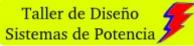
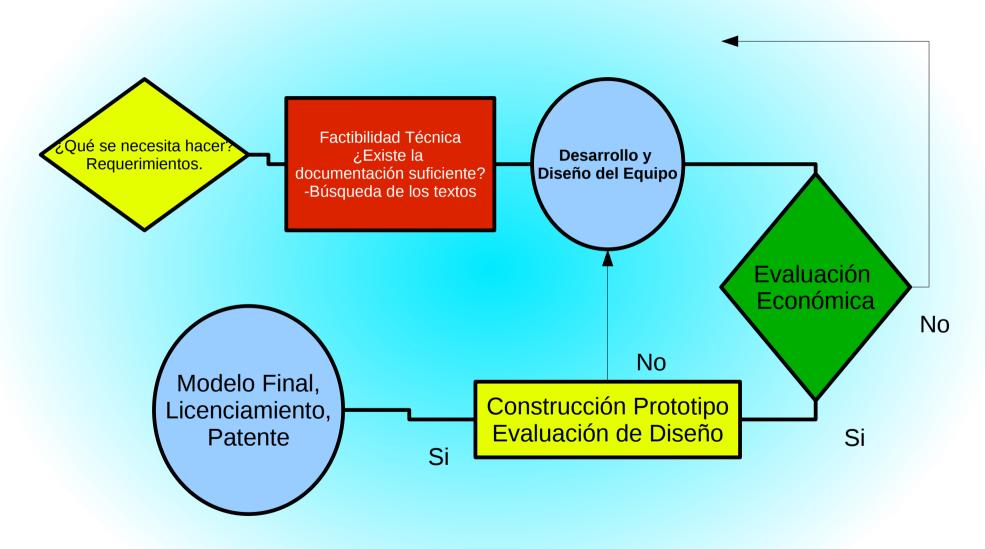
Taller de Diseño en Sistemas de Potencia

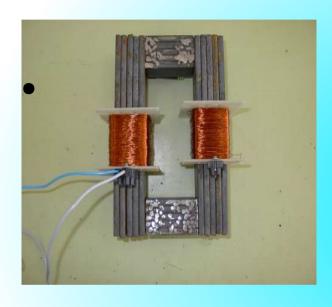

Uso de los libros de Diseño

Otoño 2009


David Pineda Osorio Nicolás López Madrid

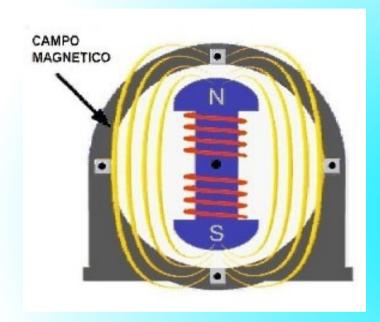
En qué consiste un Libro de Diseño

- Documento que entrega la información necesaria para construir un equipo en base a los requerimientos de Diseño.
- Los requerimientos de Diseño consisten en los parámetros o condiciones que debe cumplir un equipo.
- Para un equipo de Potencia se requiere básicamente una Funcionalidad específica y una capacidad de transferencia de Potencia.


Proceso del Diseño

Equipos más Comunes

- Transformadores
- Máquinas Generadoras
- Motores
- Líneas de Transmisión
- Equipo de Control
- Aparatos de electrónica de Potencia

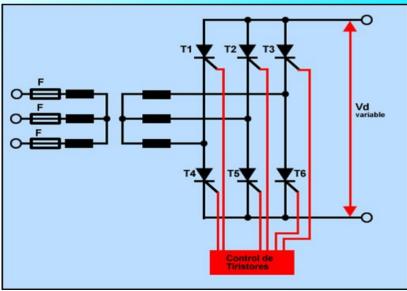

Transformador

Requerimientos:

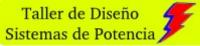
- Transferir potencia P [MW]
- Razón de Transformación
- Eficiencia
- Condiciones Ambientales
- Restricciones materiales
- Restricciones económicas

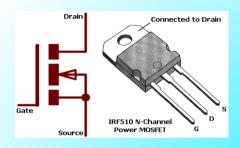
Máquinas Generadoras

- Condiciones ambientales de montaje
- Energía a generar
- Tensión a generar
- Eficiencia
- Sistema de Control
- Restricciones materiales
- Restricciones económicas

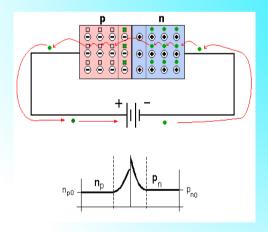

Líneas de Transmisión

- Trazado
- Tensión
- Corriente
- Elección de tipo y material de Cable
- Diseño y posicionamiento de torres
- Condiciones ambientales

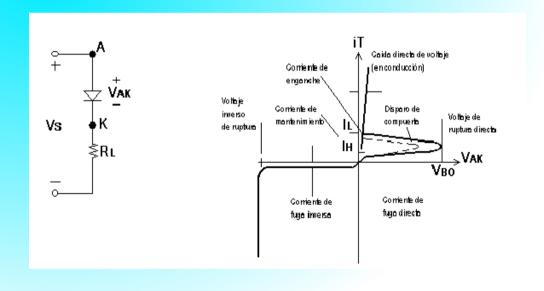

Aparatos de electrónica de Potencia



Posibles Usos


- Se tiene fuente AC, se necesita rectificar y entregar tension DC.(transformación)
- Se necesita regular o definir una tensión de disparo (control)

Los Semiconductores en EP

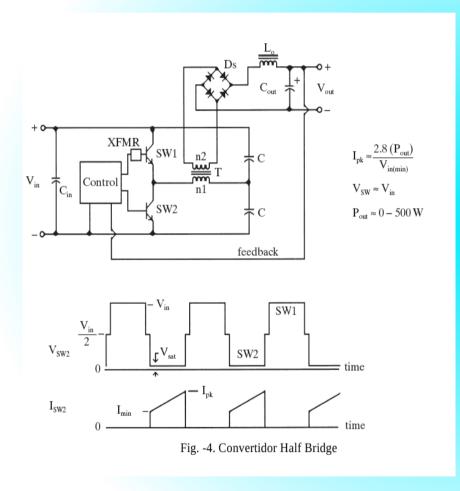

Mosfet

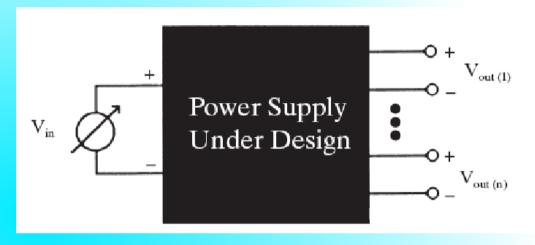
Diodo

IGBT

Ejemplo Diseño

- Se requiere una fuente AC-DC switching.
- La potencia de 200 W
- Tensión entrada 220v
- Tensión de salida 30 v


Libro Ocupado:


 Power Supply Coockbook
 Brown M. (año 2001)

Topology	Power Range (W)	V _{in(dc)} Range	In/Out Isolation	Typical Efficiency (%)	Relative Parts Cost
Buck	0-1000	5-40	No	78	1.0
Boost	0-150	5-40	No	80	1.0
Buck-boost	0-150	5-40	No	80	1.0
1T forward	0-150	5-500	Yes	78	1.4
Flyback	0-150	5-500	Yes	80	1.2
Push-pull	100-1000	50-1000	Yes	75	2.0
Half-bridge	100-500	50-1000	Yes	75	2.2
Full-bridge	400-2000+	50-1000	Yes	73	2.5

Tabla 1. Comparación de topologías

Primeros Pasos

Caja Negra

$$I_{\rm pk} = \frac{k \cdot P_{\rm out}}{V_{\rm in(min)}}$$

Corriente Máxima, k=2,2

Pérdidas en Componentes

	Bipolar Power Switch		MOSFET Power Switch		Rectifier(s)	
Topology	V_{CEO}	I _C	V_{DSS}	I _D	V_{R}	/ _F
Push-pull	$2V_{\rm in}$	$\frac{1.2P_{\rm out}}{V_{\rm in(min)}}$	$2V_{\rm in}$	$\frac{1.2P_{\rm out}}{V_{\rm in(min)}}$	$2V_{ m out}$	$I_{ m out}$
Half-bridge	V_{in}	$\frac{2P_{\rm out}}{V_{\rm in(min)}}$	$V_{ m in}$	$\frac{2P_{\rm out}}{V_{\rm in(min)}}$	$2V_{\rm out}$	$I_{ m out}$
Full-bridge	$V_{ m in}$	$\frac{1.2P_{\rm out}}{V_{\rm in(min)}}$	V_{in}	$\frac{1.2P_{\rm out}}{V_{\rm in(min)}}$	$2V_{\text{out}}$	$I_{ m out}$

				Estimated Percent of Total Loss (P _(%))				
	Power S	witch	Overall					
	Type		Estimated	Power Switch	Output			
			Efficiency	and Drive	Rectifier	Magnetics	Miscellaneous	
Topology	Bipolar	MOS	(%)	(%)	(%)	(%)	(%)	
Push-pull	×		69	50	40	5	5	
•		×	72	40	50	5	5	
Half-bridge	×		69	48	42	5	5	
		×	72	40	50	5	5	
Full-bridge	×		65	50	40	5	5	
		×	70	40	50	5	5	

Tabla 3. Eficiencias estimadas para caja negra .

Elementos Magnéticos

Se determina el número de vueltas en el primario:

$$N_{\text{pri}} = \frac{V_{\text{in(nom)}}}{4 \cdot f \cdot B_{\text{max}} \cdot A_{c}}$$

A_c: sección del núcleo magnético por donde pasa el flujo (m²).

 $V_{in(nom)}$: voltaje de entrada típico.

 B_{max} : densidad de flujo máximo de operación (teslas [Wb/m²]).

Ahora, se determina la cantidad de vueltas para el secundario:

$$N_{\text{sec}} = \frac{1.1(V_{\text{out}} + V_{\text{fwd}})}{N_{\text{pri}}(V_{\text{in(min)}})\text{DC}_{\text{max}}}$$

 V_{fwd} : es la caída de voltaje dede antes de la zona de rectificación.

DCmáx: máximo ciclo de trabajo (duty cicle, recomendable .95)

 $V_{in(m in)}$: voltaje de entrada mínimo para un funcionamiento regular.

Primero se determina el tamaño de ventana.

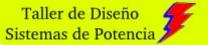
$$W_{\rm a}A_{\rm c} = \frac{0.68 \cdot P_{\rm out} \cdot d_{\rm w}}{B_{\rm max} \cdot f}$$

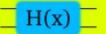
d_w: sección del cable del primer enrollado en cm²

B_{m ax}: densidad de flujo máximo en Teslas.

f: frecuencia de operación.

Pout: potencia total de salida.


Luego se determina el factor a escala:


$$K_{net} = K_a * K_b * etc$$

Se tiene finalmente:

Consideration	Scaling Facto		
Flyback transformer One secondary Two or more secondaries Isolated secondaries	$ \begin{array}{c} 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \end{array} \right\} \begin{array}{c} \text{or} \\ \text{or} \end{array} $		
UL or CSA approval IEC approval Faraday shield	1.1 1.2 } or 1.1		

Tabla 5. factores de escala

Filtro de Choke

La inductancia mínima la determina:

$$L_{\min} = \frac{\left[V_{\text{in(max)}} - V_{\text{out}}\right] \cdot T_{\text{off(cst)}}}{1.4 \cdot I_{\text{out(min)}}}$$

Donde

V_{in (m ax)} es la máxima entrada de voltaje post-rectificación.

V_{nut} tensión de salida

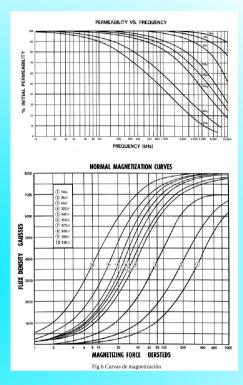
 $T_{\text{eff(est)}}$ tiempo estimado para el cual el switch está en el máximo voltaje (30% de $1/f_{\text{op}}$ es bueno)

I_{out(min)} la más pequeña salida de corriente

La energía acumulada en el inductor es:

Permitiendo definir el tamaño del $E_{\rm L} = L \cdot I_{\rm out(av)}^2$

núcleo.


Se determina el porcentaje de ocupación del cobre en relación a la ventana.

$$\%$$
 window = $\frac{N \cdot A_{\text{wire}}}{A_{\text{window}}} (100)$

A_{vire} sección de alambre de cobre

A_{vindow} área de ventana

N número de vueltas

En principio, la cantidad de vueltas está dada por:

$$N = \frac{H \cdot l}{0.4 \cdot \pi \cdot I_{\text{av}}}$$

Donde.

H fuerza magnética escogida

 I_{a_7} Corriente media

l perímetro del núcleo

Etapa de Switcheo

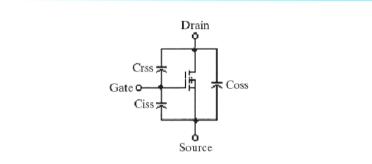


Figure 3-35 The symbol of a power MOSFET with the parasitic capacitances.

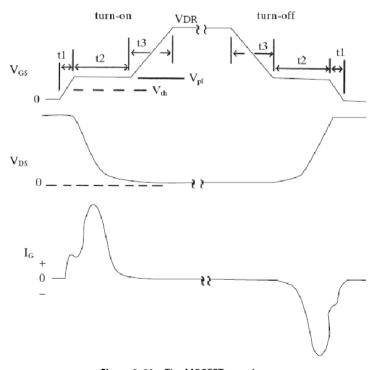


Figure 3–36 The MOSFET waveforms.

Fig.16- Características del mosfet canal N.

Turn-on delays:

CMOS Bipolar

Turn-off Delay
$$t(1) \approx \frac{Q_{(t1)}}{I_{OH}} = \frac{Q_{(t1)}R_{eff(OH)}}{V_{OH}}$$

Risetime $t(2) - \frac{Q_{(t2)}}{I_{OH}} = \frac{Q_{(t2)}R_{eff(OH)}}{V_{OH} - V_{p1}}$

$$t(3) - \frac{Q_{(t3)}}{I_{OH}} \quad \frac{Q_{(t3)}R_{eff(OH)}}{V_{OH} - V_{pl}}$$

$$R_{eff(OL)} - \frac{V_{OL}}{I_{OL}}$$

Turn-off delays:

$$COMS \quad Bipolar$$
Turn-off Delay t(3) $-\frac{Q_{(r3)}}{I_{OL}} \quad \frac{Q_{(r2)}R_{eff(OL)}}{V_{OH} - V_{pl}}$

$$Falltime \ t(2) - \frac{Q_{(r2)}}{I_{OL}} \quad \frac{Q_{(r2)}R_{eff(OL)}}{V_{OL} - V_{pl}}$$

$$t(1) - \frac{Q_{(r1)}}{I_{OL}} \quad \frac{Q_{(r1)}R_{eff(OL)}}{V_{OL} - V_{pl}}$$

$$R_{eff(OH)} - \frac{V_{DR} - V_{OH}}{I_{OL}}$$

Fig. 17 -Tiempos de retraso.

Circuito de Control

PWM Control Methods Table 3–6 Optimum Topology Control Method Issues Voltage-mode with Forward-mode OC foldback slow, could cause power switch average OC foldback failures Voltage-mode with Forward-mode Very good OC protection; usually hi-side current pulse-to-pulse OC limiting sensing Hysteretic current-Forward- and Heavily patented; mode boost-mode few control ICs Current-mode, Boost Very good OC protection; turn-on with clock many ICs; typically GND-driven SW Tabla 7

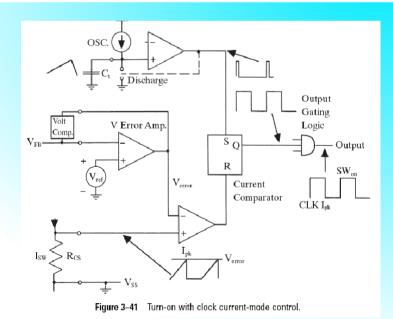


Figure 3-43 A nonisolated voltage feedback circuit.

Fig 21- Aislamiento de retorno de control (cierre del lazo)

Etapa Rectificación

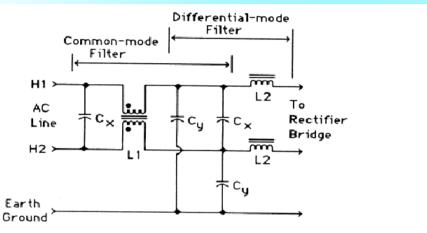
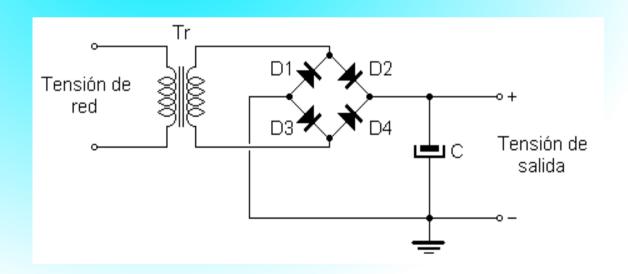
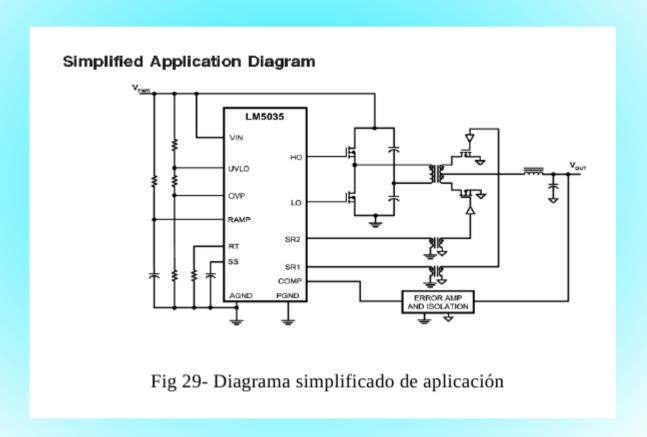




Figure E-4 A complete third-order, input EMI filter (common-mode and differential-mode).

Fig. 28 Filtro EMI con modo común y diferencial en casacada, mejora el filtro de ruido.

Se escoge un Controlador IC

Libros en Biblioteca

Autor: Pedro Avelino Pérez

Título: Transformadores de distribución: teoría, cálculo, construcción y pruebas

Código en Bca Central: 621.314 Av32 2001 C.1

Autor: Aguilera Duarte., José Javier.

Titulo: Diseño de un transformador para ensayos de capacidad de ruptura de interruptores

automáticos

Código en Bca Eléctrica: U. de Chile/CF A93 1998

Código en Bca Central: 1998 Ag93d

Autor : Instituto Nacional de Investigaciones Tecnológicas y Normalización (Chile)

Titulo: Métodos de ensayo: requisitos generales.

Código en Bca Central: NCh910.EOf72

Autor: Instituto Nacional de Investigaciones Tecnológicas y Normalización (Chile)

Titulo : Métodos de ensayo : requisitos generales.

Código en Bca Central : NCh911.EOf72

Autor: Instituto Nacional de Investigaciones Tecnológicas y Normalización (Chile)

Titulo: Determinación de la razón de transformación

Código en Bca Central : NCh912.EOf72

Autor : Instituto Nacional de Investigaciones Tecnológicas y Normalización (Chile)

Titulo: Comprobación de las polaridades de los enrollados

Código en Bca Central: NCh913.EOf72

Autor : Instituto Nacional de Investigaciones Tecnológicas y Normalización (Chile)

Título : Determinación del porcentaje de impedancia y péridas en carga.

Código en Bca Central : NCh914.EOf72

Libros de Profesores

Diseño de Sub estaciones

José Paúll Martín

Ingeniero Mecánico Electricista

UNAM Facultad de Ingeniería

1987

Product Warranty Handbook

Chapter: Warranty and engineering

Biblioteca 658.5

P942 1996

Líneas de transporte de energía

Luís Maria Checa Ismb 84 267 0240 6

Editorial: Marcombo S.A Barcelona España

Electrónica de potencia. Circuitos, dispositivos y aplicaciones

3ª edición

Muhammad H Rachid

Editorial: Pearson educación

2004

Electrical Power System Technology

Stephen W Fardo - Bale R Patrick

2ª edición

1996

Handbook of electric power calculation

H Wayne Beaty

3ª edición

McGraw-Hill

Biblioteca 621.31

B380

2001

Libros en Internet

- Catalogo Bello: Se encuentran los libros de la Universidad Catalogados, su sistema de búsqueda indica los datos necesarios, los libros de ingeniería eléctrica se encuentran ahora en Biblioteca Central.
- En diversos sitios se pueden obtener versiones digitalizadas de libros de diseño, por ejemplo thepiratebay.com, chilecomparte.cl, entre otros.

Referencias

- Elementos de Diseño de Máquinas Eléctricas. Alfred Still y Charles Siskind.
- Disponible en biblioteca central

Power Supply Coockbook

Brown M. (año 2001)

Disponible en pdf, en internet.