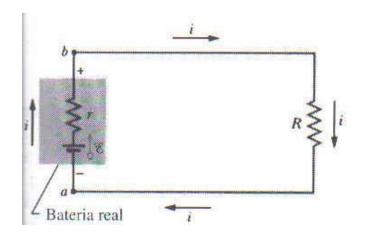

### Circuito



Regla de la resistencia: Recorriendo una resistencia en el sentido de la corriente, la variación en el potencial es –iR; en el sentido opuesto es +iR.

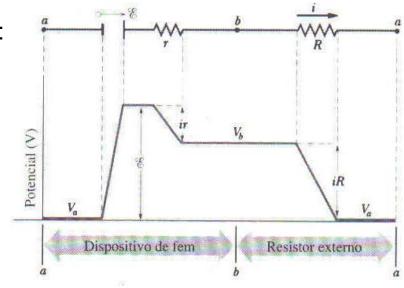
Regla de la fem: Recorriendo un dispositivo ideal de fem en el sentido de la seta de la fem, a variación en el potencial es  $+\epsilon$ ; en el sentido opuesto es  $-\epsilon$ .


#### Recorriendo el circuito en sentido horario desde el punto a.

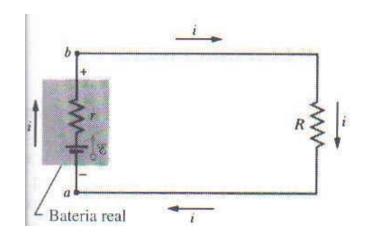
 $V_a$ +  $\epsilon$ -iR= $V_a$  cancelando  $V_a$ :  $\epsilon$ -iR=0. Esta es la ecuación que se obtiene aplicando la regla de las mallas.

#### Recorriendo el circuito en sentido anti-horario desde el punto a.

-ε+iR=0. La regla de mallas puede ser aplicada recorriendo una malla cerrada en cualquier sentido.


### Resistencia interna




La resistencia interna de la batería (r) es la resistencia eléctrica del material conductor de la batería y , así, una característica no removible de la batería.

Aplicando la regla de mallas, en el sentido horario desde el punto a. ε-ir-iR=0.

Comparando con las variaciones de potencial:



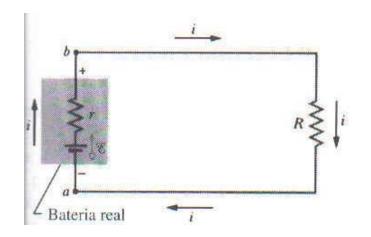
## Diferencia de potencial entre dos puntos



Cuál es la diferencia de potencial entre los puntos a y b?

Partiendo del punto b y recorriendo el circuito en el **sentido horario** hasta llegar al punto a pasando por la resistencia R, con Va y Vb los potenciales en a y b, tenemos:

Vb-iR=Va o


Vb-Va=+iR lo que dice que el punto b posee potencial mas grande que a.

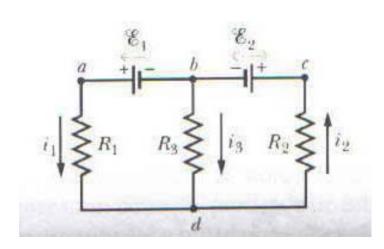
Las resistencias están en serie. Asi:

 $\varepsilon=i(R+r)$  o  $i=\varepsilon/R+r$  sustituyendo en la ecuación anterior:

$$Vb - Va = \varepsilon \frac{R}{R + r}$$

## Diferencia de potencial entre dos puntos




Cuál es la diferencia de potencial entre los puntos a y b?

Partiendo del punto b y recorriendo el circuito en el sentido **anti-horario**, tenemos:

$$V_b + ir - \varepsilon = V_a$$
  $V_b - V_a = \varepsilon - ri$ 

i= ε/R+r sustituyendo en la ecuación anterior obtenemos nuevamente:

$$Vb - Va = \varepsilon \frac{R}{R + r}$$



Considerando baterias ideales:

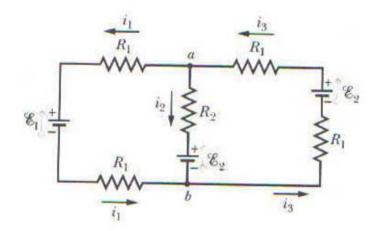
Análisis del circuito: dos nodos b y d

tres ramos: (bad); (bcd); (bd)

La corriente i<sub>1</sub> tiene el mismo valor en los puntos del ramo (bad).

La corriente i<sub>2</sub> tiene el mismo valor en los puntos del ramo de la derecha.

l<sub>3</sub> es la corriente en el ramo central


Consideremos en nodo d. Por la regla de los nodos:  $i_2 = i_1 + i_3$ 

Aplicando la regla de las mallas en la malla a izquierda, en el sentido antihorario, partiendo del punto b:  $i \cdot D = 0$ 

 $\varepsilon_1 - i_1 R_1 + i_3 R_3 = 0$ 

En la malla derecha, partiendo del punto b:

$$-i_3R_3 - i_2R_2 - \varepsilon_1 = 0$$



Ejemplo: Determine la corriente en cada un de los

ramos. Datos:

$$\varepsilon_1 = 2.1V$$

$$\varepsilon_2 = 6.3V$$

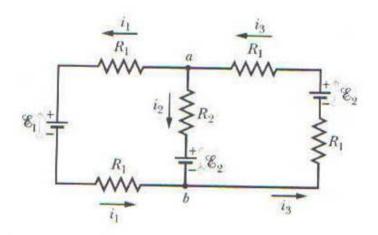
$$R_1 = 1.7\Omega$$

$$R_2 = 3.5\Omega$$

Elíjase las corriente de forma arbitraria: Regla de los nodos en a.  $i_3 = i_1 + i_2$ 

Aplicando la regla de las mallas en la malla a izquierda, en el sentido anti-

horario, partiendo del punto a:


$$-i_{1}R_{1} - \varepsilon_{1} - i_{1}R_{1} + \varepsilon_{2} + i_{2}R_{2} = 0$$

$$2i_1R_1 - i_2R_2 = \varepsilon_2 - \varepsilon_1$$

En la malla derecha, partiendo del punto a, en el sentido horario:

$$+ i_3 R_1 - \varepsilon_2 + i_3 R_1 + \varepsilon_2 + i_2 R_2 = 0$$

$$i_2 R_2 + 2i_3 R_1 = 0$$



$$\varepsilon_1 = 2,1V$$

$$\varepsilon_2 = 6.3V$$

$$R_1 = 1.7\Omega$$

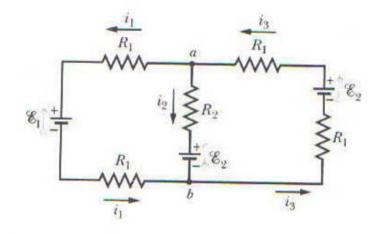
$$R_2 = 3.5\Omega$$

Haciendo en función de i<sub>2</sub> en las mallas de la izquierda y derecha:

$$2i_1R_1 - i_2R_2 = \varepsilon_2 - \varepsilon_1$$

$$i_1 = \frac{\varepsilon_2 - \varepsilon_1 + i_2 R_2}{2R_1}$$

izquierda


Sustituyendo en:

$$i_3 = i_1 + i_2$$

$$i_2 R_2 + 2i_3 R_1 = 0$$

derecha

$$i_3 = -\frac{i_2 R_2}{2R_1}$$



$$\varepsilon_1 = 2,1V$$

$$\varepsilon_2 = 6.3V$$

$$R_1 = 1.7\Omega$$

$$R_2 = 3.5\Omega$$

$$-\frac{i_2R_2}{2R_1} = \frac{\varepsilon_2 - \varepsilon_1 + i_2R_2}{2R_1} + i_2 \Rightarrow -\frac{i_23.5}{2.1.7} = \frac{6.3 - 2.1 + i_23.5}{2.1.7} + i_2$$

$$i_2 = -0.40A$$

Sentido inicial de la corriente considerada en el sentido contrario

$$i_1 = 0.82$$

$$i_1 = 0.82$$
 $i_3 = 0.42$