
ABSTRACT

In Ordovician time, Gondwana in the area
of northwestern Argentina and northern
Chile had a west-facing active margin. The
evolution of this margin culminated in the
Oclóyic orogeny at the end of Ordovician
time. This orogeny was caused by the collision
of the allochthonous Arequipa-Antofalla ter-
rane with this margin. The early Paleozoic
evolution of northwestern Argentina and
northern Chile contrasts markedly with the
accretionary history of central Argentina and
central Chile, where the Precordillera and
Chilenia terranes docked in the Late Ordovi-
cian and Late Devonian periods, respectively.
An inspection of the available stratigraphic
and geochronological data on sedimentary,
volcanic, and plutonic units of the southern
Central Andes of northern Chile and north-
western Argentina reveals a lull in magmatic
and metamorphic activity lasting for ~100 m.y.,
from Early Silurian to early Late Carbonifer-
ous time. This is interpreted as corresponding
to a tectonic scenario in which the present An-
dean margin was a passive margin of Gond-
wana. This passive margin developed in re-
sponse to the rifting off of a part of the
Arequipa-Antofalla terrane; the present loca-
tion of this block is unknown. Late Carbonif-
erous time marks the renewed onset of sub-
duction, initiating the Andean plate tectonic
setting still prevalent today. Recently pro-
posed models explain the Late Ordovician
orogeny by the collision of Laurentia with
western South America during Laurentia’s
clockwise motion around South America and
away from its position in the Neoproterozoic
supercontinent. In its present form, this hy-

pothesis is difficult to reconcile with the Paleo-
zoic tectonostratigraphic evolution of the
southern Central Andean region.

INTRODUCTION

Recently proposed paleotectonic reconstruc-
tions of Neoproterozoic and early Paleozoic time
suggest that the Laurentian craton was located
close to Antarctica and South America at these
times (Dalziel, 1991; Moores, 1991; Hoffman,
1991). The clockwise movement of Laurentia
around South America during early Paleozoic time
is interpreted to have resulted in repeated plate tec-
tonic interaction of the two continents (Dalziel et
al., 1994). Furthermore, Dalla Salda et al. (1992a)
and Dalziel et al. (1994) proposed that the early
Paleozoic Famatinian orogenic belt of the Andes
in southwestern South America, and the Late
Ordovician–Early Silurian Oclóyic orogen within
the Famatinian belt, may have originated jointly
with the Taconic orogenic belt from the collision
of eastern Laurentia and southwestern South
America, during the latter part of Ordovician time
(Fig. 1). Accordingly, the Late Ordovician rifting
off of Laurentia after the Taconic orogenic pulse is
thought to have left behind the Precambrian Are-
quipa massif in southern Peru, related basement
units in northern Chile, and probably the western
part of northwestern Argentina (Figs. 2 and 3). The
recognition of tectonostratigraphic terranes in cen-
tral Argentina and central Chile (Ramos et al.,
1986) has invited the tentative extrapolation of this
accretionary history to the regions farther north in
northwestern Argentina, northern Chile, southern
Bolivia, and southern Peru (Ramos, 1988). How-
ever, in this contribution we suggest a significantly
different accretionary history of the southern Cen-
tral Andes that is based on our own work and a
compilation of the available information on Paleo-
zoic stratigraphy and the radiometric ages of mag-
matic and metamorphic events of northern Chile
and northwestern Argentina (Figs. 2, 3, and 4).
With regard to the radiometric ages in particular,

one should bear in mind that the Paleozoic rocks of
the central Andes are not as well and systemati-
cally studied as the Appalachian mountain range,
for example, or many other more accessible oro-
gens. Some data compiled in Table 1 should there-
fore be considered preliminary. In the interpreta-
tion of stratigraphic and radiometric data we used
the time scale of Harland et al. (1989). We apply
the data to evaluate earlier models of terrane ac-
cretion in the southern Central Andes (e.g., Dalziel
and Forsythe, 1985; Ramos et al., 1986; Hervé et
al., 1987; Ramos, 1988; Bahlburg and Breitkreuz,
1991; Forsythe et al., 1993) and the hypothesis of
Dalziel et al. (1994), and propose a new terrane
map for the region.

PALEOZOIC RECORD

Figure 4 synthesizes the available data on sed-
imentary, magmatic, and metamorphic events in
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Figure 1. Present-day location of the Taconic
and Famatinian orogens, and the study area in
the southern Central Andes (adapted from
Dalla Salda et al., 1992a).



northern Chile and northwestern Argentina. It
illustrates that magmatic and metamorphic ac-
tivity occurred mainly in the Ordovician and Late
Carboniferous–Permian periods. These peaks of
activity are separated from each other by a pe-
riod of tectonic, magmatic, and metamorphic
quiescence ranging from Early Silurian to early
Late Carboniferous time. The Paleozoic evolu-
tion is presented according to this temporal
three-fold division into Cambrian-Ordovician,

Silurian to Early Carboniferous, and Late
Carboniferous–Permian time.

Evolution During Cambrian and
Ordovician Time

The oldest and easternmost stratigraphic unit
considered here is represented in the Cordillera
Oriental of northwestern Argentina (Fig. 2) by
the metaturbidites of the Puncoviscana Forma-

tion and equivalents of variable metamorphic
grade (Figs. 2, 3, and 4). It acquired its first meta-
morphic overprint in the Early Cambrian Pam-
pean orogeny (Willner et al., 1987; Mon and
Hongn, 1996). In the Cordillera Oriental and
Sierras Pampeanas (Figs. 2, 3, and 4), these rocks
were intruded in Middle Cambrian time by the
post-tectonic peraluminous Santa Rosa de Tastil
and Cañaní granitoids (Figs. 3, 4, and Table 1;
Bachmann et al., 1987; Damm et al., 1990).

The Puncoviscana Formation and the Middle
Cambrian plutons are overlain in the Cordillera
Oriental with an angular unconformity by the
shallow marine, partly tidally influenced quartz-
sandstones and shales of the Late Cambrian
Mesón Group (Figs. 3 and 4). The Mesón Group
has a minimum thickness of 1000 m and was de-
posited on a -west-facing marine platform
(Kumpa and Sanchez, 1988) interpreted to be
part of an epeiric sea east of the continental mar-
gin (Sanchez and Salfity, 1990; Gohrbrandt,
1992). With an erosional unconformity (Fig. 4,
Irúyica event, Turner and Méndez, 1979), the
Mesón Group is overstepped to the east and west
by the sandstones and shales of the Early Ordovi-
cian Santa Victoria Group (Figs. 3 and 4) which
received sediment mainly from the east. The
thickness of the Santa Victoria Group is esti-
mated as approximately 4500 m (Turner, 1960;
Moya, 1988).

In Early Ordovician time, (Tremadocian and
Arenigian), a magmatic arc was farther to the
west in the western Puna region and south of the
Salar de Atacama in northern Chile (Fig. 2). It
led to the formation of basaltic to andesitic lavas
of volcanic arc geochemical affinity, and associ-
ated volcaniclastic apron deposits of approxi-
mately 3500 m thickness (Las Vicuñas and
Aguada de la Perdíz formations, Complejo Ígneo-
Sedimentario del Cordón de Lila (Figs. 3 and 4;
Koukharsky et al., 1988; Niemeyer, 1989; Breit-
kreuz et al., 1989; Bahlburg, 1990; Moya et al.,
1993). Graptolites and trilobites present in clas-
tic intercalations date the volcanic rocks as
Tremadocian and Arenigian (e.g., Garcia et al.,
1962; Coira and Nullo, 1987; Bahlburg et al.,
1990; Moya et al., 1993). Cogenetic calc-alkaline
intrusive activity is recorded in the Choschas
granodiorite (502 ± 7 Ma) in the Complejo
Ígneo-Sedimentario del Cordón de Lila in north-
ern Chile and in Archibarca granite (485 ± 15 Ma)
in the western reaches of the southern Puna
(Figs. 3, 4, and Table 1; Mpodozis et al., 1983;
Palma et al., 1986; Niemeyer, 1989; Rapela et
al., 1992). Crustal extension in the region of the
Faja Eruptiva de la Puna Oriental farther to the
east in the northern Puna (Figs. 2 and 3) is indi-
cated by minor volumes of basaltic pillow lavas
and sills of within-plate geochemical affinity
(Coira and Koukharsky, 1991).
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Coira et al. (1982) and Rapela et al. (1992) in-
terpreted calc-alkaline dacites and granites of the
Faja Eruptiva de la Puna Oriental as a magmatic
arc of a second east-dipping subduction zone in
the central region of the northern Puna which de-
veloped after the first magmatic event connected
to extension. Geochemical data for both basic
and silicic rocks, however, indicate that their
formation was more probably related to exten-
sion (Hanning, 1987). Furthermore, the silici-
clastic successions of the Santa Victoria Group in
the Cordillera Oriental to the east of the Faja
Eruptiva de la Puna Oriental do not contain evi-

dence of syndepositional magmatism. Transgres-
sive and regressive facies patterns reflect global
sea-level changes during Early Ordovician time
and indicate the absence of tectonic disturbances
(Moya, 1988) that would be expected in the prox-
imity of an arc. The major regression which oc-
curred in early Middle Ordovician time (Llan-
virnian) was connected to tectonic activity in the
western reaches of the Puna basin (Fig. 5) and
close to the western arc.

Tectonic subsidence rates increased at the be-
ginning of the Middle Ordovician in the western
Puna basin from about 65 m/m.y. to about

600 m/m.y., thus marking the change from basin
evolution driven by extension to the inception of a
foreland basin (Allen et al., 1986; Bahlburg,
1991b). Patterns of subsidence and facies distribu-
tion are compatible with the emplacement of
supracrustal loads of 8000 m thickness on the
western margin of the basin (Bahlburg and Fur-
long, 1996). This was accompanied on the eastern
side of the basin by the emergence of the silici-
clastic platform of the Santa Victoria Group in the
Cordillera Oriental (Figs. 2, 3, and 5) during the
early Llanvirnian Guandacol event (Fig. 4; Salfity
et al., 1984), due to the development of a periph-
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Figure 3. Outcrop map of Paleozoic units in
northwestern Argentina and northern Chile,
modified from Reutter et al. (1994). Key: 1:
Precambrian to early Paleozoic sedimentary
and metamorphic rocks; 2: Precambrian to
Cambrian plutonic rocks; 3: early Paleozoic
plutonic rocks; 4: plutonic rocks of unspecified
Paleozoic age; 5: late Paleozoic plutonic rocks;
6: Precambrian and Cambrian sedimentary
rocks; 7: early Paleozoic (Cambrian to Silu-
rian) sedimentary and volcanic rocks; 8: late
Paleozoic (Devonian to Permian-Triassic) sed-
imentary and volcanic rocks; 9: salars. Cir-
cled numbers, lithological units and localities:
1: Archibarca granite; 2: Las Vicuñas, Ari-
zaro, and Cerro Oscuro formations; Salar del
Rincón Formation and ill-defined, unnamed
Devonian beds; 3: Aguada de la Perdíz For-
mation; 4: Albayay Superunit; 5: Cerros de
Cuevitas and Sierra del Tigre formations;
6: Complejo Ígneo Sedimentario del Cordón
de Lila, Cordón de Lila and Zorritas Forma-
tion; 7: Chañaral Melange; 8: Cordillera Ori-
ental; 9: El Toco Formation and Bellavista
pluton; 10: Faja Eruptiva de la Puna Orien-
tal; 11: Las Tórtolas Formation; 12: Puncovis-
cana Formation; 13: Peine Group; 14: Puna
Turbidite complex; 15: Sierra Limón Verde
complex; 16: Santa Victoria and Mesón
groups; 17: Santa Rosa de Tastil granite;
18: Arequipa massif; 19: Ordovician ophio-
lites associated with the Ordovician sedimen-
tary rocks; 20: Sierra de Moreno; 21: Río Loa
canyon; 22: Cordillera Oriental trondhjemites,
23: Mejillonia basement rocks, Mejillones
peninsula.



eral bulge in response to load emplacement on the
basin’s western side (Fig. 6). In response to this
loading event, the approximately 3500-m-thick
volcaniclastic Puna Turbidite complex formed in
the Puna basin between the arc and the emerging
Cordillera Oriental region (Figs. 2, 3, and 5).

Peridotites, including wehrlites and serpen-
tinites, are preserved only in the southern Puna as
tectonic thrust slices within the biostratigraphi-
cally dated Ordovician successions of turbidites
(Figs. 2 and 3; Argañaraz et al., 1973; Allmen-
dinger et al., 1983; Kay et al., 1984; Zappettini et
al., 1994). The sedimentary rocks contain inter-
calated basaltic flows and pillow lavas, and silicic
volcaniclastic rocks (U. Zimmermann, 1996, per-
sonal commun.). Minor volumes of gabbro in-
truded into all units prior to the main phase of Late

Ordovician deformation. The wehrlites have
e-type mid-ocean ridge basalt (MORB) geochem-
ical features and are interpreted as part of a dis-
membered ophiolite sequence (Blasco et al.,
1996).

The mafic-ultramafic assemblages have not
been dated. They were considered to be Ordovi-
cian ophiolites by Allmendinger et al. (1983),
Forsythe et al. (1993), and Blasco et al. (1996),
whereas structural data indicate a pre-Ordovician
and most likely Precambrian age (Mon and
Hongn, 1991). We agree with the assumption of an
Ordovician age for the ultramafic assemblages be-
cause (1) eastward subduction beneath the region
of the Cordillera Oriental east of the southern Puna
during the Ordovician seems to be indicated by the
Ordovician trondhjemite plutons in the Cordillera

Oriental (Figs. 2, 3, and 7; Galliski et al., 1990;
Rapela et al., 1992; Ramos and Vujovich, 1995);
(2) they appear to be always associated with the
Ordovician deposits; and (3) Precambrian rocks
are generally very scarce in the Puna.

The Late Cambrian and Ordovician units in
northern Chile, the Puna, and the Cordillera Ori-
ental were folded in Ashgillian time during the
Oclóyic orogeny (Fig. 4; Turner and Méndez,
1979; Monaldi and Boso, 1987). In the Puna, this
tectonic event led to an upright to west-verging
fold pattern (e.g., Mon and Hongn, 1987); folds
verge to the east only along the western margin of
the Puna (Moya et al., 1993). Folding was accom-
panied by the intrusion of peraluminous grani-
toids, which are syntectonic and post-tectonic, in
eastern northern Chile, the eastern Puna and the
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Cordillera Oriental (Figs. 2, 3, and 4; Table 1;
Mpodozis et al., 1983; Rapela et al., 1992). The
magmatic rocks of the Faja Eruptiva de la Puna
Oriental were deformed by sinistral, subvertical
shear zones (Bahlburg, 1990). Interpretation of in-
trusive activity in the Faja Eruptiva de la Puna
Oriental (Fig. 3) is complicated by a discrepancy
of radiometric and biostratigraphic age data.
Rb-Sr whole-rock and U-Pb monazite ages date

the crystallization of the intrusives at between
476 and 467 ± 1 Ma (Fig. 4, and Table 1; Middle
Ordovician; Omarini et al., 1984; Lork and
Bahlburg, 1993). However, in the northern Puna
the intrusives, including one of the dated granites,
intruded folded graptolite-bearing sedimentary
rocks of Late Ordovician age (Fig. 4; Bahlburg et
al., 1990). Regional metamorphism affected base-
ment units in northern Chile during the Late Or-

dovician (Sierra de Moreno, Belén, Figs. 3, 4, and
Table 1; Hervé et al., 1987; Damm et al., 1990). A
retrograde metamorphic overprint of some Or-
dovician intrusives in the Sierras Pampeanas of
northwestern Argentina is tentatively assigned to
the Silurian (Figs. 2, and 4; C. W. Rapela, 1996,
personal commun.).

Geodynamic Interpretation. The shallow-
marine quartz-arenites and shales of the Cambrian
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TABLE 1. REPRESENTATIVE RADIOMETRIC DATA OF LITHOSTRATIGRAPHIC UNITS

Unit Lithology Age Method Reference
(Ma)

Southern Peru, Arequipa Massif
Mollendo Granulite 1198 +6/–4 U-Pb, Z Wasteneys et al. (1995)

1900 U-Pbui, Z
Granulite 970 ± 23 U-Pb, Z

1900 U-Pbui, Z
Granulite 1910 ± 36 U-Pbui, Z Dalmayrac et al. (1977)

720 ± 29 U-Pb, Z
Granulite 1811 ± 39 Rb-Sr, WR Cobbing et al. (1977)
Granulite 1918 ± 33 Rb-Sr, WR Shackleton et al. (1979)

Atico igneous complex Granite 440 ± 7 Rb-Sr, WR Shackleton et al. (1979)
San Nicolas batholith Diorite, granodiorite 392 ± 22 Rb-Sr, WR Shackleton et al. (1979)
San Nicolas batholith San Juan granodiorite 388 +13/–18 U-Pb, Z Mukasa and Henry (1990)

989 +114/–126 U-Pbui, Z
Lomitas granodiorite 425 ± 4 U-Pb, Z

1604 +60/–62 U-Pbui, Z

Southern Bolivia
Berenguela Augen gneiss clasts 1171 ± 20 U-Pbui, Z Tosdal et al. (1994)

1158 ± 12 U-Pbui, Z
Migmatitic gneiss 1098 ± 48 U-Pbui, Z

San Andres borehole Metagranite 1050 ± 100 Rb-Sr Lehmann (1978)
530 ± 30 K-Ar

Northern Chile
Belén Orthogneiss 507 ± 48 U-Pb, Z Basei et al. (1996)
Sierra de Moreno Migmatite 1213 +28/–25 U-Pb, Z Damm et al. (1990)

Orthogneiss 466 +8/–7 U-Pb, Z Damm et al. (1990)
Complejo Ígneo-Sedimentário del 

Cordón de Lila Choschas granodiorite 502 ± 7 U-Pb, Z Damm et al. (1990)
Tucúcaro granite 450 +12/–11 U-Pb, Z Damm et al. (1990)
Tucúcaro granite 441 ± 8 Rb-Sr, WR Mpodozis et al. (1983)
Cerro Lila diorite 434 ± 2 U-Pb, Z Damm et al. (1990)
Pingo Pingo granodiorite 429 ± 11 K-Ar, Hbl, Bi Mpodozis et al. (1983)

Sierra Limón Verde complex Gneiss 309 ± 5 Rb-Sr, WR Hervé et al. (1985)
Gneiss 276 ± 6 U-Pb, Z Damm et al. (1990)
Amphibolite, mica schist 312–218 K-Ar, Hbl, Mu, Bi Hervé et al. (1985)
Amphibolite 300 ± 20 Rb-Sr, WR Cordani et al. (1988)
Granodiorite 298 ± 1.5 U-Pb, Z Damm et al. (1990)

777 +36/–35 U-Pbui, Z
Granodiorite 293 ± 11 K-Ar, Bi Hervé et al. (1985)
Granodiorite 267 ± 6 K-Ar, Bi Hervé et al. (1985)
Granite 276 ± 24 Rb-Sr, Wr Cordani et al. (1988)

Bellavista Granite 318 K-Ar Maksaev and Marinovic (1980)
Albayay Superunit Granite 292 ± 14 U-Pb, Z Berg et al. (1983)

Cerro del Vetado granite 236 ± 3 Rb-Sr, WR Brook et al. (1986)
Granite 217 ± 12 U-Pb, Z Berg and Baumann (1985)

Puna Doña Ines Chica granodiorite 270 ± 10 Rb-Sr, WR Brook et al. (1986)
Corral del Alhambre granodiorite 248 ± 2 Rb-Sr, WR Brook et al. (1986)
Montandon granodiorite 275 ± 6 K-Ar, Bi Brook et al. (1986)

Las Tórtolas Formation Turbidite shale 280 ± 15 Rb-Sr, WR Brook et al. (1986)
Peine Group Ignimbrite 268 ± 6 K-Ar, ? Gardeweg (1988)

Crystal tuff 278 ± 8 K-Ar, Bi Breitkreuz and Zeil (1994) and 
references therein

Granitoids 305–202 U-Pb, Rb-Sr, K-Ar

Northwestern Argentina
Puncoviscana Formation Slates 565 ± 7 K-Ar, WR Adams et al. (1990)

Mica schists 535 ± 6 K-Ar, WR
Santa Rosa de Tastil Monzogranite 536 ± 7 U-Pb, Z Bachmann et al. (1987)
Puna Archibarca granite 485 ± 15 K-Ar, Bi Palma et al. (1986)

Faja Eruptiva de la Puna granites 476–467 ± 1 U-Pb, M Lork and Bahlburg (1993)
Faja Eruptiva de la Puna granite 471 ± 12 Rb-Sr, WR Omarini et al. (1984)

Note: WR—whole rock age; Bi—biotite mineral age; Hbl—hornblende mineral age; Mu—muscovite mineral age; Z—zircon mineral age; M—monazite;
U-Pbui—upper intercept.



Mesón Group were deposited on a slowly subsid-
ing platform on the eastern margin of an exten-
sional basin (Gohrbrandt, 1992). Because there is
no Late Cambrian record of (1) magmatic or
metamorphic activity in this region and (2) a west-
ern basin margin, it is unclear whether these units
reflect the development of a short-lived passive
margin (about 20 m.y.) or of a back-arc margin at
the cratonward side of the basin (Figs. 6 and 7).

During Early Ordovician time, the Puna basin
and the siliciclastic platform of the Santa Victoria
Group were in a back-arc position relative to the
magmatic arc in the western Puna and in northern
Chile (Figs. 6 and 7). In the northern Puna, the
loading event on the western basin margin marks
the change from an extensional to a foreland
basin setting in Middle Ordovician time. The be-
ginning of eastward thrusting of the westward-
lying arc over the Puna basin, probably during
the Guandacol event (Fig. 4), resulted in east-
verging folds at the western basin margin (Fig. 6;
Moya et al., 1993). In contrast to the northern
Puna (Fig. 6), back-arc extension was more pro-
nounced in the southern Puna (Fig. 7; Forsythe et
al., 1993) because ophiolites of inferred Ordovi-
cian age are restricted to this area. Closure of the
southern part of the Puna basin led to the estab-
lishment of an east-dipping subduction zone near

the Puna–Cordillera Oriental border, as indicated
by the trondhjemites in the Cordillera Oriental
(Figs. 2, 3, and 7). During later stages of shorten-
ing in the Oclóyic orogeny, the Cordillera Orien-
tal is inferred to have been thrust westward over
the eastern edge of the Puna, thus producing east-
dipping thrusts and the prominent west-verging
fold pattern in this region (Figs. 6 and 7; Mon and
Hongn, 1996).

Silurian to Early Carboniferous Evolution

In the Puna, the Oclóyic orogeny resulted in an
angular unconformity between the Ordovician
rocks and coarse-grained, quartz-rich continental
and intertidal to shallow subtidal lower shore-
face deposits of the Salar del Rincón Formation
of early Llandoverian age (Figs. 3 and 4; Isaac-
son et al., 1976; Benedetto and Sanchez, 1990).
The Salar del Rincón Formation represents the
only evidence of marine deposition in this region
during Silurian time. From Early Silurian time
until the early Late Carboniferous period (ap-
proximately 100 m.y.), there is no evidence in the
region of igneous or metamorphic activity
(Fig. 4). Although the number of available radio-
metric age data of a specific stratigraphic unit or
time interval does not necessarily represent a

measure of the intensity or geographical extent of
the dated event, we do not consider the about
100 m.y. gap in the northern Chilean and north-
western Argentinian record an artifact because a
number of geochronological studies defined this
gap (Table 1; Mpodozis et al., 1983; Berg et al.,
1983; Hervé et al., 1985; Brook et al., 1986;
Damm et al., 1990; Breitkreuz and Zeil, 1994).

At the beginning of Devonian time, marine
deposition shifted westward to northern Chile.
The approximately 2700-m-thick Zorritas Forma-
tion (Figs. 2, 3, and 4; Davidson et al., 1981;
Bahlburg and Breitkreuz, 1991, and references
therein) is exposed in large outcrops to the south
of the Salar de Atacama (Fig. 3). In the Cordón de
Lila (Fig. 3), Early Devonian shore-face deposits
of the Zorritas Formation transgress a soil horizon
formed on the Late Ordovician Tucúcaro pluton.
Considerable denudation is thus indicated for
Silurian time. The biostratigraphical record, al-
though incomplete, allows for the stratigraphic
correlation of units and depositional events
recorded in the Zorritas Formation (Cecioni, 1982;
Isaacson et al., 1985; Breitkreuz, 1986; Isaacson
and Sablock, 1989; Bahlburg and Breitkreuz,
1993). Beds of Emsian-Eifelian or Givetian age
contain a mixed brachiopod fauna consisting of
elements pertaining to either the warmer water
Eastern Americas Realm or the colder water
Malvinokaffric Realm, a situation also present in
coeval beds overlying the Arequipa Massif in
southern Peru (Isaacson and Sablock, 1989;
Boucot et al., 1980, 1995).

The Zorritas Formation records alternating
intertidal and shallow subtidal quartz-rich silici-
clastic deposition throughout Devonian and
Early Carboniferous time. Subsidence rates, av-
eraging 18 m/m.y. (Bahlburg, 1991a), are thus in
the range of typical values of passive margins and
interior basins (e.g., Bond et al., 1984; Angevine
et al., 1990). Subsidence appears to have been
balanced by detrital input. Paleocurrent indica-
tors document derivation of the detritus from
eastern sources. This marine record ends with an
erosional unconformity, which is overlain by the
continental volcanic-sedimentary successions of
the Peine Group (Fig. 4). The age spanned by the
unconformity is uncertain. Available strati-
graphic evidence indicates its age to be close to
the Early to Late Carboniferous boundary and
extending into Late Carboniferous time (Osorio
and Rivano, 1985; Bahlburg and Breitkreuz,
1991; Breitkreuz et al., 1992).

From Late Devonian time to the end of Car-
boniferous time, quartz-rich turbidite sedimenta-
tion took place farther west in the northern
Chilean Cordillera de la Costa (Fig. 2). These
rocks are grouped into the Las Tórtolas, El Toco
and Sierra del Tigre formations (Figs. 3, 4, and 8;
Ulricksen, 1979; Harrington, 1961; Niemeyer et
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Figure 5. Palinspastically unrestored Early and Middle Ordovician paleogeography of the
Puna basin and westwardly adjacent arc in northwestern Argentina and northern Chile.



al., 1985). The stratigraphic ages of these forma-
tions are indicated by sparse fossils, including
plant remains, conodonts, brachiopods, and pelec-
ypods (Maksaev and Marinovic, 1980; Bahlburg,
1987; Niemeyer et al., 1985). Sedimentologically,
the turbidite units represent locally anchored and
aggradational turbidite systems typical of some
extensional basins (Macdonald, 1986; Bahlburg
and Breitkreuz, 1993). Paleocurrent data docu-
ment axial transport to the south and subordi-
nately to the north, as well as transport toward the
southeast and southwest. These data indicate that
detritus was not only derived from eastern
sources, but also from an unknown source in the
west (Bahlburg and Breitkreuz, 1993). The con-
temporary shelf and the positive area of the
Oclóyic orogen were located to the east (Fig. 8).
Isaacson (1975) showed that the Devonian depos-
its of Bolivia were almost entirely shed from a

western source. This source has been interpreted
as a western and southern extension of the Are-
quipa basement massif of southern Peru, or as be-
ing connected to a “mysterious” Pacific continent
(e.g., Dalmayrac et al., 1980; Fig. 8). The present
location of this western source region is unknown.

Only the Las Tórtolas Formation contains mi-
nor amounts of subvolcanic and extrusive basic
rocks, and andesitic and dacitic tuffs. Their geo-
chemical features characterize this magmatism as
having tholeiitic or alkaline within-plate affinities
(Bell, 1982; Breitkreuz et al., 1989). In view of
the absence of outcrops of oceanic crust and the
presence of quartz-rich mica schists, migmatites,
and rare intermediate orthogneisses underlying
the El Toco Formation (Lucassen et al., 1994),
these within-plate magmatic rocks are interpreted
to have been erupted through continental crust.

Around the Devonian-Carboniferous boundary,

the Chanic and Eohercynian orogenies affected the
regions of central Argentina and southern Peru and
northern Bolivia, respectively (Fig. 4; Dalmayrac
et al., 1980; Coira et al., 1982). No related uncon-
formity or deformation was observed in the Zor-
ritas Formation or the turbidite units.

Geodynamic Interpretation. We conclude
that in Silurian to Early Carboniferous time no
subduction took place at this part of the proto-
Andean margin (Figs. 8 and 9a). Although flat-
angle subduction would be a fitting scenario to ex-
plain the absence of magmatism during this time
span, we consider it unlikely in view of the lack of
strong deformation connected to such a setting.
The recent central Chilean margin is a well-
studied example of a modern flat-angle subduc-
tion setting that caused the formation of a moun-
tain range as high as 7 km by the thin-skinned
stacking of several thrust sheets (e.g., Mpodozis
and Ramos, 1990). No comparable tectonic activ-
ity is documented in the mid-Paleozoic rocks of
northern Chile or northwestern Argentina. To-
gether with the absence of magmatism and meta-
morphic events, the depositional patterns of the
clastic units and the subsidence evolution of the
margin make it likely that this region evolved in a
passive margin setting during Devonian and Early
Carboniferous time.

Late Carboniferous to Permian Evolution

In the Late Carboniferous period, turbidite
deposition continued in the Cordillera de la Costa
in the Sierra del Tigre and the Las Tórtolas Forma-
tions (Figs. 2, 3, and 4; Niemeyer et al., 1985). The
turbidite units were increasingly affected by
synsedimentary deformation, slumps, and the dis-
integration of rocks into dismembered formations
of variable thickness. Synsedimentary deforma-
tion was followed by tectonic folding in the Late
Carboniferous Toco tectonic event (Fig. 4;
Bahlburg and Breitkreuz, 1991). The combination
of synsedimentary and tectonic deformation led in
the Las Tórtolas Formation to the formation of the
approximately 3-km-thick Chañaral melange,
which is interpreted as an accretionary prism (Bell,
1982, 1987). The Toco tectonic event affected only
the turbidite units in the Cordillera de la Costa, the
strata of the Zorritas Formation farther to the east
were only tilted by block rotations during Permian
or Triassic time. Fold axes in the turbidite units
strike north-south and less commonly northwest-
southeast; folds have a prominent vergence to the
west (Miller, 1970a; Bell, 1987). In the Sierra del
Tigre Formation, the turbidites are unconformably
overlain by the Early Permian limestones and
clastic rocks of the Cerros de Cuevitas Formation,
which contain shallow-marine brachiopods
(Figs. 4 and 9b; Niemeyer et al., 1985; H.
Niemeyer, 1996, personal commun.).

GEODYNAMIC EVOLUTION, ARGENTINA AND CHILE

Geological Society of America Bulletin, July 1997 875

sl

a

Mesón Group and
Lower Santa

Victoria Group

sl

b

Puna Turbidite

sl

c

Complex

Late Cambrian

Early Ordovician

eastern Puna
west-verging folds

western Puna
east-verging folds

Complejo Ígneo-Sedimentario
del Cordón de Lila

sl

d

eastern Puna
   granites

Late Ordovician-Early Silurian

volcaniclastic apron
deposits

Complejo Ígneo-Sedimentario
del Cordón de Lila

Aguada de la
Perdíz Fm.

eastern Puna
pillow basalts

and silicic lavas

Middle Ordovician

peripheral
bulge

volcaniclastic
rocks

siliciclastic
rocks

oceanic crust no evidence
of subduction

lavas

platform
deposits

AAT

  future position of
the Ordovician basin

W E

CORDILLERA
   ORIENTALNORTHERN PUNA

AAT

AAT

AAT

intrusive
rocks

Arequipa-Antofalla
TerraneAAT

Pampia
Terrane

Figure 6. Schematic cross sec-
tions outlining the evolution of
the northern Puna of northwest-
ern Argentina and northern
Chile during Late Cambrian and
Ordovician time. sl—sea level.



Toward the end of Late Carboniferous time, in-
trusive and extrusive calc-alkaline magmatism oc-
curred throughout northern Chile (Bellavista plu-
ton,Albayay superunit and equivalents in northern
Chile, Peine Group, and Sierra LimónVerde com-
plex; Figs. 2, 3, 4, 10, and Table 1). The latest Car-
boniferous radiometric ages of theAlbayay super-
unit (292 Ma and younger, Table 1) establish the
younger limit of the Toco folding event, because
some of these plutons intrude the folded turbidite
units and the Chañaral melange. Magmatism was
accompanied by the deposition of thick volcani-
clastic successions in the area surrounding the
Salar deAtacama (Peine Group, Figs. 3, 4, 9b, and
Table 1). The volcaniclastic deposits interfinger to
the east and west with the marine carbonates of the
Cerros de Cuevitas and Arizaro formations, re-
spectively (Figs. 3, 4, and 10). The geochemical
features characterize the plutons and the volcanic
rocks as having originated in an arc setting
(Davidson et al., 1985; Brook et al., 1986; Brown,
1990; Breitkreuz, 1991). There is coeval regional
high-pressure metamorphism in the gneisses,
schists, and amphibolites of the Sierra Limón
Verde complex (Figs. 3 and 4, and Table 1; Hervé
et al., 1985; Cordani et al., 1988; Damm et al.,
1990; Lucassen et al., 1996). Hervé et al. (1985)
interpreted these metamorphic rocks as represent-
ing a deep structural level of a convergent margin
accretionary complex.

The age of deformation that resulted in the
Chañaral melange accretionary prism is crucial
in piecing together the geodynamic evolution of
the northern Chilean margin in Late Carbonifer-
ous time. Its exact stratigraphic position in the
late Paleozoic assemblage of northern Chile is
poorly defined, because the formation of the
melange has not yet been radiometrically dated.
However, an indication of the age of this event
may be given by the 280 Ma Rb-Sr whole-rock
age of the low-grade regional metamorphism
which homogenized the isotope systems in the
Las Tórtolas Formation and the Chañaral melange
(Figs. 3 and 4, and Table 1; Brook et al., 1986).
This age in turn falls in the range of the radio-
metric ages of metamorphism of the deeper part
of the accretionary prism in Sierra Limón Verde
complex (Figs. 3 and 4; and Table 1). We there-
fore interpret that these data, and especially the
age of metamorphism of the Las Tórtolas Forma-
tion, indirectly also date the Chañaral melange as
Late Carboniferous (Chañaral melange?, Fig. 4).

Geodynamic Interpretation. The passive
margin stage during Silurian through early Late
Carboniferous time came to an end when sub-
duction began in the Late Carboniferous period
(Fig. 9). Arc-related magmatism and metamor-
phism commenced and the turbidite units of the
Cordillera de la Costa were deformed and partly
metamorphosed when the accretionary wedge of
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the Chañaral melange and the Sierra Limón
Verde complex formed. We interpret the uncon-
formity that separates the turbiditic Sierra del
Tigre Formation from the shallow-marine car-
bonates of the Cerros de Cuevitas Formation
(Fig. 4) as documenting the growth of the accre-
tionary wedge from deeper marine to shallow
marine environments. At the same time, the clas-
tic shelf of the Zorritas Formation was incorpo-
rated into the evolving arc of the Peine Group in-
trusive and volcanic rocks (Figs. 9b and 10).

TECTONOSTRATIGRAPHIC
TERRANES OF NORTHWESTERN
ARGENTINA AND NORTHERN CHILE

After the first discussion of tectonostratigraphic
terranes of northwestern Argentina and northern
Chile by Dalziel and Forsythe (1985), terrane
analysis was significantly furthered by the publi-
cation of the first simplified terrane map by Ramos
(1988; Fig. 11). The terrane distribution shown in
this map as applied to northwestern Argentina and
northern Chile was strongly influenced by the
recognition of two allochthonous terranes that
docked to central Argentina during the Paleozoic.
(1) The Precordillera terrane, which later was rec-
ognized to form part of the larger composite
Cuyania-Precordillera Terrane, accreted to Ar-
gentina at the end of Ordovician time (Figs. 11
and 12; Ramos et al., 1986, 1993; Astini et al.,
1996). (2) The Chilenia terrane docked during
Late Devonian time (Fig. 11; Ramos et al., 1986).
The Cuyania block of the Cuyania-Precordillera
terrane (Fig. 12) consists of low-, medium-, and
high-grade metamorphic rocks that were meta-
morphosed between ca. 900 and 1100 Ma -
(McDonough et al., 1993). These rocks are con-
sidered to be an equivalent of the basement
underlying the Precordillera block, which, on the
basis of zircon and whole-rock Nd-Pb isotopic ev-
idence, is interpreted to have originated in the
Grenville belt of eastern Laurentia (Abbruzzi et al.,
1993; Kay et al., 1996; Astini et al., 1996). The
Precordillera block of the Cuyania-Precordillera
terrane (Figs. 11 and 12) is of particular signifi-
cance because it bears a very pronounced litho-
stratigraphic and biostratigraphic resemblance in
its Cambrian and Early Ordovician carbonate suc-
cessions to the southern Appalachians (Bond et al.,
1984; Ramos et al., 1986; Astini et al., 1995). It is
recognized as a sliver of the Appalachians and the
mode of transfer to South America is intensively
debated (e.g., Bond et al., 1984; Ramos et al.,
1986, 1993; Dalla Salda et al., 1992a; Dalziel et
al., 1994, 1996; Astini et al., 1995, 1996).

The Chilenia terrane is largely obscured by
late Paleozoic and younger magmatism and
metamorphism (Ramos et al., 1986; Mpodozis
and Kay, 1992). It includes a basement that indi-
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cates metamorphism ca. 500 Ma and 415 Ma
(Caminos et al., 1979; Ribba et al., 1988), over-
lain by Silurian limestones (Ramos, 1994). It is
suspect because the origin of this tectonostrati-
graphic terrane is unknown. In his map, Ramos
(1988) extended the Chilenia terrane into western
northern Chile and up to the Chilean-Peruvian
frontier in the region of the Arica bend of the
modern Andes, and suggested that it may repre-
sent the basement of a large part of the region.

Arequipa-Antofalla Terrane

A crucial piece in the reconstruction of the
Paleozoic terrane assemblage of the Central
Andes is the Arequipa-Antofalla terrane (Figs. 11
and 12). In southern Peru, the Arequipa massif
(Fig. 3) comprises early Paleozoic granitoids and
granulite units, which yielded radiometric zircon
ages of metamorphism at 1198 +6/–4 Ma and
970 ± 23 Ma, with upper intercepts ca. 1900 Ma
(Table 1; Wasteneys et al., 1995). These upper in-
tercept ages coincide with U-Pb upper intercept
and Rb-Sr whole rock ages of 1910 ± 36 Ma and
1918 ± 33 Ma, respectively (Dalmayrac et al.,
1977; Shackleton et al., 1979; Table 1), and were
interpreted as the Early Proterozoic age of the
protoliths by Wasteneys et al. (1995). Early Paleo-

zoic plutons of the Arequipa massif and metamor-
phic rocks in southern Bolivia yielded U-Pb upper
intercept and Rb-Sr whole-rock ages of between
ca. 1604 and ca. 1000 Ma (Mukasa and Henry,
1990; Tosdal et al., 1994; Lehmann, 1978;
Table 1). This temporal range is in northern Chile
and is represented by a U-Pb zircon age of 1213
+28/–25 Ma of migmatites in the Sierra de
Moreno (Fig. 3 and Table 1; Damm et al., 1990).
Accordingly, these regions are included in the
Arequipa-Antofalla terrane (Figs. 11 and 12;
Ramos, 1988). A preliminary Rb-Sr isochron by
Pacci et al. (1980) from the Esquistos de Belén in
northern Chile (Fig. 1) indicating an age of
1000 Ma is not considered here. A recalculation
of these data by Damm et al. (1990) pointed to an
age of 495 Ma. U-Pb zircon dating by Basei et al.
(1996) yielded an age of 507 ± 48 Ma (Table 1).
Also included with the Arequipa-Antofalla ter-
rane are undated metamorphic assemblages in the
western part of the Río Loa Canyon in the
Cordillera de la Costa (Fig. 3, no. 21; Lucassen et
al., 1994) and west of the Salar de Antofalla in the
southern Puna of northwestern Argentina (Figs. 2
and 3; Ramos, 1988; Palma, 1990; Tosdal et al.,
1994). The combination of Early and Middle
Proterozoic radiometric ages in the Arequipa-
Antofalla terrane represents a unique feature in

the Andes. Because of the similarity of the Prot-
erozoic age distribution in the Arequipa massif
and the Makkovik-Ketilidian belt and the Trans-
Labrador batholith in northeastern Laurentia,
Wasteneys et al. (1995) envisaged the Arequipa
massif as part of the Arequipa-Antofalla terrane,
to represent an exotic terrane that originated in the
Labrador-Greenland promontory of Laurentia
(Dalziel et al., 1994; Litherland et al., 1989). Ac-
cording to Tosdal et al. (1994), however, Pb iso-
topic data link the Arequipa-Antofalla terrane to
the Amazon craton. Paleomagnetic data suggest
that the Arequipa-Antofalla terrane was already
located close to its present position in Late Prot-
erozoic time and that it has been transferred to its
present parautochthonous position during the
Oclóyic orogeny (Forsythe et al., 1993).

Pb-isotopic data on Cenozoic arc lavas and
ores, and their host rocks in northern Chile, north-
western Argentina, and southern Bolivia, hint at a
broad subdivision of the modern Andean crust
into several crustal domains of different age and
composition (Aitcheson et al., 1995). For exam-
ple, between lat 20° and 21°S (Figs. 3 and 12),
Cenozoic magmatism sampled Proterozoic non-
radiogenic crust to the north of about 20°S, and
Paleozoic radiogenic crust to the south of 21°S
(Wörner et al., 1994). However, the middle Prot-
erozoic basement outcrops in the Sierra de
Moreno extend southward to 22°S (Fig. 3 and
Table 1), suggesting that the distribution of crustal
domains may be more complicated. Furthermore,
still unpublished U-Pb zircon ages reveal an in-
herited Middle Proterozoic component in Per-
mian granitoids in regions even farther to the
south in northern Chile (C. Mpodozis, 1995, per-
sonal commun.). This implies that part of the
Proterozoic crust, of which the data of Aitcheson
et al. (1995) show no evidence, was still present in
this region in Permian time. However, the avail-
able isotopic data indicate that the Arequipa-
Antofalla terrane does not represent a homoge-
nous crustal block, but potentially a collage of
several distinct basement domains (Aitcheson et
al., 1995; Kay et al., 1996) that possibly assem-
bled before ca. 1000 Ma (Table 1) and prior to the
docking of the composite terrane to this margin.
Accordingly, a broad subdivision of the Arequipa-
Antofalla terrane into two blocks may be possible:
an Early and Middle Proterozoic Arequipa block
in the north, and a Late Proterozoic and early Pa-
leozoic Antofalla block in the south (Fig. 12).

Paleozoic Terranes and the Geodynamic
Evolution of Northwestern Argentina and
Northern Chile

Late Cambrian and Ordovician. After the
Pampean orogeny in Middle Cambrian time, the
basement units of the Pampia terrane, including
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Figure 11. Terrane map of southern South America, redrawn from Ramos (1988), slightly
modified after Ramos et al. (1993). ANT—Antofagasta; ARE—Arequipa; BUE—Buenos Aires;
LAP—La Paz; SAJ—San Juan; SAL—Salta; STG—Santiago de Chile.



the outcrop belt of the Puncoviscana Formation,
formed part of the South American autochthon
(Ramos, 1988). The Late Cambrian Mesón
Group basin formed by extension along the west-
ern margin of the Pampia terrane. The tectonic
setting of this basin is unclear, because its evolu-
tion was not accompanied by related magmatism.
Although some authors interpret it as a pericra-
tonal basin bordered in the west by an emerged
region (Salfity et al., 1975; Gohrbrandt, 1992),
we are unaware of any direct evidence supporting
the presence of this western basin margin. How-
ever, circumstantial evidence may be supplied
from the Ordovician evolution.

Extension of the Mesón basin continued in
Early Ordovician time, as indicated by the in-
crease in areal extent of the Ordovician silici-
clastic platform of the Santa Victoria Group
(Figs. 5 and 6). This increase cannot be inter-
preted as being simply the result of a rising
global sea level because it occurred partly during
times of low sea level (Sanchez, 1994). By the
beginning of the Early Ordovician, east-dipping
subduction (present coordinates) had started and
a magmatic arc became active along the border
region between Argentina and Chile on the west-
ern side of the Ordovician back-arc basin. Geo-

chemical data indicate that the arc had a sialic
foundation (Koukharsky et al., 1988; Breitkreuz
et al., 1989). This may be taken as indication that
the arc rested on the potential western margin of
the Early Cambrian Mesón basin represented by
the Arequipa-Antofalla terrane.

Forsythe et al. (1993) presented paleomagnetic
evidence that the Arequipa-Antofalla terrane
rifted off of the Pampia terrane in the Late Cam-
brian by clockwise rotation around a Euler pole
located approximately in northern Peru. Subse-
quently a marginal basin opened, accommodating
the Mesón Group and the Ordovician units. This
basin is interpreted to have progressively widened
southward, leading to the extrusion of some pil-
low basalts and dacites in the eastern reaches of
the northern Puna (Faja Eruptiva de la Puna Ori-
ental, Figs. 5 and 6) and the generation of ophi-
olitic crust in the southern Puna (Fig. 7). The
Oclóyic orogeny is interpreted as marking the re-
suturing of the Arequipa-Antofalla terrane to the
Pampia terrane after a drift reversal that took place
during Ordovician time (Forsythe et al., 1993;
Ramos et al., 1993). We interpret that this drift re-
versal took place at the beginning of the Ordovi-
cian period, as may be documented by the onset
of arc magmatism in the western Puna. The in-

crease in tectonic subsidence rates during the
Arenig has been related to the progressive con-
struction of the arc edifice (Bahlburg and Furlong,
1996) and the subsequent eastward thrusting of
the arc during the Guandacol event. During this
convergent regime, the erosional debris of the arc
fed the tectonically controlled deposition of the
Puna Turbidite complex (Figs. 6 and 7; Bahlburg,
1991b). The main deformation of the basin fill oc-
curred in the Late Ordovician Oclóyic orogeny.
Syntectonic and post-tectonic plutons intruded in
the Faja Eruptiva de la Puna Oriental and between
450 and 429 Ma in the Complejo Ígneo Sedimen-
tário del Cordón de Lila (Table 1, Figs. 6 and 7).

The ophiolite suture between the Pampeanas
and Arequipa-Antofalla terranes does not extend
into the northern Puna. Scarce occurrences of
trondhjemites and associated plutons east of the
southern Puna in the Cordillera Oriental (Galliski
et al., 1990; Rapela et al., 1992) are interpreted as
the product of this basin’s closure by east-dipping
subduction (Ramos and Vujovich, 1995). Accord-
ing to Niemeyer (1989), the principal Ordovician
subduction zone was located west of the Com-
plejo Ígneo-Sedimentario del Cordón de Lila in
northern Chile (Figs. 3, 6, and 7). The boundaries
of the Arequipa-Antofalla terrane are poorly de-
fined. In the map of Ramos (1988), the western
border of the Arequipa-Antofalla terrane, i.e., the
border between the Arequipa and the Chilenia ter-
ranes as well as the subduction zone of Niemeyer
(1989), is inferred to extend almost due north
(present coordinates) across northern Chile. The
sialic basement of the remainder of northern Chile
therefore is suggested to have accreted in Late De-
vonian time as a part of the Chilenia terrane
(Ramos, 1988). We find this difficult to reconcile
with the Devonian stratigraphic record and the
lack of tectonic, magmatic, or metamorphic evi-
dence of this accretion event (Fig. 4). The struc-
tural relationships can be resolved by the assump-
tion that the Ordovician subduction zone was
located still farther to the west in the present-day
Pacific Ocean. In this case, almost all of northern
Chile and the western reaches of the Puna pertain
to the Arequipa-Antofalla terrane (Fig. 12). The
terrane boundary between the Pampia and
Arequipa-Antofalla terranes is accordingly repre-
sented by the ophiolite suture in the southern Ar-
gentinian Puna and its northward continuation in
the Faja Eruptiva de la Puna Oriental in the north-
ern Puna (Figs. 3, 5, and 12).

We conclude that the Chilenia terrane does not
extend into northwestern Argentina and northern
Chile. Furthermore, the absence of Silurian lime-
stones equivalent to those of Chilenia indicates a
marked climatic, biogeographic, and paleogeo-
graphic distance between this terrane and north-
western Argentina and northern Chile at this time.
On the basis of the regional distribution of the dis-
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Figure 12. Revised terrane map for northwestern Argentina and northern Chile, this paper,
and the Cuyania-Precordillera terrane according to Astini et al. (1996). For abbreviations, see
Figure 11. The real extent of the Mejillonia terrane is exaggerated.



cussed lithostratigraphic units, we assume the ac-
tual terrane boundary between the Arequipa-
Antofalla and Chilenia terranes to be located far-
ther to the south in northern Chile, approximately
at lat 27°30′S (Fig. 12; and V. A. Ramos, 1995,
personal commun.). This is in good agreement
with the inference of basement provinces based
on Pb isotope data (Tosdal et al., 1994).

Postulated Laurentia Connection. Accord-
ing to the hypothesis of repeated Laurentia-
Gondwana interaction early in the Paleozoic era,
Laurentia is suggested to have collided with cen-
tral Argentina during Middle Ordovician time,
thus leading to the formation of a continuous
Oclóyic-Taconic mountain belt, and transferring
the Precordillera terrane as part of the Occiden-
talia terrane of Dalla Salda et al. (1992b) to Ar-
gentina (Dalla Salda et al., 1992a; Dalziel et al.,
1994). On the basis of similar radiometric age dis-
tributions and types of metamorphism, Dalziel et
al. (1994) also assumed that the Arequipa-
Antofalla terrane was part of the Grenville belt of
Laurentia. By Late Ordovician time, Laurentia
had to have been separated from South America
by a significant distance and was positioned at
low latitudes (Scotese and McKerrow, 1990).
Eastern Laurentia lacks any record of the Late Or-
dovician glaciation, the deposits of which are well
developed in Argentina (Long, 1994; Peralta and
Carter, 1990; Turner, 1960). Furthermore, colli-
sional tectonics occurred in northwestern Ar-
gentina during the Ashgill (Oclóyic orogeny, e.g.,
Turner and Méndez, 1979; Monaldi and Boso,
1987). If a part of Laurentia collided with this
margin as late as Ashgill time, evidence of the
glacial episode that occurred concomitantly with
the Oclóyic orogeny should be present in the
Taconic orogen. As we understand the literature,
this evidence has not been found (e.g., Drake et
al., 1989). It may be possible to postulate that the
Arequipa-Antofalla terrane was transferred as a
separate entity from Laurentia to South America,
when Laurentia had separated from central Ar-
gentina after Middle Ordovician time and prior to
the Oclóyic orogeny, thus explaining the different
timing of tectonic events in central and north-
western Argentina. However, this is difficult to
reconcile with the timing of basin opening as well
as the lack of remnants of oceanic crust in the
northern Puna. Although the mentioned inconsis-
tencies of the proposed Laurentia connection are
currently difficult to reconcile with this hypothe-
sis, we do not want to rule it out unequivocally.

Silurian to Permian. After the Late Ordovi-
cian collision event, denudation of the Oclóyic
orogenic belt in Silurian time preceded the for-
mation of a west-facing siliciclastic platform-
turbidite basin pair by the beginning of Devonian
time (Zorritas, El Toco, Las Tórtolas, and Sierra
del Tigre formations, Figs. 4, 8, and 9a). Patterns

of facies and subsidence, together with the ab-
sence of magmatism indicate a passive margin
setting at least during Devonian to Early Car-
boniferous time, and probably extending back
into Silurian time. A comparable evolution was
indicated for this margin in southern Chile by
Fortey et al. (1992). The present location of that
part of the Arequipa-Antofalla terrane that must
have rifted off of this margin during the Silurian
is unknown. The lack of synrift deposits may be
explained by the fact that denudation of the
Oclóyic orogen during Silurian time had exposed
the Late Ordovician to Early Silurian granitoids
by the beginning of Devonian time when the
basal Devonian deposits transgressed the plutons.

Dating back to Burckhardt (1902), the litera-
ture contains a variety of indications of and ar-
guments for the existence of a mythical “Pacific
continent” in Paleozoic time (e.g., Steinmann,
1923; Miller, 1970b; Isaacson, 1975; Dalmayrac
et al., 1980; Bahlburg, 1993). Data of direct im-
plication to the northern Chilean situation in-
clude (1) the westward derivation of the thick
Devonian clastic successions of Bolivia (Isaac-
son, 1975), (2) the presence of eastward-directed
paleocurrents in the Devonian and Early Car-
boniferous turbidite units of northern Chile
(Bahlburg and Breitkreuz, 1993), and (3) the
joint occurrence of Malvinokaffric brachiopods
with those of eastern Laurentia derivation in
Middle Devonian beds of the Zorritas Formation
(Fig. 2), and in coeval beds overlying the
Arequipa massif in southern Peru (Figs. 1 and 8;
Boucot et al., 1980, 1995). These data were
taken by Dalziel et al. (1994) to suggest that dur-
ing Paleozoic time Laurentia drifted northward
along the proto-Andean margin in a clockwise
fashion to its Permian Pangea position, and in-
termittently collided with southern South Amer-
ica in Middle Ordovician time and with northern
South America in Devonian time (Kent and Van
der Voo, 1990; Restrepo-Pace, 1992). In inter-
preting the Devonian evolution of northern
Chile, this hypothesis offers an explanation for
the formation of the northern Chilean passive
margin. This passive margin would have formed
when Laurentia rifted off of this part of South
America after the Oclóyic orogeny, taking a part
of the Arequipa-Antofalla terrane with it. Ac-
cording to the radiometric age distribution of this
terrane, the missing part must therefore be lo-
cated within the Laurentian Grenville belt
(Wasteneys et al., 1995; Dalziel et al., 1994),
awaiting identification.

In view of the inconsistencies of this hypothe-
sis as applied to the data from Ordovician time, it
is unlikely that Laurentia collided with South
America in Ordovician time. It is equally specu-
lative to interpret the formation of the northern
Chilean passive margin in Silurian-Devonian

time within the framework of this hypothesis.
However, the previously stated observations
made in various independent studies, e.g., sedi-
ment derivation from unknown western sources
located in the present Pacific Ocean, remain to be
explained. In conclusion, we interpret the Devo-
nian to Early Carboniferous passive margin in
northern Chile to have formed by rifting away of
a western part of the Arequipa-Antofalla terrane
(Fig. 9a). The persistence of the western sedi-
ment source during the entire Devonian period
and in early Late Carboniferous time suggests
that the rifted terrane moved northward in a
transtensional fashion along the margin. In the
wake of this terrane moving northward, subduc-
tion of Pacific crust started along the Chilean
margin during Late Carboniferous time (Fig. 9).
On the western margin of Chilenia in southern
Chile, it led (1) to the formation of an accre-
tionary prism and associated subduction zone
metamorphism (Fig. 4) and (2) to accretionary,
intrusive, and metamorphic events recorded at
several localities in central Chile (Hervé et al.,
1974, 1984; Thiele and Hervé, 1984; Ribba et al.,
1988, Mpodozis and Kay, 1990, 1992; Pankhurst
et al., 1992). In northern Chile, the onset of sub-
duction produced (3) the accretionary complex of
the Chañaral melange and the Sierra Limón
Verde complex, as well as (4) the magmatic arc
of the Peine Group and Albayay superunit and
equivalents (Figs. 3, 4, and 9b, and Table 1).

Mpodozis and Kay (1990, 1992) invoked the
oblique collision of the suspect Equis terrane
with this margin during Early Permian time to
explain patterns of magma genesis and compres-
sional deformation (San Rafael tectonic phase) in
the late Paleozoic arc between lat 28° and 31°S.
The lack of any physical evidence of this terrane
is explained by the assumption of its removal
(i) by processes of tectonic erosion common
along this margin during the Mesozoic and Ceno-
zoic (von Huene and Scholl, 1991), or (ii) by lon-
gitudinal northward displacement along the mar-
gin in the Mesozoic. According to Breitkreuz and
Zeil (1994), the Peine Group of northern Chile
and its associated plutons (Peine Group and
Albayay superunit, Fig. 9b) do not show the per-
tinent features observed by Mpodozis and Kay
(1990, 1992) with regard to the Equis terrane far-
ther to the south. The Peine Group, including the
coeval plutons, is interpreted as representing a
magmatic arc, including an arc graben basin.

In contrast to the Andean regions farther to the
south in Argentina and Chile, the Early Permian
San Rafael shortening event is not recorded in
northern Chile. This contrasting tectonic evolu-
tion lends further support to our inference of an
early Paleozoic strike-slip terrane boundary be-
tween lat 27° and 28°S (Fig. 8) which also may
have influenced the post-Paleozoic evolution of
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this margin. We conclude that the Equis terrane
did not extend into northern Chile.

Post-Paleozoic Terrane Movements

Strike-slip faulting has been cited as having
been important in shaping the post-Paleozoic An-
dean margin. On the basis of preliminary paleo-
magnetic data, Forsythe et al. (1987) identified
the Pichidangui displaced terrane as occupying
the coastal region of central Chile (Fig. 11). It
comprises late Paleozoic and Triassic fore-arc
clastic rocks and is interpreted to have been dis-
placed dextrally northward along the strike of the
margin by approximately 15° of latitude after
Late Triassic time, reaching its new position by
Middle to Late Jurassic time. This would con-
strain the longitudinal displacement to Early
Jurassic time. On the basis of this interpretation,
Ramos (1988) classed the mid-Paleozoic tur-
bidite units of the north Chilean Cordillera de la
Costa (Figs. 2, 3, and 8), including the Chañaral
melange (Fig. 4), as the displaced Chañaral ter-
rane (Fig. 11) which he assumed to have been
displaced jointly with the Pichidangui terrane. In
this case the Atacama fault zone (Figs. 2 and 3),
which partly limits the turbidite units to the east,
was taken as the terrane boundary. However,
geochronologic and paleomagnetic data of both
terranes do not support the proposed allochthon
(Beck et al., 1991; Brown et al., 1991, 1993). The
Atacama fault zone acted as a sinistral shear zone
accommodating about 100 km of displacement
from Jurassic to Tertiary time (Hervé, 1987;
Scheuber and Andriessen, 1990; Brown et al.,
1993). For Jurassic time, this coincides with
oceanic plate reconstructions indicating subduc-
tion toward the southeast (present coordinates;
Larson and Pitman, 1972; Zonenshayn et al.,
1984). We therefore based our interpretation of
the north Chilean situation (Figs. 8, 9, and 12) on
the assumption of an autochthonous relationship
between the Zorritas Formation and the turbidite
units in the Cordillera de la Costa. Nonetheless,
deposits of the slope connecting shelf and tur-
bidite basin have not yet been identified.

The last terrane to be discussed is the Mejillonia
terrane (Ramos, 1988; Figs. 11 and 12) which oc-
cupies the northern and central part of the small
Mejillones Peninsula north of Antofagasta (Figs. 2
and 3). Very little is known about this unit. It com-
prises two formations of schists, gneisses, and am-
phibolites that were intruded by a late kinematic
granodiorite pluton (Baeza and Pichowiak, 1988).
Sparse radiometric data fall into two clusters at
560 to 520 Ma and 200 to 108 Ma (Fig. 4; Díaz et
al., 1985; Baeza and Pichowiak, 1988; Damm et
al., 1990; Pichowiak, 1994). The older cluster is
taken to reflect a Cambrian magmatic and meta-
morphic event, whereas the younger cluster indi-

cates a thermal event, concentrated in Jurassic
time, that was at least partly connected to Jurassic
arc magmatism (Pichowiak, 1994). The Mejil-
lones peninsula has a faulted contact to the main-
land along the western branch of the Atacama fault
zone (Fig. 2) and lies westward of the outcrop belt
of the mid-Paleozoic turbidite units and ocean-
ward of the Jurassic magmatic arc, both of which
are located in the Cordillera de la Costa (Fig. 2).
The Mejillonia terrane is interpreted as an al-
lochthonous Late Proterozoic to Cambrian base-
ment terrane that docked to the Chilean margin in
Jurassic time (Ramos, 1988; Damm et al., 1990).
To the east of Antofagasta, in the region of the
Salar de Navidad, a granodiorite pluton outcrop
gave a U-Pb zircon age of 582 ± 4 Ma (Damm et
al., 1990). Other recorded radiometric ages of the
southern Central Andes are either significantly
older or younger than this age and the older age
cluster of the Mejillones Peninsula (Table 1). The
significance of the Mejillonia terrane within the
south-central Andean terrane collage is still un-
clear, but it is probable that this terrane represents
(1) either a displaced parautochthonous part of the
Arequipa-Antofalla terrane, which in Jurassic time
formed part of the fore-arc basement of the re-
spective arc, or (2) a reaccreted remnant of the un-
known block which rifted off of this margin in the
Silurian (Fig. 9a). It may have been emplaced in its
present structural and geographic position by
Jurassic sinistral strike-slip movements along the
Atacama fault zone connected to oblique subduc-
tion (Brown et al., 1993; Scheuber and Andriessen,
1990).

CONCLUSIONS

Our terrane analysis of the southern central
Andes of northwestern Argentina and northern
Chile resulted in the identification of only a sin-
gle Paleozoic allochthonous to parautochthonous
terrane, the Arequipa-Antofalla terrane, which
docked to its present position at the early Paleo-
zoic margin of South America in Late Ordovician
time. A new western margin of the Arequipa-
Antofalla terrane formed probably during Silu-
rian time, when a passive margin developed in
the region of northern Chile by an extensional
event that rifted off a part of the Arequipa-
Antofalla terrane. The eventual paleogeographic
destination of this rifted part is unknown but, ac-
cording to Dalziel et al. (1994), it may be found
in northeastern Laurentia. The passive margin
stage in northern Chile lasted approximately
100 m.y., from Early Silurian to early Late Car-
boniferous time, a span marked by the absence of
active margin magmatism and tectonics (Fig. 4).
During Late Carboniferous time, a new conver-
gent plate boundary was established at the for-
merly passive margin. It is evidenced by wide-

spread arc magmatism and related metamorphic
and tectonic events, melange formation, and con-
temporaneous volcaniclastic sedimentation.
Post-Paleozoic margin-parallel and sinistral
strike-slip movements probably led to the em-
placement of the parautochthonous displaced
Mejillonia terrane in Jurassic time. Neither the
Cambrian-Ordovician Precordillera terrane nor
the Silurian–Late Devonian Chilenia terrane of
central Argentina and central Chile (Ramos et al.,
1986) extend into the northern reaches of the re-
spective countries.
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