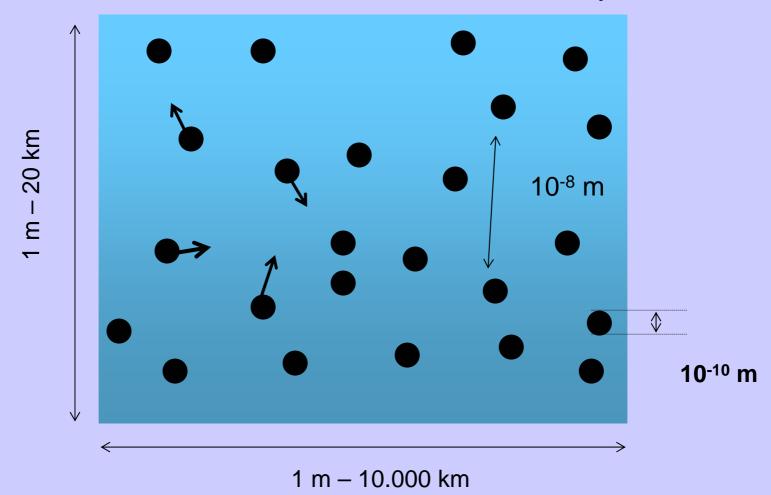


Universidad de Chile Departamento de Geofísica

GF45A-GF3003 Introducción a la Meteorología y Oceanografía

Semestre Otoño 2009


CLASE 2: Estructura y Composición de la Atmósfera y el Oceano

Prof. René Garreaud www.dgf.uchile.cl/rene

Atmósfera – Aire – Moleculas

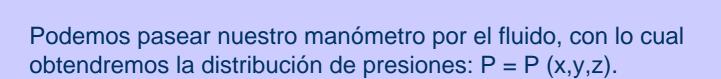
Mundo Microscópico: seguimos cada molécula: v_i ...imposible

Mundo Macroscópico: fluido con propiedades continuas: v(x,y,z,t)...OK

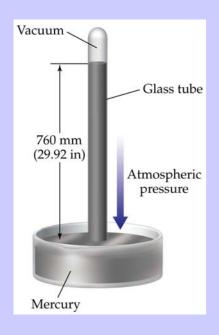
Average Composition of the T	roposphere
-------------------------------------	------------

Gas Name	Formula	Abundance (%)	Residence time (approx)
Nitrogen Oxygen *Water	$egin{array}{c} N_2 \ O_2 \ H_2 O \end{array}$	78.08% 20.95% 0 to 4%	42,000,000 years 5,000 years 10 days
Argon *Carbon Dioxide Neon Helium *Methane Hydrogen *Nitrous Oxide *Ozone	$\begin{array}{c} Ar \\ CO_2 \\ Ne \\ He \\ CH_4 \\ H_2 \\ N_2 O \\ O_3 \end{array}$	0.93% 0.0360% 0.0018% 0.0005% 0.00017% 0.00005% 0.00003% 0.000004%	~Infinite 4 years ~Infinite ~Infinite 10 years 3 years 170 years 20 days
*variable gases			

Presión atmosférica


Mundo Microscópico: $P = F/A = (2/3)*(N/V)*(\frac{1}{2}mv^2)$ Mundo macroscópico P = F/A....F ejercida por el fluido

La presión dentro de un fluido la continuamos definiendo como la fuerza por unidad de área que ejerce el fluido sobre una pared (real o virtual).


La podemos medir con un manómetro

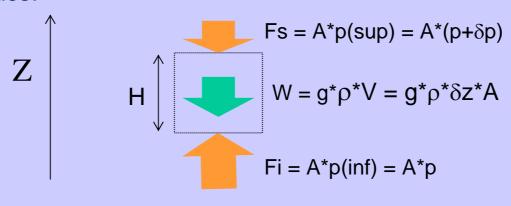
Fuerza ∞Deformación

1 Pascal = 1 Newton / m²
1 hPa = 100 Pa
1 hPa = 1 milibar

Presión Atmosférica es "facil" de medir...mucho mas facil que la densidad del aire y la altura sobre el nivel del mar... e.g.: aviones emplean Altímetros (y actualmente GPS)

Barómetro de Mercurio ¿Porque 1013 hPa = 76 cm Hg? ¿Porque no son de H_2O ?

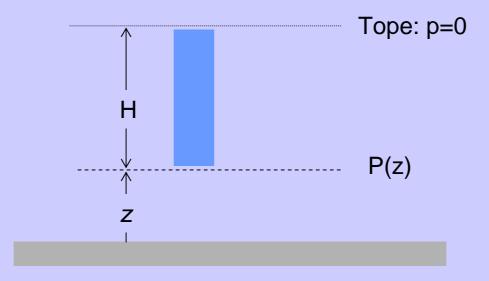
Barómetro Aneroide (presión atmosférica comprime un recipiente flexible con vació en su interior)



Barómetro piezoelétrico (presión atmosférica altera resistencia a corriente electrica de ciertos materiales)

Mundo macroscópico: Equilibrio Hidrostático

Una observación importante es que en un punto fijo, la presión es independiente de la orientación del manómetro.

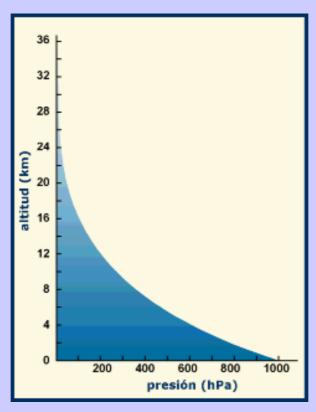

Además, aplicando la segunda ley de Newton a un cierto volumen de aire de densidad ρ (=M/V) en reposo obtenemos la ecuación de balance hidrostático:

$$\delta p = -\rho g \cdot \delta z$$

Es decir, la presión siempre aumenta hacia abajo, y el aumento de presión es proporcional a la densidad del fluido y el espesor de la capa.

En el caso de la atmósfera, la condición en el tope es P(superior) = 0

Suponiendo equilibrio hidrostático ($\delta p = - \rho^* g^* \delta z$) e integrando entre (z,p) y (z= ∞ , p=0) obtenemos:


$$p(z) = \int_{z}^{\infty} g \rho dz$$

Si g y ρ no varian con z, $p(z) = g^*\rho^*H = g^*\rho^*H^*1^*1 = g^*\rho^*Vol = g^*Masa$ P(z) = Peso columna de aire de área unitaria por encima del nivel z <math>P(z=0) = PNM = Peso de la atmósfera...calcular masa de la atmosfera... estos resultados son generalizables a g(z) y $\rho(z)$

Mundo macroscópico: Presión atmosférica (barométrica)

P(z) = Peso columna de aire por encima del nivel z

Entonces la presión atmosférica siempre disminuye con la altura (sobre la superficie) y puede ser empleada como una coordenada vertical.

Completar la tabla siguiente....

Nivel	Presión	Masa sobre nivel		Masa bajo nivel		Observacionenes
[km]	[hPa]	[kg]	[%]	[kg]	[%]	
0	1013					Superficie del mar
5	500					Mo. Aconcagua
12	200					Tropopausa
30	15					Max. Ozono
50	1					Estratopausa
80	1e-2					Termopausa
120	1e-5					Homopausa

En el caso de la atmósfera, podemos combinar la ecuación de balance hidrostático con la ley de gases ideales $p = \rho RT$ para obtener la ecuación hipsometrica:

$$\partial p / p = \partial (\ln(p)) = -\frac{g(z)}{RT(z)} \partial z \approx \frac{g_0}{RT(z)} \partial z$$

Para una atmósfera isotermal (T = constante):

$$z_2 - z_1 = \frac{RT}{g_0} \ln(p_1 / p_2) = H \ln(p_1 / p_2)$$

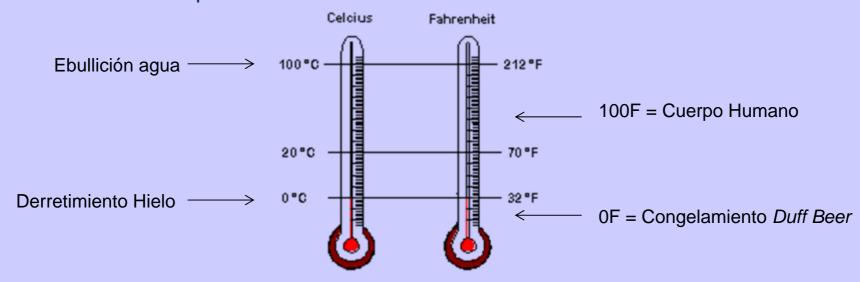
Para R = 287 (aire), T = $15^{\circ}+273^{\circ}$ C = 288K, g = 9.8 m/s2, H = 8.3 km

Para una atmósfera con T(z) podemos usar el promedio:

$$z_2 - z_1 = \frac{R\overline{T}}{g_0} \ln(p_1 / p_2)$$

Para una atmósfera con $T(z) = To - \Gamma z$ podemos usar el promedio:

$$z_2 - z_1 = \frac{T_0}{\Gamma} \left[1 - \left(\frac{p_2}{p_1} \right)^{R\Gamma/g} \right]$$


Atmósfera Estándar: To = 288 K, Γ =6.5°/Km z₁=0, p₁=1013.25 hPa

Temperatura

Mundo Microscópico: $T = 2/(3k)*(\frac{1}{2}mv^2)$

Mundo macroscópico: La temperatura en tanto se asocia con el concepto de cuan caliente o frío esta un cuerpo o fluido.

Esta indicación cualitativa se cuantifica a través de los **termómetros**, que usualmente se basan en la dilatación o contracción de un material cuando cambia la temperatura.

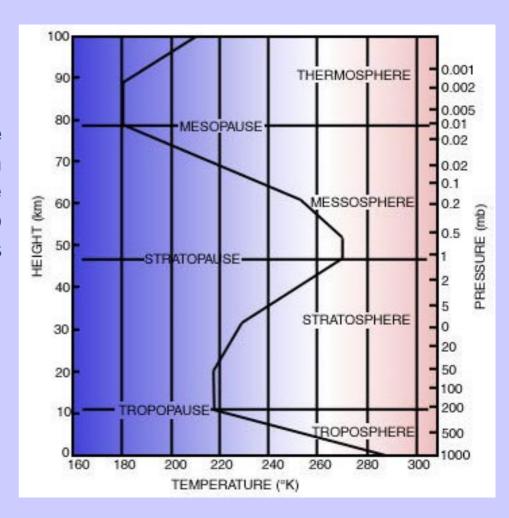
$$T(F) = 9*T(C)/5 + 32F$$
 $T(K) = T(C) + 273$

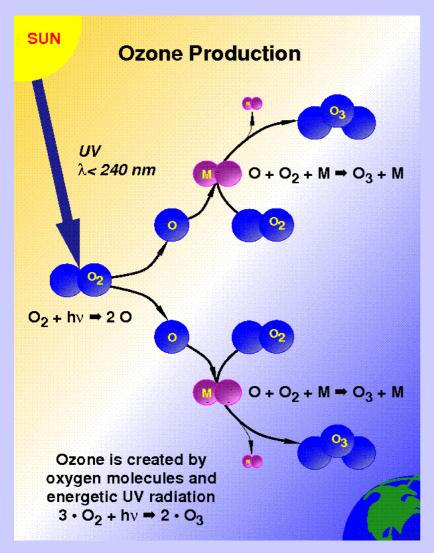
Estructura vertical de la atmósfera: p(z), T(z), $\mu(z)$

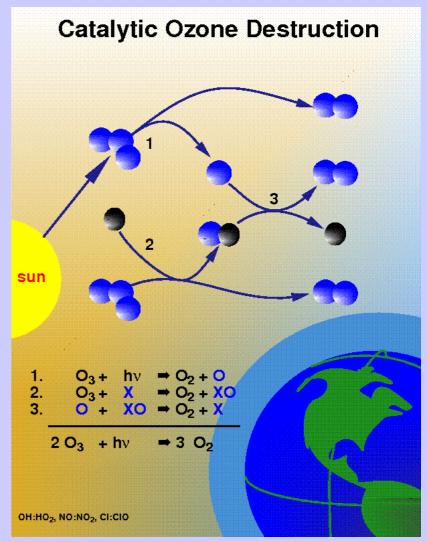
¿Como conocemos T(z)?

1830-1920: Mediciones hasta 10-12 km mediante Globos Aerostaticos

1920: Invención del radiosonda (hasta 40 km)

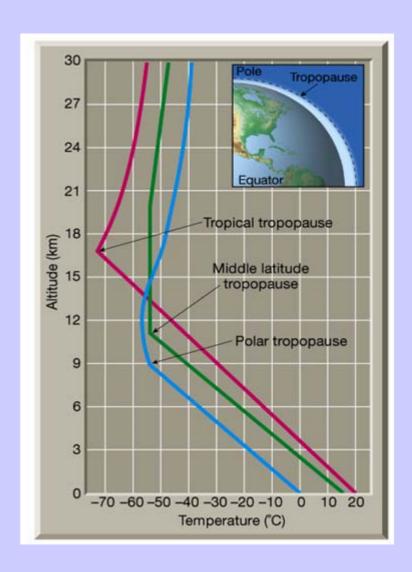

1950: Invención del Cohete-sonda (hasta 80 km)

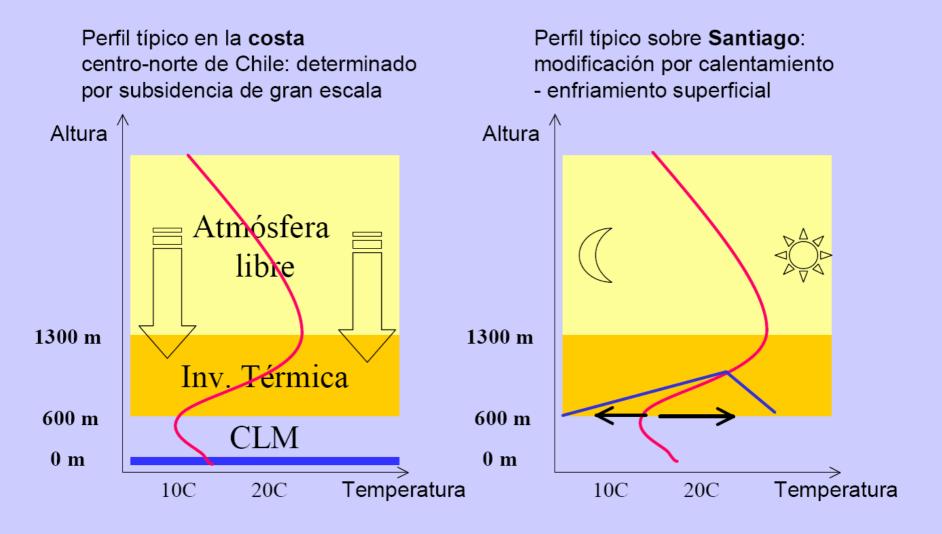



Estructura vertical de la atmósfera

Inspección del perfil vertical de temperatura revela varias capas en las cuales la temperatura disminuye con la altura (condición normal?) o aumenta con la altura (inversiones térmicas):

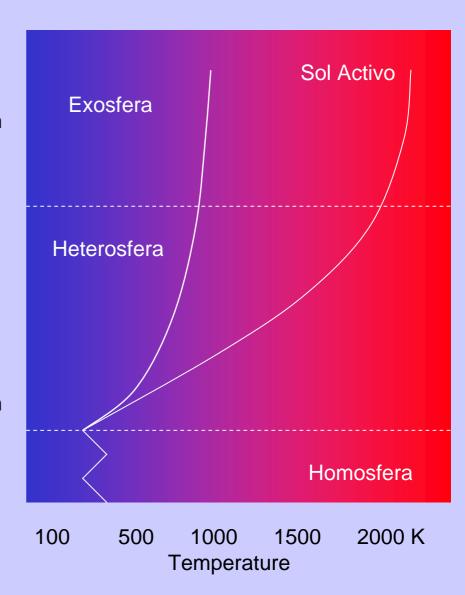
- Troposfera (esfera móvil)
- Estratosfera (esfera de capas)
- Mesosfera (esfera media)
- Termosfera

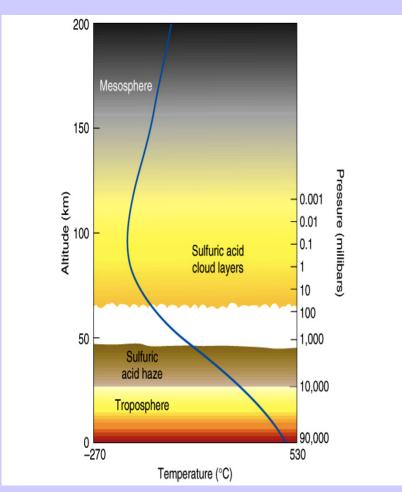




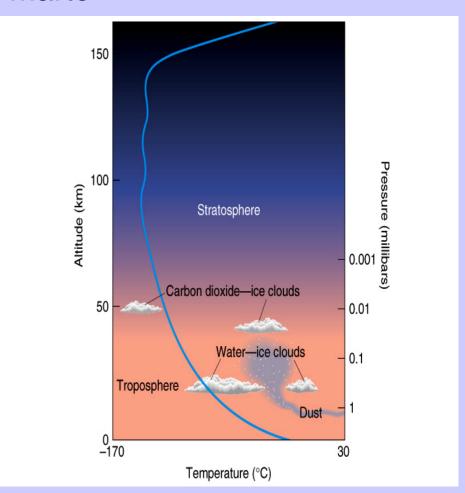
Estructura vertical de la atmósfera

Altura de la troposfera cambia con la latitud y también en el tiempo....

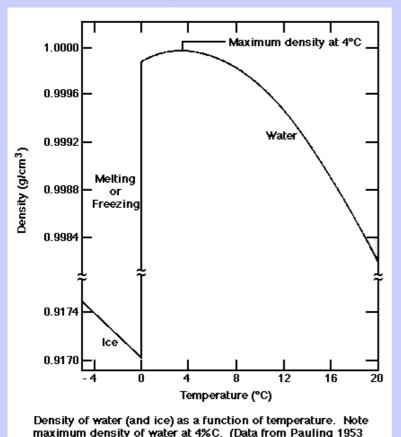



Estructura vertical de la atmósfera

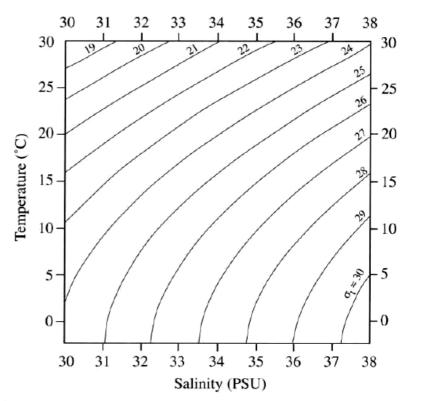
En un contexto mas amplio y considerando la distribución de los gases se distingue la homosfera (0-100 km) y la heterosfera (100-500 km). 500 km


100 km

Venus


Marte

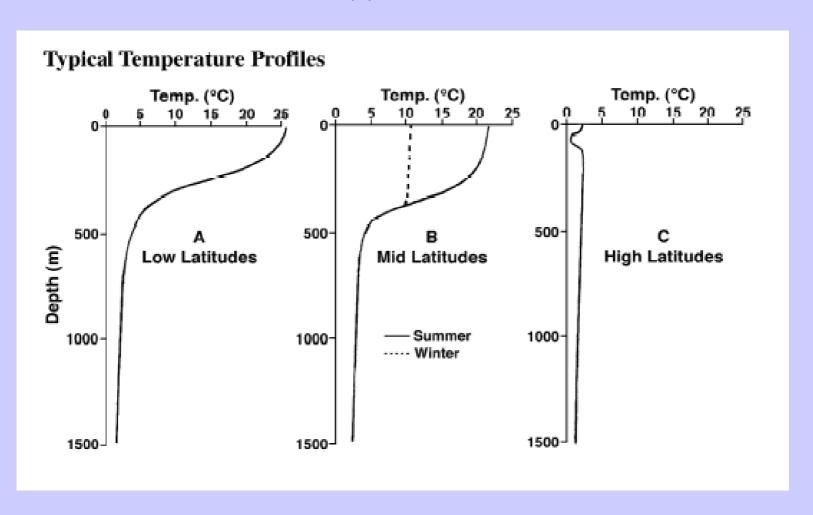
Que similitudes/diferencias existen entre la atmósfera de la Tierra, Marte y Venus? Como es la estructura vertical de Júpiter, Saturno, etc...?


Agua destilada a 20°C, p=1000 hPa, ρ=1000 Kg/m³ 1 Kg agua de mar contiene aprox. 35 gr de sal (Cl,Na,...)

Agua "dulce"

and Hutchinson 1957: 204.)

 $\rho(T, P, S) = \sigma(T, P, S) + 1000 kgm^{-3}$


Figure 2.1 Density of sea water (σ_t) as a function of temperature and salinity

¿Como conocemos T(z) en el océano? CTD: Conductivity, Temperature, Disolved Oxigen

T(z) en el océano

