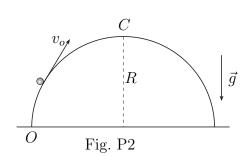

Auxiliar - Viernes 17 de Abril


FI2001 - Mecánica Prof. Luis Rodriguez Semestre Otoño 2009

Auxs: Francisco Sepúlveda & Kim Hauser

P1

Una partícula puntual que se mueve por una circunferencia de radio a es atraída por un punto C de la misma, por una fuerza de módulo $F = k/r^2$, donde r es la distancia al punto C. Determine el trabajo de la fuerza al ir la partícula del punto A, diametralmente opuesto a C, a un punto B ubicado a medio camino entre C y A, también en la circunferencia.

P2

Una partícula de masa m se mueve con rapidez constante v_o por el exterior de un semicilindro horizontal de radio R. Además del peso y la fuerza normal que ejerce la superficie, la partícula está sometida a otras dos fuerzas. La primera es una fuerza \vec{F}_1 que está descrita por la expresión:

$$\vec{F}_1 = -c(xz^2\hat{\imath} + x^2z\hat{k})$$

donde c es una constante conocida y las coordenadas x, z se miden respecto al origen O. La otra fuerza, $\vec{F_2}$, para la cual no se cuenta con una expresión explícita, es la que permite que la partícula se mueva con rapidez constante en su trayectoria desde el origen O a la cúspide C. Se pide:

- (a) Mostrar que la fuerza \vec{F}_1 es conservativa.
- (b) Determinar una expresión para el potencial asociado a \vec{F}_1 .
- (c) Determinar el trabajo efectuado por la fuerza \vec{F}_2 en el trayecto de O hasta la cúspide C.

Respuestas:

(Jamás asumir que están exentas de errores.)

R1: (a)
$$W_A^B = \frac{k}{2a} \left[\sqrt{2} - 1 \right];$$

R2: (b)
$$U_1(x,z) = \frac{cx^2z^2}{2}$$
; (c) $W_{F_2} = \frac{cR^4}{2} + mgR$;