Auxiliar - Jueves 2 de Abril

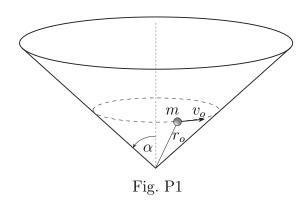
FI2001 - Mecánica Prof. Luis Rodriguez Semestre Otoño 2009

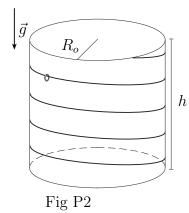
Auxs: Francisco Sepúlveda & Kim Hauser

P1

Considere una superficie cónica como la indicada en la figura, que se encuentra en un ambiente $con\ gravedad$. En un cierto instante se impulsa una partícula de masa m sobre la superficie interior del cono, con una velocidad inicial v_o en dirección perpendicular a su eje. En ese momento la partícula está a una distancia r_o del vértice del cono. El roce entre la partícula y la superficie es despreciable. El ángulo entre el eje del cono y la generatriz es α .

- (a) Escriba las ecuaciones de movimiento de la partícula en un sistema de coordenadas que le parezca adecuado.
- (b) ¿Está la coordenada esférica r acotada entre dos valores r_{max} y r_{min} ? La respuesta es Sí. Calcúlelos y determine qué valor toma la normal cuando la partícula alcanza esos puntos.





P2

Un anillo de masa m desciende, debido a su propio peso, por un alambre de forma helicoidal de radio R_o y paso tal que $z = h - \phi R_1$. No hay roce anillo-alambre, pero sí hay roce viscoso: el anillo es frenado por un roce viscoso lineal $\vec{F}_{rvl} = -c\vec{v}$.

La condición inicial es $\phi(0) = 0$, z(0) = h y $\dot{\phi}(0) = 0$ y la aceleración de gravedad es g.

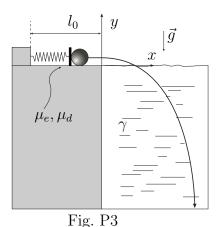
- (a) Obtenga el vector unitario tangente \hat{t} de la trayectoria y la expresión más general posible para la fuerza normal \vec{N} .
- (b) Descomponga la ecuación (vectorial) de movimiento en ecuaciones escalares.

(c) De las ecuaciones anteriores obtenga la forma explícita de $\omega(t) = \dot{\phi}(t)$ en función de los datos: $m, R_o, R_1, c y g$.

P3

Considere un sistema compuesto por un resorte y una masa que se encuentran al borde de una piscina muy profunda, como se indica en la figura. El resorte es de largo natural l_0 y constante elástica k. A éste se fija una pared móvil de masa despreciable. El sistema se prepara de tal modo que la partícula puntual de masa m se coloca junto a esta pared en su posición de compresión máxima, es decir en $x = -l_0$, según el sistema de coordenadas que se muestra en la figura, y se suelta desde el reposo. Se pide:

- (a) ¿Cuál es la condición que asegura que la masa m se moverá desde $x = -l_0$?
- (b) Encuentre el valor máximo de μ_d que permita a la masa llegar al borde de la piscina (x=0) con velocidad no nula. Entregue el valor de esta velocidad no nula.
- (c) Considere que la masa entra a la piscina inmediatamente cuando x > 0. Una vez que entra, la masa experimenta una fuerza de roce viscoso lineal, de constante γ . Suponga además que no hay fuerza de empuje (la masa es puntual). Determine entonces el alcance máximo que alcanzará la masa y su velocidad límite.



Respuestas:

(Jamás asumir que están exentas de errores.)

R1: (a); (b);

R2: (a)
$$\hat{t} = \frac{R_o}{\sqrt{R_o^2 + R_1^2}} \hat{\phi} - \frac{R_1}{\sqrt{R_o^2 + R_1^2}} \hat{k}$$
, $\vec{N} = N_\rho \hat{\rho} + \frac{R_1}{R_o} N_k \hat{\phi} + N_k \hat{k}$; (c) $\dot{\phi}(t) = \frac{m}{c} \frac{gR_1}{R_o^2 + R_1^2} \left[1 - e^{-\frac{c}{m}t} \right]$;

R3: (a)
$$\mu < \frac{kl_o}{mg}$$
; (b) $\dot{x}_f^2 = \frac{k}{m}l_o^2 - 2\mu_d g l_o$, con $\mu_d < \frac{kl_o}{2mg}$; (c) $x_{max} = \frac{m\dot{x}_f}{\gamma}$, $\dot{y}_{lim} = -\frac{mg}{\gamma}$;