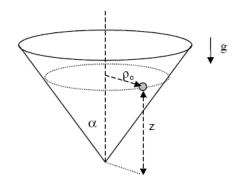
Pequeñas Oscilaciones

Aux: Francisco Sepúlveda

- **P1.** Una partícula de masa m desliza con roce despreciable sobre la superficie interior de un cono invertido como se indica en la figura. La generatriz del cono forma un ángulo α con la dirección vertical.
 - a) Escriba las ecuaciones de movimiento de la partícula con respecto a un sistema fijo.
- b) Determine la distancia radial ρ_0 en la cuál la partícula se mantiene en un movimiento circular horizontal con rapidez v_0 .
- c) perturbe ligeramente el movimiento anterior en la dirección de la generatriz del cono y determine el periodo de las pequeñas oscilaciones que se generan, ya sea en la altura z sobre el vértice del cono o en la distancia ρ al eje del mismo.



Solución

a) Usando coordendas cilíndricas tenemos

$$\vec{a} = (\ddot{\rho} - \rho \dot{\theta}^2)\hat{\rho} + \frac{1}{\rho} \frac{d}{dt} (\rho^2 \dot{\theta})\hat{\theta} + \ddot{z}\hat{k}$$

las fuerzas involucradas son

$$\sum \vec{F} = \vec{N} + m\vec{g} = (N\sin\alpha - mg)\hat{k} - N\cos\alpha\hat{\rho}$$

por lo que las ecuaciones de movimiento de $\hat{\rho}$, $\hat{\theta}$, y \hat{k} son, respectivamente

$$m(\ddot{\rho} - \rho \dot{\theta}^2) = -N \cos \alpha \tag{1}$$

$$m\frac{1}{\rho}\frac{d}{dt}(\rho^2\dot{\theta}) = 0\tag{2}$$

$$m\ddot{z} = N\sin\alpha - mg\tag{3}$$

b) De (2) se tiene que

$$\rho^2 \dot{\theta} = cte = \rho_0^2 \dot{\theta}_0 = \rho_0 v_0$$

$$\dot{\theta}(\rho) = (\rho_0 v_0) \frac{1}{\rho^2} \tag{4}$$

Para el movimiento circular, debemos tener $z = cte \Rightarrow \dot{z} = \ddot{z} = 0$, entonces

$$N\sin\alpha = mg\tag{5}$$

ademas $\rho=\rho_0=cte\Rightarrow\dot{\rho}=\ddot{\rho}=0$. por lo que la ecuación de movimiento de $\hat{\rho}$ queda como

$$N\cos\alpha = m\rho_0\dot{\theta}^2$$

usando (4) y (5) se tiene

$$\frac{g}{\tan \alpha} = \rho_0 (\frac{v_0}{\rho_0})^2$$

$$\rho_0 = \frac{v_0^2 \tan \alpha}{g}$$

c) Busquemos una ecuación de movimiento para ρ . Por geometría se tiene que

$$\frac{\rho}{z} = \tan \alpha \Rightarrow z = \frac{\rho}{\tan \alpha}$$

reemplazando esto en (3) se tiene que

$$m\frac{\ddot{\rho}}{\tan\alpha} = N\sin\alpha - mg\tag{6}$$

 $(1) \cdot \sin \alpha + (6) \cdot \cos \alpha$

$$m(\ddot{\rho} - \rho \dot{\theta}^2) \sin \alpha + m \ddot{\rho} \frac{\cos^2 \alpha}{\sin \alpha} = -mg \cos \alpha$$

usando (4) se tiene que

$$\ddot{\rho}\left(\frac{\sin^2\alpha + \cos^2\alpha}{\sin\alpha}\right) - (\rho_0 v_0)^2 \sin\alpha \frac{1}{\rho^3} = -g\cos\alpha \tag{7}$$

finalmente, la ecuación de movimiento para ρ es

$$\ddot{\rho} - (\rho_0 v_0)^2 \sin^2 \alpha \frac{1}{\rho^3} + g \sin \alpha \cos \alpha = 0$$

dado que tenemos un término no lineal, lo que haremos será linealizar ese termino en torno al radio de equilibro ρ_0

$$\frac{1}{\rho^3} \approx \frac{1}{\rho_0^3} - \frac{3}{\rho_0^4} (\rho - \rho_0) = -\frac{3}{\rho_0^4} \rho + \frac{4}{\rho_0^3}$$

reemplazando lo anterior en la ecuación de movimiento para ρ ,

$$\ddot{\rho} + \frac{3(\rho_0 v_0)^2 \sin^2 \alpha}{\rho_0^4} \rho = constantes$$

y vemos que se tiene la ecuación del oscilador armonico, por lo que la frecuencia angular es, usando el resultado de la parte b)

$$\omega^{2} = 3 \frac{v_{0}^{2} \sin^{2} \alpha}{(\frac{v_{0}^{2} \tan \alpha}{g})^{2}} = \frac{3g^{2} \cos^{2} \alpha}{v_{0}^{2}}$$

y finalmente, usando el resultado obtenido en la parte a)

$$T = \frac{2\pi v_0}{\sqrt{3}g\cos\alpha}$$

Otra forma alternativa de hacer este problema es con energía. En efecto

$$E = \frac{m}{2}\dot{\rho}^2 + \frac{m}{2}\rho^2\dot{\theta}^2 + \frac{m}{2}\dot{z}^2 + mgz$$

pero

$$z = \frac{\rho}{\tan \alpha} \Rightarrow \dot{z} = \frac{\dot{\rho}}{\tan \alpha}$$

y además

$$\dot{\theta} = (\rho_0 v_0) \frac{1}{\rho^2}$$

por lo que reemplazando estos dos términos en la ecuación de la energía se tiene

$$E = \frac{m}{2}\dot{\rho}^2 + \frac{m}{2}\rho^2(\rho_0 v_0)^2 \frac{1}{\rho^4} + \frac{m}{2}\frac{\dot{\rho}^2}{\tan^2\alpha} + \frac{mg}{\tan\alpha}\rho$$
$$E = \frac{m}{2}\csc^2\alpha\dot{\rho}^2 + \frac{m(\rho_0 v_0)^2}{2}\frac{1}{\rho^2} + \frac{mg}{\tan\alpha}\rho$$

luego, se tiene que el potencial efectivo es

$$U_{eff}(\rho) = \frac{m(\rho_0 v_0)^2}{2} \frac{1}{\rho^2} + \frac{mg}{\tan \alpha} \rho$$

lo que queremos es construir la ecuación del oscilador desde la expresion de la energía mecánica. Dado que la energía es constante, se tiene que $\frac{dE}{dt} = 0$, por lo que derivando temporalmente la expresión de la energía se tiene

$$0 = m \csc^2 \alpha \dot{\rho} \ddot{\rho} + \frac{\partial U_{eff}}{\partial \rho} \dot{\rho}$$

$$\Rightarrow \ddot{\rho} + \frac{1}{m \csc^2 \alpha} \frac{\partial U_{eff}}{\partial \rho} = 0$$

como se puede apreciar, esta ecuación aún no toma la forma de la ecuación diferencial de un oscilador armónico: falta hacer aparecer un polinomio de orden 1 en ρ . Para esto, expandemos en serie de taylor la derivada parcial del potencial efectivo a primer orden. Esto es

$$\frac{\partial U_{eff}}{\partial \rho} = \frac{\partial U_{eff}(\rho_0)}{\partial \rho} + \frac{\partial^2 U_{eff}(\rho_0)}{\partial \rho^2} (\rho - \rho_0)$$

como estamos en un punto de equilibrio, sabemos que el primer término de nuestra expansión en serie de Taylor es nulo. Por lo tanto

$$\frac{\partial U_{eff}}{\partial \rho} = \frac{\partial^2 U_{eff}(\rho_0)}{\partial \rho^2} (\rho - \rho_0)$$

luego, si reemplazamos este resultado en nuestra ecuación de movimiento para ρ se tiene que

$$\ddot{\rho} + \frac{1}{m \csc^2 \alpha} \left[\frac{\partial^2 U_{eff}(\rho_0)}{\partial \rho^2} (\rho - \rho_0) \right] = 0$$
$$\ddot{\rho} + \frac{1}{m \csc^2 \alpha} \frac{\partial^2 U_{eff}(\rho_0)}{\partial \rho^2} \rho = \frac{1}{m \csc^2 \alpha} \frac{\partial^2 U_{eff}(\rho_0)}{\partial \rho^2} \rho_0 = cte$$

y aquí podemos ver ya la ecuación del oscilador armónico, donde se tiene que la frecuencia angular es

$$\omega^2 = \frac{1}{m \csc^2 \alpha} \frac{\partial^2 U_{eff}(\rho_0)}{\partial \rho^2}$$

pero

$$\frac{\partial U_{eff}}{\partial \rho} = -m(\rho_0 v_0)^2 \frac{1}{\rho^3} + \frac{mg}{\tan \alpha}$$

$$\Rightarrow \frac{\partial^2 U_{eff}}{\partial \rho^2} = 3m(\rho_0 v_0)^2 \frac{1}{\rho^4}$$

envaluando en $\rho_0 = \frac{v_0^2}{q} \tan \alpha$

$$\frac{\partial^2 U_{eff}(\rho_0)}{\partial \rho^2} = 3mv_0^2 \frac{1}{\rho_0^2} = \frac{3mg^2}{v_0^2 \tan^2 \alpha}$$

por lo que la frecuencia angular y el periodo de pequeñas oscilaciones es

$$\omega^2 = \frac{1}{m \csc^2 \alpha} \left[\frac{3mg^2}{v_0^2 \tan^2 \alpha} \right] = \frac{3g^2 \cos^2 \alpha}{v_0^2}$$
$$T = \frac{2\pi v_0}{\sqrt{3}g \cos \alpha}$$

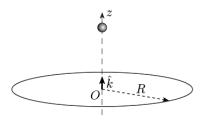
- **P2.** Considere un cuerpo en el espacio, cuya masa M está uniformemente distribuida en forma de un anillo de radio R. Una partícula de masa m se encuentra atrapada por la fuerza de atracción gravitacional que ejerce este cuerpo anular, moviendose a lo largo de la linea recta perpendicular al plano del anillo y que pasa por su centro (ver figura). Para este caso, considere $M \gg m$.
- a) Demostrar que la fuerza de atracción gravitacional que el anillo ejerce sobre la partícula tiene la expesión:

$$\vec{F}(z) = -\frac{GMmz}{(R^2 + z^2)^{3/2}}\hat{k}$$

donde la coordenada z y \hat{k} se indican en la figura.

- b) Si la partícula se libera desde el reposo en z = R, calcule su velocidad cuando cruza el plano del anillo (z = 0).
- c) Si la partícula estuviera en reposo en la posición de equilibrio (z = 0), calcule el periodo de las oscilaciones que se producen al dar un pequeño impulso a la partícula en dirección perpendicular al plano del anillo.

Hint: Calcule la componente de la fuerza de atracción en la direccion \hat{k} generada por un elemento diferencial de masa dM del anillo, y luego integre sobre el anillo para calcula la fuerza total de atracción.



Solución

a) Si consideramos un diferencial de masa dM del anillo, el diferencial de fuerza que que siente la partícula es

$$d\vec{F} = -\frac{Gm(dM)}{(R^2 + z^2)}\hat{r}$$

donde \hat{r} es un vector unitario que apunta desde dM hasta m. Este vector, si consideramos coordenadas cilíndricas, tiene la forma

$$\hat{r} = -\frac{R}{\sqrt{R^2 + z^2}}\hat{\rho} + \frac{z}{\sqrt{R^2 + z^2}}\hat{k}$$

por lo tanto

$$\vec{F} = -\int_{M} \frac{Gm}{(R^2 + z^2)} dM\hat{r}$$

notemos que la componente radial del diferencial de fuerza $d\vec{F}$ tiene su antagonista por la acción de una fuerza causada por un dM que se encuentra diametralmente opuesto al que consideramos. Luego, la fuerza neta <u>radial</u> se anula, por lo que solo nos queda considerar la componente vertical.

$$\vec{F} = -\int_{M} \frac{Gmz\hat{k}}{(R^{2} + z^{2})^{3/2}} dM = -\frac{GmMz}{(R^{2} + z^{2})^{3/2}} \hat{k}$$

$$\vec{F}(z) = -\frac{GMmz}{(R^{2} + z^{2})^{3/2}} \hat{k}$$

b) Por segunda ley de Newton

$$\ddot{z} = -\frac{GMz}{(R^2 + z^2)^{3/2}}$$

usando regla de la cadena y separación de variables

$$\int_0^{\dot{z}(z=0)} \dot{z} d\dot{z} = -GM \int_R^0 \frac{zdz}{(R^2 + z^2)^{3/2}}$$

pero

$$\int \frac{zdz}{(R^2 + z^2)^{3/2}} = -\frac{1}{(R^2 + z^2)^{1/2}}$$

por lo tanto

$$\frac{\dot{z}^2(z=0)}{2} = GM[\frac{1}{R} - \frac{1}{R\sqrt{2}}] \Rightarrow \dot{z}(z=0) = \pm \sqrt{\frac{2GM}{R}[1 - \frac{1}{\sqrt{2}}]}$$

Finalmente

$$\vec{v}(z=0) = -\sqrt{\frac{2GM}{R}[1 - \frac{1}{\sqrt{2}}]\hat{k}}$$

c) De la ecuación de movimiento se tiene que

$$m\ddot{z} = F(z)$$

donde F(Z) es no lineal. Si linealizamos en torno a z=0 se tiene que

$$F(z) \approx F(0) + F'(z=0)z \Rightarrow F(z) \approx F'(z=0)z$$

si reemplazamos este resultado en la ecuación de movimiento

$$\ddot{z} - \frac{F'(0)}{m}z = 0$$

donde se aprecia la ecuación del oscilador si F'(0) < 0. de aqui se desprende que

$$\omega^2 = -\frac{F'(0)}{m} \Rightarrow T = \frac{2\pi}{\sqrt{\frac{-F'(0)}{m}}}$$

busquemos F'(0).

$$F(z) = -\frac{GMmz}{(R^2 + z^2)^{3/2}} \Rightarrow F'(z) = -GMm\frac{d}{dz}(\frac{z}{(R^2 + z^2)^{3/2}})$$
$$\frac{d}{dz}(\frac{z}{(R^2 + z^2)^{3/2}}) = \frac{(R^2 + z^2)^{3/2} - \frac{3}{2}(R^2 + z^2)^{1/2}(2z)z}{(R^2 + z^2)^3}$$
$$F'(0) = -GMm(\frac{R^3}{R^6})$$

reemplazando en la fórmula del periodo se tiene que

$$T = 2\pi \sqrt{\frac{R^3}{GM}}$$