 > 3 and .ﬁnd that
the objective function value of the new linear programming problem improves
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stage 1 | stage 2 | stage 3
job1 2 5 7
job 2 5 11 12
job 3 2 4 7

Table 12.12: The job completion times provided by the job shop
hewristic.

to 24.5, but the corresponding schedule is still infeasible. Further branching
finds that the optimal objective function value hecomes 25 and finds a feasible
schedule with objective function value equal to 25. Alternatively, to explore the
other half of the branch and bound tree, we add the constraint Ca — Caz > 2
to the orignal linear programming problem (12.4), and we find that the aptimal
objective function value increases to 26. As we have mentioned, the job scheduling
heuristic produces a schedule whose cost is equal to 26. Since this is equal to

the lower kound provided by the linear programming probem, the heuristic has
produced an optimal schedule.

Computational results suggest that the linear programming problem
(12.4} for problems involving up to 20 machines, 20 jobs, and 20 stages per
job can besolved in minutes in a SUN SPARC 20 using a cutting plane algo-
rithm and the CPLEX optimization library. The job shop heuristic quickly
produces feasible schedules for problems involving up to 20 machines, 20
jobs, and 20 stages per job, that are approximately within a factor of two
of the lower bound provided by the linear programming problem (12.4).
The branch and bound algorithm routinely solves such problems to within

5% — 10% from the lower bound in less than an hour. The key to success
in this application is:

(a) Although the formulation (12.4) has an exponential number of con-

straints, it can be solved efficiently, because the separation problem
can be solved fast.

(b) It is easy to check whether the solutior to the linear programming
relaxation is infeasible and to identify violated corstraints. This gives
a nasural and effective way to branch.

12.6 Summary

The availability of workstations, modeling languages, snd optimization k-
braries has advanced optimization capabilities significantly. However, such
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advances do not imply that users can naively apply this technology to con-
struct effective decision support systems. At the hands of an im_aginatlve
analyst the process of modeling, exploiting structure, and fine tuning of op-
timization algorithms will ‘ead to better solution methods and, therefore,
to more informed, insightful, and better decisions.

12.7 Exercises

Exercise 12.1* {The stable matching problem) This problem models how
hospitals and residents are matched. There is a set of » hospitals and n medical
residents. Each hospital has a strictly ordered list of the n residents and each
resident has a strictly ordered list of the n hospitals. A perfect matching M o.f the
hospitals and residents is called unstable if there exist a hospita.} 1 an_d a resident
4, who are not matched unde: M, but prefer each other over their asmgned'mates
under M. A perfect matching is stable if no such pair exists in the matching.
(a) Formulate the problem of deciding whether a stable matching exists as an
integer programming problem.
(b) Using linear programming theory prove that a stable matching always ex-
ists.
(c) Use linear programmiag to compute such a stable ma.tchifm.g for n = 9.
The preference order of the hospitals is given in the following table. For
example, intern 1 is the second choice of hospital 1.

I L I I4 Is It I; Is Iy
H|2 8 3 9 66 5 7 1 4
H2l7v 3 2 1 8 5 4 6 9
H:|7 8 3 9 6 5 2 1 4
H/]1 3 5 7 4 6 8 9 2
H:'6 3 1 8 2 5 9 4 7
He|2 6 1 4 8 5 7 9 3
H;|2 7 9 8 3 4 1 5 8
Hys|3 8 4 % 5 6 1 7 2
H,|4 8 3 9 6 5 T 1 2

Similarly, the preference order of the interns is given in the following table.
For example, hospital 1 is the third choice of intern 1.

H, H, H; Hy Hs Hs H-
1
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Job/Stage 1 2 3 4 5 6 7 8 9 10
1 29 T8 9 36 49 1t 62 56 44 21
2 43 90 75 11 69 28 46 46 72 30
3 91 8 39 74 90 10 12 83 45 33
4 Bl 95 71 99 9 52 85 98 22 43
5 14 6 22 61 26 69 21 49 72 53
6 84 2 52 95 48 T2 47 65 6 25
7 46 37 61 13 32 21 32 8% 30 55
8 31 8 46 74 32 88 19 68 36 79
9 76 6% 76 51 85 11 40 B89 26 74

1¢ 8 13 61 7 64 76 47 52 90 45

Table 12.13: Processing times for a job shop with 10 machines,
10 jobs, and 10 stages per job. For example py1 = 23 and p12 = 78.

IExercise 12.2 (The electric power capacity expamnsion problem revis- ]
ited) Solve Example 6.5 in two ways: as a single linear programming problem i_

and using Benders decomposition. Use the following data.

The generator capacity costs in hundreds of thousands of dollars per mega-

watt (MW) are
c1 = 4.0, Ca = 2.5,
the operaling costs are
f|_1 =43, f21 = 2.0, f31 = 0.5, flz = 8.7, fgz = 4.0, faz = 1.0,
and the unserved demand penalties are
g1 =g2=8g3 = 10.0.
The minirum generator capacities in MW are
by = by = 1000.
For every load level ¢, the demands in MW are
di1 =900, diz = 1000, d; 3 = 1100, d; 4 = 1200,
with probabilities
Pil—= 0.15, Piz= 0.45, Pia — 0.25, Pia= 0.15.
The availebility of generator 1 is
1,1 = 1.0, a1,z = 0.9, ai1,3 = 0.5, a1.4 =O.1,
with probabilities

¢1=02 ¢12=03, 1,3 =04, g1.4 =0.1.
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Machine/Job 1 2 3 4 5 6 7 8 9 10
M,y 1 i 2 3 2 7 2 2 1 2
Mo, 2 6 1 1 3 2 1 3 2 1
Ms 3 4 2 1 1 4 1 5 3
My 4 5 3 8 5 4 3 10 3 8
Ms 5 1 10 4 6 9 10 5 9 9
M; 6 3 6 10 4 3 6 4 4 7
M, 7 7 8 5 10 8 & 6 T 4
Mg 8 3 7 7 8 10 9 9 8 10
My 9 10 5 6 7 5 8 T 10 5
Mg 100 4 9 9 a 6 7 & 6 6

Table 12.14: Each row represents the stages from each job that a
machine needs to process. For example, machine 1 needs to process
tasks (1,1), (2,1), (3,2),...,(10,2).

The availability of generator 2 is
az1 = 1.0, a22 =09, a23= 0.7, az4 =01, az5 =0,
with probabilities

g2,1 = 0.1, g22 =02, ¢23 = 0.5, @24 = 01, @5 = Q.1.

Exercise 12.3 Using a modeling language, formulate Exercise 104, and solve
it using an optimization libray.

Exercise 12.4* (A large scale job shop scheduling problem} Solve the
job shop scheduling problem with 10 machines, 10 jobs, and 10 stages per job.
Table 12.13 depicts the processing times pi;, and Table 12.14 specifies the sets M..
The weights are w; = 1, so our objective is to minimize the average completion
time.

Exercise 12.5 * (A large scale traveling salesman problem) Generate
1000 random points in the unit square [0, 1)%. The distance ¢i; is the Euclidean
distance between the points i and j. Solve the linear programming relaxation of
the cutset formulation of the traveling salesman problem on these 1000 points.
Based on the solution to the linear programming relaxation, develop a branch
and cut algorithm to generate near optimal traveling salesman tours. Hint: Use
Lagrangean relaxation for bounding.

Exercise 12.6 * (A large scale facility location problem) Generate 200
random points in the unit square [0, 1]2. The distance ¢;; is the Euclidean distance
between the points i and j Solve the facility location problem for K = 10
facilities, where each facility must be one of the 200 random points.
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Player o e hy s d
p1 1 7 59 10 10
P2 2 14 60 14 9
D3 3 12 63 19 8
P4 4 4 60 18 6
Ps 5 9 62 20 8
Pe 7T 6 64 21 10
o7 7 8 66 23 10
Ps 4 2 64 13 5
Py 8 2 68 17 8
P1o 5 5 63 25 8§
P 10 6 68 20 9
P2 8 8 67 30 10
P13 10 2 72 24 9
P4 g 5 68 15 7
P15 6 3 68 17 =&
P16 16 2 67 3 6
Yk 11 1 73 27 9
P18 12 5 71 26 10
P1e 11 1 7.2 21 9
P20 9 1 70 14 8

Table 12.15: The rebounding average r;, assists average d;,
height h;, scaring average s;, and overall defense abilty d; for player
i=1,...,20.

Exercise 12.7 Solve Exercise 10.2 using the data of Table 12.15. The desired
targets arc r =7, a~=6, h =6.6, s = 18, d = 8.5.

Exercise 12.8* (A large scale fixed charge network design problem)
Generate 100 random points in the unit square [0,1]2. Lzt G be the complete
directed graph on these 100 points. Let b; be the demand or supply of point .
The demaaxds for the first 99 points are independent and uriformly distributed in
the intervel [—100,100]. The demand for the 100th point ‘s equal to — Z?E bi.
Let the transportation cost ¢;, be equal to the Euclidean distance between f)zn}nts
i and j, and let the construction cost d;; be ten times the Euclidean distance.
Solve the fixed charge network design problem on these 10} points {see Exercise
10.9 for the definition of the fixed charge network design problem).

Exercise 12.9* (The graph coloring problem) Given an undirected graph
G = (N,&), we want to assign a color to every node in N, so that adjacent
nodes are assigned different colors, and the total number of colors is minimized.
Generate 2 graph on 100 nodes, so that if you draw it on the plane no two edges
intersect. Such graphs are called planar. Solve the problem by using a branch
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and bound approach. Hint: We can always color planar graphs using 4 colors.
Use this information to assist the bounding prccess.

12.8 Notes and sources

12.1 For further information on the modeling languages GAMS and AM-
PLE, see the corresponding manuals, The CR/MS Today journal
has frequert surveys of optimization solvers. The journal Interfaces
contains many successful applications of linear optimization methods
to problems arising in telecommunications, finance, transportation,
manufacturing, serv.ces, etc.

12.2 Table 12.1 2as been compiled by Weber {1995), based on experiments
by several researche:s. The general guidelines for the relative perfor-
mance of various algorithms are from our experimentation with large
scale linear programming problems, and also from the manual of the
CPLEX optirmization library.

12.3 The model, the solution methodology, and the computational results
for the fleet assignment problem are taken from Hane et al. (1995).
For further advances and an application of the fleet assignment prob-
lem in an industrial context, see Rushmeier and Kontogiorgis (1997).

12.4 The model and the computational results for the flow management
problem in the US network are taken from Bertsimas and Stock
(1997). The computational results for the European network are from
Vranas (1996).

12.5 The formulation of the single machine scheduling problem is from
Queyranne (1993). The indexing rule (Theorem 12.1) is from Smith
(1956). The job shop scheduling heuristic is maotivated hy the work of
Schultz {1996). A comprehensive review of known formulations and
approximation algorithms for machine scheduling problems is given
in Hall et al. (1996). The branch and bound algorithm, and the com-
putational results fcr the job shop scheduling problem are from Bert-
simas and Hsu (1997). An alternative cutting plane approach for job
shop scheduling preblems, in which we are interested in minimizing
the maximum completion time, is proposed in Applegate and Cook
(1991). For the same problem, a different enumerative but effective
approach is proposed in Martin and Shmoys (1996).

12.7 The stable matching problem addressed in Exercise 12.1 was first de-
fined and solved in Gale and Shapley (1962). A linear programming
approach to the preblem is given in Teo (1996). Exercise 12.2 is al-
most identical to a problem formulated and solved in Infanger (1993).
The data in Exercise 12.4 are from Fisher and Thompson (1963). This
is a famous instance of the job shop scheduling problem, and it took
decades until a provably optimal solution was obtained.
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A

Absolute values, problems with, 17-19, 35
Active constraint, 48
Adjacent
bases, 55
basic solutions, 53, 56
vertices. 78
Affine
function, 15, 34
indepenience, 120
subspace, 30-31
transformation, 364
Affine scalitg algorithm, 394, 395-409,
440-44:, 448, 449
initialization, 403
long-sten, 401, 402-403, 440, 441
performance, 403-404
short-step, 401, 404-409, 440
Air traffic flow management, 544-551, 567
Algorithm, 32-34, 40, 361
cotnplexity of, see running time
efficient, 363
polynomial time, 362, 515
Analytic center, 422
Anticycling
in dual simplex, 160
in netwerk simplex, 357
in parametric programming, 229
in primal simplex, 108-111
Approximation algorithms, 480, 507-511,
528-530, 558
Arbitrage, 168, 199
Arc
backward, 269
balancec, 316
directed 268
endpoint of, 267
forward, 269
in directed graphs, 268
in undirected graphs, 267
incident, 267, 268
incoming, 268
outgoing, 268
Arithmetic model of computation, 362
Artificial vasriables, 112
elimination of, 112-113
Asset pricing, 167-169
Assignment, problem, 274, 320, 323,
325-332
with side constraint, 526-527
Auction algorithm, 270, 325-332, 354, 358
Augmenting path, 304
Average computationa. complexity,
127-128, 138

Index

B

Ball, 364
Barrier function, 4.9
Barrier problem, 420, 422, 431
Basic column, 55
Basic direction, 84
Basic feasible solution, 50, 52
existence, G2-6F
existence of an optimum, 65-67
finite number of, 52
initial, see initialization
magnitude bounds, 373
to bounded varable LP, 76
to general LP, 50
Basic solution, 50, 32
to network flow problems, 280-284
to standard form LP, 53-54
to dual, 154, 161-164
Basic indices, 55
Basic variable, 55
Basis, 55
adjacent, 56
degenerate, 59
optimal, 87
relation to spaming trees, 280-284
Bagis matrix, 55, 87
Basis of a subspace, 29, 30
Bellman equation, 332, 336, 354
Bellman-Ford algorthm, 336-339, 354-355,
358
Benders decomposition, 254-260, 263, 264
Big-M method, 117119, 135-136
Big O nctation, 32
Binary search, 372
Binding constraint, 48
Bipartite matching problem, 326, 353, 358
Birkhoff-von Neumann theorem, 353
Bit model of compttation, 362
Bland’s rule, see snallest subscript rule
Bounded polyhedra, representation, 67-70
Bounded set, 43
Branch and bound, 485-490, 524, 530,
542-544, 560-562
Branch and cut, 484-450, 530
Bring into the basis, 88

C

Candidate list, 94
Capacity

of an arc, 272

of a cut, 309

of a node, 275
Carathéodory’s theorem, 76, 197
Cardinality, 26
Caterer problem, 347

Index

Central path, 420, 422, 444
Clertificate of infeasibility, 165
Changes in data, see sensitivity analysis
Chebychev approximation, 188
Chebychev center, 36
Cholesky factor, 440, 537
Clark’s theorem, 151, 193
Classifier, 14
Closedness of finitely generated cones
172, 196
Circuits, 315
Circulation, 278
decomposition of, 350
simple, 278
Circulation problem, 275
Clique, 484
Closed set, 169
Column
of a matrix, notation, 27
zeroth, 98
Column generation, 236-238
Column geometry, 119-123, 137
Column space, 30
Column vector, 26
Combination
convex, 44
linear, 29
Comrmunication network, 12-13
Complementary slackness, 151-155, 191
economi¢ interpretation, 329
in assignment problem, 326-327
in network flow problems, 314
strict, 153, 192, 437
Complexity theory, 514-523
Computer manufacturing, 7-1)
Concave function, 15
characterization, 503, 525
Cone, 174
containing a line, 175
pointed, 175
polyhedral, 175
Connected graph
directed, 268
undirected, 267
Connectivity, 352
Convex combination, 44
Convex function, 15, 34, 40
Convex hull, 44, 68, 74, 183
of integer solutions, 464
Convex polyhedron, see polyaedron
Convex set, 43
Convexity constraint, 120
Corner point, see extreme peint
-Cost function, 3
Ciramer’s rule, 29
Crossover problem, 541-542
Currency conversion, 36
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Cut, 309

capacity of, 309

minimum, 310, 390

s-t, 309
Cutset, 467
Cutset formulation

of minimum spanning tree problem,

467

of traveling salesman problem, 470
Cutting plane meshod

for integer programming, 480-484, 530

for linear programming, 236-239

for mixed integer programming, 524
Cutting stock problem, 234-236, 260, 263
Cycle

cost of, 278

directed, 269

in directed graphs, 269

in undirected graphs, 267

negative cost, 201

unsaturated, 301
Cyclic problems, 40
Cycling, 92

in primal simplex, 104-105, 130, 138

see also anticycling

D

DNA sequencing, 525
Dantzig-Wolfe decomposition, 239-254,
261-263, 264
Data ftting, 19-20
Decision variables, 3
Deep cuts, 380, 388
Degerneracy, 5862, 536, 541
and interior point methods, 439
and uniqueness, 19{0-191
in assignment problems, 350
in dual, 163-164
in standard form, 59-60, 62
in transportation problems, 349
Degenerate basic solution, 58
Degree, 267
Delayed column generation, 236-238
Delayed constraint generation, 236, 263
Demand, 272
Determinant, 29
Devex rule, 94, 540
Diameter of a polyhedron, 126
Diet problem, §, 40, 156, 260-261
Dijkstra’s algorithm, 340-342, 343, 358
Dimension, 29, 30
of a polyhedron, 68
Disjunctive constraints, 454, 472-473
Dual algorithm, 157
Dual ascent
approximate, 266
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in netwark flow problems, 266,
316-32¢, 357
steepest, 354
termination, 320
Dual plane, 122
Dual problem, 141, 142, 142-1468
optimal solutions, 215-216
Dual simplex method, 156-164, 536-537,
540-544
for network flow problems, 266,
323-325, 354, 358
geometry, 160
revised, 157
Dual variables
in network flow problems, 285
interpretation, 155-156
Duality for general LP, 183-187
Duality gap, 399
Duality in irteger programming, 494-507
Duality in network Alow problems, 312-316
Duality thearem, 146-155, 173, 184, 197,
199
Dynamic programming, 490-493, 530
integer knapsack problem, 236
zero-one knapsack problem, 491-493
traveling salesman problem, 490

E

Edge of a pcdyhedron, 53, 78
Edge of an undirected graph, 267
Efficient aigerithm, see algorithm
Electric power, 10-11, 255-2586, 564
Elementary direction, 316
Elementary row operation, 96
Ellipsoid, 361, 396
Ellipsoid me:hod, 363-392
complexity, 377
for full-dimensional bounded polyhe-
dra, 371
for optimization, 378-380
practical performarce, 380
sliding objective, 379, 389
Enter the basis, 88
Epsilon-relasation method, 266, 358
Evaluation problem, 517
Exponential number of constraints,
380-387 465-472, 551-562
Exponential time, 33
Extreme point, 46, 50
see also basic feasible solution
Extreme ray, 67, 176-177, 197, 525
Euclidean nam, 27

F
Facility location problem, 453-454,

Index

462-464, 476, £18, 565
Farkas’ lemma, 165. 172, 197, 199
Feasible direction, §3, 129
Feasible set, 3
Feasible solution, 3
Finitely generated
cone, 196, 198
set, 182
Fixed charge network design problem, 4785,
566
Fleet assignment problem, 537-544, 567
Flow, 272
feasible, 272
Flow augmentation, 304
Flow conservation, 272
Flow decomposition theorem, 298-300, 351
for circulations, 350
Floyd-Warshall algcrithm, 355-356
Forcing constraints, 453
Ford-Fulkerson algorithm, 305-312, 357
Fourier-Motzkin elimination, 70-74, 79
Fractional programming, 36
Free variable, 3
elimination of, §
Full-dimensional poyhedron, see polyhe-
dron
Full rank. 30, 57
Full tableau, 98

G

Gaussian eliminatioa, 33, 363
Global minimum, 15
Gomory cutting plane algorithm, 482-484
Graph, 267-272

connected, 267, 268

directed, 268

undirected, 267
Graph coloring protlem, 566-567
Graphical solution, 21-25
Greedy algorithm

for minimum spanning trees, 344, 356
Groundholding, 545

H

Halfspace, 43

Hamilton circuit, 521

Held-Karp lower bound, 502

Helly’s theorem, 194

Heuristic algorithms, 480

Hirsch conjecture, 126-127

Hungarian method, 266, 320, 323, 358
Hyperplane, 43

I

Identity matrix, 28

Index

Incidence matrix, 277, 457
truncated, 280
Independent set problem, 484
Initialization
affine scaling algorithm, 403
Dantzig-Wolfe dzcomposition, 250-251
negative cost cycle algorithm, 294
network flow problems, 352
network simplex algorithm, 286
potential reduction algorithm, 416-418
primal path following algorithm,
426-431
primal-dual path following algorithm,
435-437
primal simplex method, 111-119
Inner product, 27
Instance of a problem, 360-36.
size, 361
Integer programimning, 12, 452
mixed, 452, 524
zero-one, 452, 517, 518
Interior, 395
Interior point methods, 393-419, 537
computational aspects, 439-440,
536-537, 540-544
Intree, 333
Tnverse matrix, 28
Invertible matrix, 28

J

Job shop scheduling problem, 476,
551-563, 565, 567

K

Karush-Kuhn-Tucker conditidns, 421
Knapsack problem
approximation algorithns, 507-509,
530
complexity, 518, 522
dynamic programming, 491-493, 530
integer, 236
zero-one, 453
Kénig-Egervéary theorem, 352

L

Label correcting methods, 339-340
Labeling algorithm, 307-309, 357
Lagrange multiplier, 140, 404
Lagrangean, 140, 190
Lagrangean decomposition, 527-528
Lagrangean dual, 495

solution to, 502-507
Lagrangean relaxation, 496, 530
Leaf, 269
Length, of cycle, path, walk, 333
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Leontief systems, 195, 200
Lexicographic pivoting rule, 108-111,

151-132, 137

in revised simrplex, 132

in dual simplex, 160
Libraries, see optimization libraries
Line, 63
Linear algebra, 26-31, 40, 137
Linear combination, 29
Linear inequalities, 165

inconsistent, 194
Linear programmning, 2, 38

examples, 6-14
Linear programming relaxation, 12, 462
Linearly dependent vectors, 28
Linearly independent vectors, 28
Linearly independent constraints, 49
Local minimum, 15, 82, 131
Local search, 511-512, 530
Lot sizing problem, 475, 524

M

Margmnal cost, 155-156
Marriage problem, 352
Matching problem, 470-472, 477-478
see also bipartite matching, stable
matching
Matrix, 26
identity, 28
incidence, 277
inversion, 363
inverse, 28
invertible, 28
nonsingular, 28
positive definite, 364
rotation, 3€8, 388
square, 28
Matrix inversion lemma, 131, 138
Max-flow min-cut theorem, 310-311, 3561,
357
Maximization problems, 3
Maximum flow problem, 273, 301-312
Maximum satisfiability, 529-530
Min-cut problem, see cut
Mean cycle cost minimization, 355, 368
Minimum spanning tree problem, 343-345,
356, 368, 466, 477
multicut formulation. 476
Modeling langnages, 534-535, 567
Moment problem, 35
Multicommodity flow problem, 13
Multiperiod problems, 10-11, 189

N
NT, 518, 531
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N'P-complete, 519, 531
N'P-hard, 513, 531, 556
NSE fellowships, 459-461, 477
Nash equilibrum, 190
Negative costcycle algorithm, 291-301, 357
largest improvement rule, 301, 351, 357
mean cost rule, 301, 357
Network, 272
Network flow problem, 13, 551
capacitated, 273, 291
circulation, 275
complementary slackness, 314
dual, 312-313, 357
formulation, 272-27&
integrality of optimsl solutions,
289-290, 300
sensitivity, 313-314
shortest paths, relation to, 334
single source, 275
uncapacitated, 273, 286
with lowe: bounds, 276, 277
with piecewise linear convex costs, 347
see also primal-dual method
Network simrlex algorithm, 278-291,
356-357, 536
anticycling, 357, 358
dual, 323-325, 354
Newton
direction, 424, 432
method, 432-433, 449
step, 422
Node, 267, 268
labeled, 307
scanned, 307
sink, 272
source, 272
Node-arc incilence matrix, 277
truncated 280
Nonbasic variable, 55
Nonsingular matrix, 28
Null variable, 192
Nullspace, 30
Nurse scheduing, 11-12. 40

0

Objective function, 3

One-tree, 501

Operation count, 32-34

Optimal cont-ol, 20-21, 40

Optimal cost, 3

Optimal solution, 3
to dual, 215-216

Optimality cenditions
for LP problems 82-37, 129, 130
for maximum flow problems, 310
for network flow problems, 298-300

Index

Karush-Kuhn-Tuzker, 421
Optimization libraries, 535-537, 567
Optimization problem, 517
Options pricing, 195
Order of magnitude, 32
Orthant, 65
Orthogonal vectors, 27

P

‘P, 515
Parametric programming, 217-221,
227-229
Path
augmenting, 304
directed, 269
in directed graphs, 269
in undirected graphs, 267
shortest, 333
unsaturated, 307
walk, 333
Path following algorithm, primal, 419-431
complexity, 431
initialization, 425-431
Path following algorithm, primal-dual,
431-438
complexity, 435
infeasible, 435-435
performance, 437-438
guadratic programming, 445-446
self-dual, 436-437
Path following algorithms, 395-396, 449,
542
Pattern classification, 14, 40
Perfect metching, 325, 353
see also matching problem
Perturbation of constraints and degener-
acy, 60, 131-132 541
Piecewise linear convex optimization,
16-17 189, 347
Piecewise linear function, 15, 455
Pivot, 90, 158
Pivot column, 98
Pivot element, 98, 158
Pivot row, 98, 158
Pivot selection, 92-9<
Pivoting rules, 92, 1(8-111
Polar cone, 198
Polar cone theorem, 198-199
Polyhedron, 42
containing a line, 63
full-dimensional, 365, 370, 375-377,
389
in standard form. 43, 53-58
isomorphic, 76
see also represenfation
Polynomial time, 33, 362, 515

Index

Potential function, 409, 448
Potential reduction algorithm, 394,
400-419, 445, 448
complexity, 418, 442
initialization, 415-418
performance, 41%
with line searches, 419, 442-444
Preemptive scheduling, 302,
357
Preflow-push methods, 266, 338
Preprocessing, 540
Price variable, 140
Primal algorithm, 157, 266
Primal problem, 14., 142
Primal-dual method, 266, 320, 321-323,
353, 367
Primal-dual path following method, see
path following algorithm
Probability consistency problem, 384-386
Problem, 360
Product of matrices, 28
Production and dissribution problem, 475
Production planning, 7-10, 35, 40,
210-212, 229
Project management, 335-336
Projections of polyhedra, 70-74
Proper subset, 26
Pushing flow, 278

Q
Quadratic programming, 445446

R

Rank, 30
Ray, 172

see also extreme ray
Recession cone, 173
Recognition problem, 515, 517
Reduced cost, 84

in network flow problems 285
Reduction (of a problem to aother), 515
Redundant constraints, 57-58
Reinversion, 107
Relaxation, see linear programming relax-

ation

Relaxation algoritam, 266, 321, 358
Relaxed dual problem, 237
Representation

of bounded pdlyhedra, 67

of cones, 182, 198

of polyhedra, 179-183, 198
Requirement line, 122
Residual network, 295-297
Resolution theorem, 179, 193, 199
Restricted problem, 233
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Revised dual simplex method, 157
Revised simplex method, 95-98,
105-107
lexicographic rule, 132
Rocket control, 21
Row
space, 30
vector, 26
zeroth, 99
Running time, 32, 362

5

Saddle point of Lagrangean, 190
Samuelson’s substitution theorem, 195
Scaling
in auction algorithm, 332
in maximum flow problem, 352
in network flow problems, 358
Scanning a node, 307
Scheduling, 11-12, 302, 357, 551-563, 567
with precedence constraints, 556
Schwartz inequality, 27
Self-arc, 267
Sensitivity analysis, 201-215, 216-217
adding new equality constraint,
206-207
adding new inequality constraint,
204-206
adding new variable, 203-204
changes in a nonbasic column, 209
changes in a basic column, 210, 232-223
changes in b, 207-208, 212-215
changes in ¢, 208-209, 216-217
ir network flow problems, 313-314
Separating hyperplane, 170
between disjoint polyhedra, 196
finding, 196
Separating hyperplane theorem, 170
Separation problem, 237, 382, 392, 555
Sequencing with setup times, 457-459, 518
Set covering problem, 456-457, 518
Set packing problem, 456-457, 518
Set partitioning problem, 456-457, 518
Setup times, 457-4569, 518
Shadow price, 156
Shortest path problem, 273, 332-343
all-pairs, 333, 342-343, 355-356, 358
all-to-one, 333
relation to network flow problem, 333
Side constraints, 197, 526-527
Simplex, 120, 137
Simplex method, 90-21
average case behavior, 127-128, 138
column gecmetry, 119-123
computaticnal efficiency, 124-128
dual, see dual simplex method
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for degenerate problems, 92
for netwarks, see network simplex
full tableau implementation, $8-105,
105-107
history, 38
implemertations, 94-108
initialization, 111-119
naive implementation, 94-95
petformaice, 536-537, 54-541
revised, see revised simplex method
termination, 91, 110
two-phase, 116-117
unbounded problems, 179
with uppzr bound constraints, 135
Simplex mullipliers, 94, 161
Simplex tableau, 98
Simulated amealing, 512-514, 531
Size of an instance, 361
Slack variablz, 6, 76
Sliding objeciive ellipsoid method, 379, 389
Smallest subscript rule, 94, 111, 137
Span, of a se; of vectors, 29
Spanning paih, 124
Spanning tres, 271-272
see also minimum spanning trees
Sparsity, 107. 108, 440, 536, 537
Square matrix, 28
Stable matching problem, 563, 567
Standard form, 4-5
reduction to, 5-6
visualization, 25
Steepest edge rule, 94, 540-543
Steiner tree problem, 391
Stochastic matrices, 194
Stochastic programming, 254-260, 264,
564
Strong duality, 148, 184
Strong formulations, 461-465
Strongly polynomial, 357
Subdifferential, 503
Subgradient, 215, 503, 504, 526
Subgradient algorithm, 5053-506, 530
Submodular function minimization,
391-392
Subspace, 29
Subtour elimination
in the minimum spaaning tree problem,
466
in the traveling salesman problem, 470
Supply, 272
Surplus variable, 6
Survivable network design problem, 391,
528-529

T
Theorems of the alternative, 166, 194

Index Index

Weierstrass' theoreimn, 170, 199

Total unimodularity, 357 Worst.ease running time, 362

Tour, 383, 469
Tournament problem, 347
Transformation (of & problem to another’,
516
Transportation problem, 273, 274-275, 358
degeneracy, 349
Transpose, 27
Transshipment probem, 266
Traveling salesman problem, directed,
478, 518
branch and bourd, 488-489
dynamic progranming, 490
integer programming formulation, 477
Traveling salesman problem, undirected,
478, 565, 518, 526
approximation agorithm, 509-510, 523
integer programming formulation,
469-470, 476
local search, 511-512, 530
lower bound, 383-384, 501-302
with triangle inejuality, 509-510, 521,
528
Tree, 269
of shortest paths, 333
see also spanning tree
Tree solution, 280

zZ

Zeroth column, 98
Zeroth row, 99

feasible, 280
Typography, 524
U

Unbounded cost, 3

Unbounded problem, 3
characterization, 177-179

Unique solution, 129, 130
to dual, 152, 190-191

Unit vector, 27

Unrestricted variable, see free variable

v

Vector, 26
Vehicle routing probem, 475
Vertex, 47, 50

see also basic feesible solution
Volume, 364

of a simplex, 39C
von Neumann algori:hm, 446-448, 449
Vulnerability, 352

W

Walk
directed, 269
in directed grapls, 268
in undirected grzphs, 267
Weak duality, 146, 184, 495



