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Abstract 

Systems need to run a larger and more diverse set of  applica- 
tions, from real-time to interactive to batch, on uniprocessor 
and multiprocessor platforms. However, most schedulers ei- 
ther do not address latency requirements or are specialized 
to complex real-time paradigms, limiting their applicability 
to general-purpose systems. 

In this paper, we present Borrowed-Virtual-Time (BVT) 
Scheduling, showing that it provides low-latency for real- 
time and interactive applications yet weighted sharing of  
the CPU across applications according to system policy, 
even with thread failure at the real-time level, all with a 
low-overhead implementation on multiprocessors as well as 
uniprocessors. It makes minimal demands on application 
developers, and can be used with a reservation or admission 
control module for hard real-time applications. 

1 Introduction 

With modern processor speeds and memory capacities, sys- 
tems can now run a wide diversity of application tasks, and 
they need to in order to meet user/customer expectations. For 
example, a software engineer can reasonably watch and lis- 
ten to a training video on his or her PC while editing and 
(re)compiling software, and receive a Voice-over-IP call in 
the midst of this activity, with software performing packet 
reception, decompression and timed playback as well as 
sampling, compression and transmission. Further, in em- 
bedded systems such as an IP router, multiple command 

Permission to make digital or hard copies of all or part of this work 
for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advan- 
tage, and that copies bear this notice and the full citation on the 
first page. To copy otherwise, to republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. 
SOSP-17 12/1999 Kiawah Island, SC 
©1999 ACM 1-58113-140-2/99/0012... $5.00 

line interpreters and network management tasks can run con- 
currently with real-time tasks performing routing protocols, 
packet forwarding and signaling protocols. 

Most general-purpose operating system processor sched- 
ulers just provide fair sharing of the CPU among competing 
tasks, with limited support for different latency-sensitivity 
among competing threads and no guarantees. Thus, in the 
above example, the scheduler may allow a frame display by 
the video player to be delayed by the concurrent compilation 
process when a disk I/O completes shortly before this frame 
time, degrading the video playback with no real benefit to 
the compilation. Similar delay would also degrade the voice 
quality. For hard real-time tasks, excessive delay can cause 
outright failure. 

In contrast, specialized real-time operating system 
schedulers handle latency sensitivity by allowing and re- 
quiring application threads to specify their future processing 
needs in some detail. In particular, with a deadline-based 
scheduler, a thread is required to specify in advance by what 
deadline it next needs to complete its processing, how many 
cycles it requires to complete the processing, and the earliest 
starttime it is prepared to initiate this processing. However, 
this complex scheduling model imposes extra overhead on 
the application developer and the scheduler itself, and makes 
the scheduler unsuitable for use with unpredictable real-time 
threads and general-purpose single- and multi-user timeshar- 
ing systems. Conventional wisdom holds that these costs and 
special mechanisms are necessary to meet real-time response 
requirements. We believe they are not. 

In this paper, we present borrowed-virtual-time (BVT), 
a general-purpose scheduling algorithm that allows a sin- 
gle operating system kernel to support the diverse range of 
applications outlined above, and thus a candidate "univer- 
sal" processor scheduler. We show that BVT scheduling al- 
lows a simple low-overhead implementation, requires little 
or no change to applications, and provides comparable, if not 
superior, response behavior to specialized real-time sched- 
ulers. 
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2 BVT scheduling 

With BVT scheduling, thread execution time is monitored in 
terms of virtual time, dispatching the runnable thread with 
the earliest effective virtual time (EVT). However, a latency- 
sensitive thread is allowed to warp back in virtual time to 
make it appear earlier and thereby gain dispatch preference. 
It then effectively borrows virtual time from its future CPU 
allocation and thus does not disrupt long-term CPU sharing. 
Hence the name, borrowed virtual time scheduling. This al- 
gorithm is described in detail in the rest of this section. 

Each BVT thread includes the state variables Ei, its ef- 
fective virtual time (EVT); As, its actual virtual time (AVT); 
Wi, its virtual time warp; and warpBacki ,  set if warp is en- 
abled. When a thread unblocks or the currently executing 
thread blocks, the scheduler runs thread i if it has the mini- 
mum Ei of all the runnable threads. 

The EVT for the thread is computed as: 

Ei +-- Ai - (warp?Wi :0) 

where warp is determined as described later. 
The scheduler accounts for running time in units of min- 

imum charging unit (MCU) or mcu,  typically the frequency 
of clock interrupts. That is, a thread that runs for k * mcu - e 
time is charged for running for k • mcu  time. A thread that 
runs for t microseconds has this amount rounded up to the 
next multiple k of mcu and then charged for k time units. If  
m c u / 2  is approximately the context switch cost, the round- 
ing up on average charges the current process for the context 
switch. 

The scheduler is configured with a context switch al- 
lowance C, which is the real time by which the current 
thread is allowed to advance beyond another runnable thread 
with equal claim on the CPU. C is typically larger than, and 
a multiple of, mcu, preventing two compute-bound threads 
at same AVT from thrashing by switching on every timer in- 
terrupt. For example, a system scheduler could use C = 10 
milliseconds and mcu = 100 microseconds. C is thus simi- 
lar to the quantum in conventional timesharing. 

2.1 Weighted fair sharing 

Each runnable thread receives a share of the processor in 
proportion to its weight wi over a scheduling window of 
some number of mcu (see Section 6). To achieve this, the 
AVT Ai of the currently running thread i is incremented 
by its running time divided by w~. In implementation, the 
scheduler stores for each thread i an mcu advance variable, 
mi,  that is set proportional to 1/wi. The scheduler incre- 
ments Ai by k • mi on a context switch when thread i has 
run for t microseconds, as above. On each AVT update, the 
scheduler switches from current thread i to runnable thread 
j if 

Aj  <_ Ai - C / w i  

to factor C into the context switch decision. 
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F i g u r e  1. Weighted fair sharing of the CPU. The X 
axis is real time (in mcu) and the Y axis is virtual time 
so a running thread appears as a diagonal line and a 
waiting (runnable) thread appears as a flat line. Gcc 
has twice the weight of bigsim so it receives 2/3 of the 
CPU while bigsim receives 1/3. The scheduler gives 
all runnable threads equal amounts of virtual time, and 
gcc c o n s u m e s  its virtual time more slowly because of 
its greater weight. 

This sharing of the CPU is illustrated in Figure 1 where 
the vertical axis indicates virtual time and the horizontal axis 
indicates physical time (in mcu). Context switches occur 
when the running thread passes the waiting thread by 2 mcu 
(the context switch allowance). Over a scheduling window 
of 9 mcu,  each thread receives its fair share. In general, 
the error between fair share and actual allocation is never 
greater than the context switch allowance plus one mcu if 
the threads are all runnable. The lines on the graph intersect 
where precise sharing is achieved. 

When thread i becomes runnable after sleeping 

Ai +-- max(Ai,  S V T )  

where scheduler virtual time (SVT) is a scheduler variable 
indicating the minimum Ai of any runnable thread 1. This ad- 
justment prevents a thread from claiming an excessive share 
of the CPU after sleeping for a long time as might happen 
if there was no adjustment, as illustrated in Figure 2. With 
this adjustment, a thread gets the same share of the CPU on 
wakeup as if it has been runnable but not dispatched to this 
point because it is given the same AVT in both cases. 

The scheduler can consider the AVT of threads blocked 
by involuntary sleep, such as a page fault, as part of the min- 
imum computation to avoid the problem of a runnable batch 

XSVT captures the notion of the current virtual time of the 
scheduler's threads, similar to the role of global virtual time (GVT) 
with optimistic parallel simulation. Any thread that is not runnable 
is effectively blocked on an event in the future and so does not hold 
back SVT or GVT. 
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F igure  2. Adjusting AVT for a thread after a long sleep. 
gcc sleeps for 15 mcu from time 0 to time 15 while 
bigsim executes. When gcc wakes up, Agcc is brought 
up to S V T ,  so it fairly shares the CPU with bigsim over 
the next several mcu. Without adjusting its AVT, gcc 
would starve bigsim, as indicated by the lower thin line 
starting at real time 15 and virtual time 0. 

thread effectively losing a portion of its share by taking a 
page fault immediately after being (finally) dispatched. It 
also fits the logical model because the thread is not logically 
waiting for an event, just delayed by implementation arti- 
fact, namely the virtual memory system. (This is equivalent 
to only doing this AVT adjustment to a thread if its sleep was 
voluntary, such as waiting for user input.) 

This scheduling behavior is similar to weighted fair 
queueing [2] and start-time fair queueing (SFQ) [5]. 

2.2 Low latency dispatch 
A thread is created with a non-zero warp Wi to give it dis- 
patch preference. Larger warp values provide lower latency 
dispatch than smaller values. The warpBaeki flag can be set 
directly by a system call, causing the thread to run warped 
normally, or it may be enabled on signal invocation by pass- 
ing a SA_BVT_WARP flag to s i g a c t i o n  ( ), causing the 
thread's signal handler to run warped. 

Figure 3 illustrates an MPEG player using a warp value 
of 50 to achieve low latency dispatch in competition with 
g c c  and b i g s i m  sharing the same processor. When the 
mpeg player wakes up to generate the next frame, it imme- 
diately preempts the other applications because its EVT is 
S V T  - 50 because of its warp whereas the other programs 
are at SVT or later, by definition. However, the MPEG 
player's long-term usage is still constrained by the weighted 
fair sharing of BVT, similar to SFQ, because its Ai is ad- 
vanced based on its actual CPU usage. Without warp, the 
MPEG player could be delayed at frame time by other in- 
teractive and batch application threads with the same AVT, 
time-slicing with these same threads to completion, similar 
to the behavior illustrated in Figure 1. Warping thus reduces 

F igure  3. Low latency dispatch using warp, showing 
effective virtual time on the Y-axis: The mpeg player 
wakes up every 10 mcu (time 5 and time 15), uses 5 
mcu, and goes back to sleep. It runs first because it 
is warped back 50 virtual units, giving it the earliest 
EVT. Like any thread, when it wakes up, its AVT (not 
shown) is advanced to S V T  (causing the short vertical 
segments in its EVT). 

the jitter from the 10's of milliseconds to microseconds or 
less, depending on the time for a context switch. 

Each thread also has a warp time limit Li and an un- 
warp time requirement Ui, both in real time units, e.g. mi- 
croseconds. Thread i is allowed to run warped for at most 
Li time and, if it attempts to run warped longer, it is then 
unwarped by the scheduler, which dispatches the new low- 
est EVT thread 2. Similarly, if thread i attempts to warp after 
having previously warped within Ui, the scheduler runs it 
unwarped until at least time Ui has passed. The unwarped 
time is measured from when a thread explicitly unwarps or 
blocks. 

Relating back to our earlier setting of Ei, 

Ei +-" Ai - (warp?Wi :0) 

thread i is run warped (i.e the warp variable being true) if 
warpBacki is true and the Li and Ui limits are satisfied. 
With Li non-zero and Ui = O, a thread is automatically un- 
warped after running warped for Li time and remains un- 
warped until it explicitly sets its state to warped again. With 
Li = O, a thread has no time limit on how long it can run 
warped. 

These warp parameters can be set to limit the short-term 
CPU consumption of a high priority (i.e. high warp) thread 
more strictly than the thread weight does and thus limit the 
latency it can add to other threads, as illustrated in Figure 4. 
In contrast, a strict priority scheduler would allow a high 

~Ideally, the hardware provides an accurate interval timer or cy- 
cle counter that detects the case of a thread running for longer than 
its warp time limit, allowing this limit and Ui to be accurate to 
microseconds. 
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Figure 4. Infinite loop in a low latency thread: The 
MPEG player wakes up at time 5 and goes into an infi- 
nite loop. By time 10, it has exceeded L~ causing it to 
be unwarped at which time it reverts to its A~, allowing 
other threads to run, preserving weighted fair sharing. 

priority thread in an infinite loop to starve lower priority 
threads. 

The Ui parameter prevents a periodic task from using ex- 
cessive CPU in the short-term by waking up too frequently. 
For example, a periodic device task that requires low latency 
dispatch every 100 milliseconds and consumes well under 
1 millisecond of CPU each time can use a large Wi to get 
immediate dispatch when it unblocks, with a Li warp time 
limit of 1 milliseconds, and unwarp time Ui of say 99 mil- 
liseconds. If the device fails and signals the thread every 2 
milliseconds, the scheduler prevents the thread from warp- 
ing and using excessive CPU cycles during the application 
scheduling window. Without these warp limit parameters, 
a failed device thread with a large warp could run for 200 
milliseconds or more before being preempted because of ex- 
ceeding its CPU share. 

The default value of 0 for Li and Ui is suitable for most 
threads because their warp values and CPU share are too 
low to significantly interfere with other threads. Thus, these 
parameters need not complicate the system configuration ex- 
cept for time-critical real-time threads. 

The BVT scheduler implementation includes a logging 
facility we have used to debug the scheduling behavior 
of programs, including detecting threads running into their 
warp time limit and unwarp time requirement. Alternatively, 
the system could generate a signal or delete a thread when it 
hits one of these limits. 

2.3 Interrupt  service routines 

An interrupt routine can be handled as the signal handler of 
a BVT thread, providing it with a weight, warp and warp 
limits. In this case, the running time of the interrupt rou- 
tine is accounted for as cycles used by this thread in its sig- 
nal handl,~r. Then, an interrupt thread that attempts to use 

an excessive share of the CPU is blocked from running un- 
til SVT had advanced sufficiently, just as with other threads 
and their signal handlers. This avoids the problem of inter- 
rupt routines blocking out other processing, as Mogul and 
Ramikrishnan [9] identified as a problem with network pro- 
tocol processing. 

2.4 Mult iprocessor  schedul ing  

Using BVT on a shared memory multiprocessor, each pro- 
cessor runs the earliest EVT thread of all the runnable 
threads, but adds a migration penalty M for each thread that 
ran most recently on another processor. Thus, if thread i 
most recently ran elsewhere, its EVT for dispatch locally is 

Ei = Ai - (warp?Wi : O) + M 

This computation favors migrating a latency-sensitive thread 
to an available processor to achieve lower latency because of 
its higher warp value. The value M is set small on machines 
where fast response is critical and larger when throughput is 
the primary purpose of the multiple CPUs. 

2.5 M u l t i - l e v e l  schedul ing  

BVT can be used in a multi-level or hierarchical scheduling 
structure, similar to hierarchical SFQ [5], to allow a set of 
threads to be treated as an aggregate with respect to lower- 
level scheduler. For instance, the first-level scheduler can be 
configured to run a set of real-time threads as a closed sys- 
tem 3 with a known set of threads and requirements and ad- 
mission control. The first-level allocates a fixed CPU share 
to the second-level (by the weight of the second-level sched- 
uler) which runs a set of timesharing threads as an open sys- 
tem. These threads simply degrade in performance as their 
demands exceed the second-level CPU share as appropriate 
for timesharing. A group of real-time threads can be aggre- 
gated similarly, such as the set of threads handling network 
protocol processing. 

The two-level scheduler can run in threshold mode in 
which case the second-level thread effectively runs with the 
second-level scheduler's warp value Wi if its warp is over a 
specified threshold. This mode is intended for a second-level 
scheduler running timesharing or best-effort threads where 
warp values below its threshold just give a thread response 
preference relative to other second-level threads. Warp val- 
ues above the threshold are used for threads, such the MPEG 
player, that benefit from low-latency response even relative 
to other threads at the first level. Setting a larger thresh- 
old value effectively conserves the limited warp time of the 
second-level scheduler for its higher priority threads. 

In direct mode, a second-level scheduler runs its threads 
with the warp value of the thread it is executing. This mode 
is used when the second-level scheduler is grouping a set of 
real-time threads to allocate a CPU share to the aggregate 

3A closed system refers to one where an admission control mod- 
ule knows all the threads and ensures that their processing demands 
can be met, in contrast to an open system in which all threads de- 
grade as new threads and load are "openly" added without control. 
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rather than individual threads. For example, a system may 
allocate 30 percent of  the CPU capacity to network protocol 
processing, spread across many threads. The second-level 
scheduler executes with the warp value and warp time limit 
of the network processing thread it is executing, so the dis- 
patch latency is not affected by running the network process- 
ing in this aggregate, assuming the aggregate CPU share is 
adequate. 

A third-level BVT scheduler could provide virtual time- 
based scheduling within a simulation framework, where 
AVT corresponds to simulation time and is advanced by sim- 
ulation events, not weights. Then, the warp mechanism can 
be used to allow a simulation process to compute ahead in 
actual virtual time, ahead of the GVT process, as appropriate 
with optimistic parallel simulation, but limited in compute- 
ahead by the warp value. We have not, however, explored 
BVT beyond two levels to date. 

This describes the complete system interface provided to 
the user for BVT scheduling except for administrative con- 
trois for setting the weights wi and warp parameters Wi, Li 
and Ui. Setting these parameters and further details on using 
multi-level scheduling are described in Section 6. 

3 BVT implementation 

We implemented BVT scheduling on Linux as follows. We 
use an m e u  of 10 milliseconds (the timer interrupt period). 
A thread corresponds to a Linux process. The thread de- 
scriptor holds the thread's MCU advance mi  = 1/wi  (which 
must be an integer) rather than its weight. 

On a context switch, besides finding the thread with low- 
est EVT, the scheduler identifies the thread that it would run 
next assuming no other threads wake up, computes the num- 
ber of meu 's  until the context switch should take place (tak- 
ing the context switch allowance into account), and stores 
that value in a context-switch countdown in the thread de- 
scriptor. Then, on every timer interrupt, the active thread's 
m c u  counter is incremented. When it reaches the context- 
switch countdown, the timer interrupt handler invokes the 
scheduler. 

Whenever the scheduler is invoked (due to a timer ex- 
piration, a wakeup, the running thread blocking, or the run- 
ning thread reaching its context-switch countdown), it first 
advances the AVT of the running thread i by mi times its 
MCU counter, sets the thread's MCU counter to 0, and up- 
dates scheduler virtual time. Then it picks a best thread and 
a second-best thread as described above. Thus, whenever a 
thread wakes up, we dispatch it immediately if its EVT is 
less than that of the running thread. Coarse-grained switch- 
ing between CPU-bound threads still occurs because of the 
context switch allowance. 

The standard Linux thread descriptor is augmented with 
integers representing timer interrupt advance, warp, warp 
time limit, unwarp time limit, actual virtual time, and the 
scheduler ID in which the thread runs. To implement run- 
time limits, we also include a record of how much warped 
runtime the thread has left, a flag if it is waiting to warp 
again, and a timestamp of when it is next allowed to run 

warped again. A new thread inherits those quantities from 
its parent thread. The initial thread has an MCU advance of 
10, a warp of 200, and 0 for the remaining fields. 

We implemented a hierarchy of two schedulers, sched- 
uler 0 (reserved effort) and scheduler 1 (best effort). A 
per-scheduler structure holds the scheduler's scheduler vir- 
tual time, context switch allowance, and warp threshold. 
Because the best-effort scheduler acts like a thread in the 
reserved-effort scheduler, it also contains the per-thread 
fields described above. Each level runs the same BVT 
scheduling algorithm but differs in its parameters and admis- 
sion policy. Only root can add threads to the first level, while 
the child scheduler provides the conventional open system, 
allowing threads to be added dynamically without restric- 
tion. 

The additional storage our BVT implementation adds to 
the Linux kernel is 92 bytes of global variables (mainly 36 
bytes per scheduler times 2 schedulers), 52 bytes per thread, 
plus a 64k debugging log. 

To avoid integer overflow problems, when system vir- 
tual time exceeds 0 x 7 0 0 0 0 0 0 0 ,  the system subtracts 
0 x 6 0 0 0 0 0 0 0  from all virtual time quantities in the system. 
With expected parameter values, this happens about once ev- 
ery 18 days. Runnable threads are kept in an unsorted linked 
list, so the cost of selecting a thread for dispatch grows lin- 
early with the number of runnable threads. 

We also implemented a b v t c t l  ( ) system call to set 
scheduler parameters, a user-level b v t c  t i program to pro- 
vide a shell interface to the system call, and a modest amount 
of kernel instrumentation monitoring code to help gather ex- 
perimental results. 

The most significant change is in the scheduler main 
loop, where 89 lines of code update the thread descriptor of 
the thread that just ran, and 50 lines select the next thread to 
run. Another 165 lines implement a new b v t c t l  (2) sys- 
tem call used to manage BVT scheduling from user space 
(specify warp runtime limits, set per-scheduler parameters, 
move threads between schedulers, etc.). 22 new lines in 
the routine to add a thread to the run queue check to see 
if the new thread has an earlier effective virtual time than 
the current one and invoke the scheduler if so. Six new lines 
in signal delivery warp on behalf of threads that have set 
the SA_BVT_WARP flag in the thread's signal's s i g a c t i o n  
s a _ f l a g s  field. The total kernel support for BVT schedul- 
ing comes to 447 lines, including comments and whitespace, 
out of a total kernel size of approximately 750,000 lines. 

Our total modifications to the Linux system (including 
instrumentation code, header files, and the user-level shell 
interface to BVT scheduling) totals 996 lines of code, and 
took one engineer two weeks to write and debug. The sim- 
plicity of BVT scheduling in lines of code is a significant 
advantage over other approaches, favoring its use even in 
relatively small embedded systems. 

4 Experiments 

The Linux BVT implementation was evaluated by measur- 
ing the behavior of several applications, both real and test, 
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namely: 

mpeg_play -- the Berkeley mpeg_play MPEG-1 video 
decoder [12], playing back MPEG video files at 60 
frame per second, with a warp = 50000. It was mod- 
ified to record whether the frame got displayed on 
time by reading the system clock after receiving the X 
Shared Memory Operation Complete event; we define 
"on time" as within 30 millisecond of the ideal time 
based on the previous frame 4. 

i n t  - -  run in 125 millisecond bursts with a warp of 500, 
using 30 percent of the CPU, modeling a heavy inter- 
active process, 

g r e p  - -  unmodified Linux grep/find. 

c o n t  - -  run continuously with warp 0, modeling a CPU- 
intensive process. 

r t  - -  runs for 5 milliseconds with a warp of 100000 and 
then sleeps for 95 milliseconds with a corresponding 
warp time limit and unwarp time requirement, model- 
ing a periodic hard real-time task. 

All experiments were run on a Pentium II1500 Mhz sys- 
tem with 384 mb RAM running Linux 2.3.17 modified to 
include our implementation of BVT, which can be enabled 
or disabled using a runtime switch. The kernel was also 
modified to generate an in-memory log of wakeups, context 
switches, and warping events, and to measure the overhead 
of our BVT scheduling implementation. Timestamps are 
based on the Pentium cycle counter, accurate to 1 microsec- 
ond, as provided to the machine-independent layer. Unless 
otherwise noted, all numbers below were obtained from the 
logs. 

In these experiments, we set the X server's warp to 
the same as mpeg_play, given they are equally latency- 
sensitive. 

In all experiments, the context switch allowance is set to 
200 milliseconds, resulting in a context switch rate between 
CPU-bound jobs comparable to that of other system such 
as Linux or Solaris. However, this allowance only affects 
time-slicing threads; a thread is immediately dispatched on 
wakeup if its EVT is less than or equal to that of the current 
thread. 

Our measurements indicate that the scheduler overhead 
is less than 0.3% for all runs, even with two-level scheduling, 
The overhead includes costs of log generation and the over- 
head measurement itself (making it a slight overestimate) but 
not the context switch itself or the indirect costs of reduced 
cache and TLB performance, because all scheduling algo- 
rithms incur these costs. The 0.3% scheduler overhead in- 
dicates that this cost is not significant with BVT, so it is not 
considered further. 

Also, our experiments indicate that each thread gets 
within a few percent of its weighted fair share of the CPU 

4In the measurements of this section, a stricter notion of "on 
time" such as 1 ms. would have made BVT look even better and 
Linux appear worse, while not reflecting what was actually visually 
noticeable. 

Measure BVT Linux 
Frames 553 284 

frame rate 29.78 14.91 
late 8 113 

1"able 1. Video Player frame performance when com- 
peting with a large-scale text search. A frame is on- 
time if within 30 milliseconds of the frame time. 

when the thread is runnable over a significant period of time. 
Moreover, as argued in Section 6, this should always occur 
over a suitable scheduling window of time. 

Thus, the rest of this section focuses on dispatch latency 
and response time. 

4.1 MPEG player and grep 

The first measurement captures a variant of the scenario 
described in the introduction, namely a software engineer 
watching a training video running m p e g _ p l a y  on his or 
her Linux PC while running a 4-way parallel "grep" over a 
large number of files, such as a product source tree. Table 1 
characterizes MPEG performance for two configurations: 1) 
BVT scheduling with mpeg_play and the X server warped 
by 50000 and other programs warped by 100, and 2) stan- 
dard Linux scheduling with default parameter settings and 
the same programs. 

Subjectively, with BVT, the video is basically glitch-free 
while with standard Linux, the video is painful to watch. 
This assessment is supported by the measurements. As the 
first line of the table indicates, Linux produces only roughly 
51% of the frames produced under BVT over the same time 
interval, leading to roughly half the frame rate, With the 
m p e g _ p l a y  implementation, the video playback is simply 
slowed down by that amount, but if it was held strictly to 
real time, it would drop about half frames, often multiple 
frames at a time. Moreover, 113 frames or almost 50% of 
the delivered frames were late under Linux, several late by 
over 100 ms. The net effect is an unacceptably poor quality 
of video playback under standard Linux. 

With BVT, only a little over 1 percent of the frames were 
late, likely due to I/O conflicts, so the video performance 
was fine. The large 4-way grep receives roughly 20% less 
CPU than under Linux, but that seems like a reasonable price 
to pay for high-quality video back. 

We also performed experiments running m p e g _ p l a y  
concurrently with c o n t ,  a strictly compute-bound test pro- 
gram. However, the standard Linux scheduler correctly 
gives compute-bound processes lower priority so the dif- 
ferences are not as significant. Strictly compute-bound ap- 
plications are less realistic compared to a real text search, 
which makes extensive use of  disk. Nevertheless, the 
standard Linux scheduler did surprisingly well running 
mpeg_play against various batch applications, suggesting 
that a more sophisticated scheduler is most compelling with 
really latency-critical workloads, such as (hard) real-time. 
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Measure BVT Linux 
Frames 1198 904 

Very Late 0 273 
Late 0 41 

Max. int. latency 15.7 13.0 

Table 2. Performance of video player with int: very late 
is beyond the time of the test and late is more than 30 
milliseconds from frame time. 

Measure BVT 
Frames 662 

Late 1 
Max. int. latency 68.0 
Mean int. latency 19.0 

Table 3. Performance of 2 video players with int 

4.2 MPEG player with interactive task 

Table 2 shows the results of running the MPEG player with 
one instance of i n t .  BVT produces all frames on time 
whereas Linux delays more than 23% of the frames outside 
the test run time of 20 seconds and delivers another 3% later 
than 30 milliseconds. The maximum interactive latency with 
BVT is larger as one would expect in giving preference to 
MPEG, but only by 2 milliseconds, an unnoticeable increase 
for interactive applications. 

Table 3 shows the results of running two MPEG players 
with one instance of i n t ,  just for BVT. This test suggests 
that BVT is able to handle multiple simultaneous latency 
sensitive tasks. Running two MPEG players does increase 
the maximum interactive response to 68 milliseconds in this 
test, but that is still quite small, and the mean at 19.0 mil- 
liseconds remains similar to that of the first test. 

4.3 Hard real-time thread performance 

Table 4 shows the performance of three test programs, r g ,  
i n t  and c o n t ,  running under BVT. As expected, r t  has 
dispatch latency comparable to the Linux context switch 
time and a CPU share according to its CPU consumption 
per period, i n t  has longer response time than r t ,  but it is 
still acceptable for interactive threads and far superior to the 
batch response time of cong .  

Table 5 shows the performance of the same three test 
programs, but with r t  having failed into an infinite loop. 
Here, i n t  and cont continue to receive a similar share of 
the CPU and comparable response time as they do without 

Measure rt 
CPU share 5% 

disp. latency 0.005 ms 

int 
29.5% 

5.02 ms 

cont 
65.5% 

265.1 ms 

Table 4. Real-time thread with interactive and batch 

Measure rt 
CPU share 6.1% 

disp. latency 540.0 ms 

int cont 
30.0% 63.9% 

10.0ms 269.9 ms 

Table 5. Real-time thread failure with interactive and 
batch 

the failure. So, for example, if i n t  is a command line in- 
terpreter, it can allow the user to restart the failed act thread 
to recover. In contrast, with a strict priority scheduler, r t  
as a much higher priority thread than i n t  would completely 
starve it, making it impossible for the user to regain control 
of the system. The dispatch latency of int at 10 ms is ac- 
tually the worst that can arise because, with m c u  as 10 ms 
and checking warp time limits at the granularity of m c u ,  we 
always detect exceeding Li on 10 ms boundaries. 

Overall, these experiments show that BVT scheduling 
provides low latency response for both real-time and interac- 
tive tasks competing with each other and batch processes in a 
general-purpose operating system, even dealing with infinite 
loop failures by high priority tasks. Linux does substantially 
worse, even with a quite successful heuristic for identify- 
ing latency-sensitive processes. We expect other general- 
purpose schedulers to perform the same as, or worse than, 
Linux. 

5 Deadlines 

To compare the effectiveness of BVT scheduling to achieve 
low-latency with a specialized real-time scheduler, we im- 
plemented a deadline-based scheduler (DBS) and ran a num- 
ber of experiments, comparing it with BVT. 

Under DBS, a thread requests a reservation in the form 
(s, t, d), requesting t units of CPU between times s and d. 
The scheduler accepts the request if and only if it is feasible 
to satisfy it and all previous requests accepted at that point. 
It then runs the accepted reservations, earliest-deadline-first, 
distributing any leftover cycles round-robin to threads with- 
out reservations. 

5.1 Test programs and configurations 

A test program r a n d r e s  simulates a real-time task 
scheduling based on deadline reservations for use with DBS. 
randres requests reservations (sl,  t l ,  da), (s2, t2, d2) . . . .  
as it runs. When a request is denied, it counts the dead- 
line as missed and does not run until its next reservation. If  
r a n d r e s  reaches its deadline time di but has not received 
the desired quanta, it counts the deadline as missed and does 
not run again until its next reservation. This behavior favors 
it making the next deadline compared to just running times- 
liced at this stage. 

randres picks reservation parameters as follows. It 
picks di so that di - d i -1  (the time between deadlines) is 
uniformly distributed between 26 and 34 mcu's.  It calcu- 
lates ti (the requested amount of CPU) as as + ei, where ai 
is its actual  need, uniformly distributed between 6 and 12 
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mcu's, and ei is the prediction error, calculated as specified 
below. Finally, si is calculated as ( 1 -  f)di-~ + fdi where f 
is a test parameter specifying how "fussy" the thread is about 
when it runs. That is, if f is 0, then the thread is willing to 
run at any point between its deadlines, so it is easy to sched- 
ule, but as f approaches 1, si moves closer to di, resulting 
in a constraint that is harder to satisfy. 

To approximate error in prediction of CPU need, 
r a n d r e s  introduces this error in one of three modes: over- 
predict, underpredict, and best guess, corresponding to pos- 
itive, negative and mixed ei respectively. The average mag- 
nitude of ei is a test parameter in the range of 0 to 3. Over- 
predicting models an application that reserves extra CPU to 
ensure it makes its deadlines at the risk of having its requests 
denied or causing the requests of others to be denied unnec- 
essarily. 

A test workload was configured consisting of two in- 
stances of r a n d r e s  and one instance of c o n t ,  run on 
each of BVT, DBS and (for further comparison) a fixed- 
priority scheduler (FPS) and a weighted round robin sched- 
uler (WRR) (BVT with warp = 0 for all threads), using vari- 
ous values of f .  When running on DBS, c o n t  receives only 
unreserved quanta. When running on FPS, the r a n d r e  s in- 
stances have priority 1 (highest) and 2, and con~  has prior- 
ity 3. When running on BVT, the quantum advances are set 
to be 100 for each r a n d r e s  and 3500 for con~,  dividing 
the CPU 49.25%, 49.25%, 1.5%, so that neither r a n c t r e s  
instance ever exceeds its fair share. The r a n d r e s  instances 
warp 40000 and 20000 respectively, modeling two threads 
with different latency requirements. 

5.2 Deadlines:  no prediction error 

Figure 5 shows the deadlines made with these various test 
configurations, using e~ = 0, i.e. completely (and unrealisti- 
cally) accurate CPU predictions. The "DBS" column repre- 
sents optimal performance with FCFS handling of reserva- 
tion requests, given that the predictions are exact and DBS 
only runs a task if the task can make its deadline. That is, it 
does not waste resources or deny requests that it could sat- 
isfy in favor of ones it cannot, as can occur with inaccurate 
estimates. 

These measurements show that BVT is within 10% of 
DBS and has the same behavior as fixed priority (in the ab- 
sence of failure). WRR is uncompetitive as one would ex- 
pect. BVT (diff) with different warp values performs better 
than BVT (same) where the two instances of r a n c l r e s  use 
the same warp values. In reality, different tasks have dif- 
ferent latency requirements, so different warp values make 
sense in practice. Moreover, with DBS, two threads that at- 
tempt to schedule at the same time run the risk of one being 
refused. If they do not conflict, they also work just fine with 
BVT and the same warp value. 

5.3 Deadlines:  prediction error 

Figures 6, 7, and 8 show the effect of prediction error on 
DBS. 
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Figure 5. Percentage of deadlines made with dif- 
ferent schedulers, relative to different levels of con- 
tention, indicated by X axis, assuming accurate CPU 
need predictions. Levels of contention correspond to 
f = 0, 0.4, 0.54~ 0.66, and 0.75 for none, low, medium, 
high, and hopeless. 
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F igure 7. Deadlines made relative to prediction error 
with medium contention (90% deadlines feasible). 
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Figure 8. Deadlines made relative to prediction error 
with high contention (69% of deadlines feasible). 

In these graphs, for each degree of error, there is a ver- 
tical bar for each of three runs: the first bar, "DBS upper", 
is for positive error ( i . e . ,  the prediction is higher than the ac- 
tual need); the second bar "DBS middle", is for positive and 
negative error; and the third bar, "DBS lower", is for neg- 
ative error. The horizontal line on the graph is the fraction 
of deadlines made by BVT for the given level of contention, 
(BVT is not sensitive to the magnitude or sign of error be- 
cause BVT does not rely on a thread's prediction of its future 
CPU needs.) When the horizontal line is above the vertical 
bars, BVT is making a larger fraction of deadlines than DBS. 

Considering these graphs, BVT performs as well as DBS 
under high contention with CPU predictions in error by less 
than 7.4%, is competitive with DBS at medium contention 
with error between 7.4% and 13.3%. and performs just as 
well as DBS under low contention once the prediction er- 
ror reaches 13.3%. Thus, error in prediction degrades DBS 
significantly, especially under high load, which is where 
scheduling matters the most. Therefore, these experiments 
suggest that, unless the application developers can program 
so that the CPU predictions are within 15%, using BVT is 
better than using DBS, given the other advantages of BVT 
over DBS such as simplicity, efficiency and greater general- 
ity. Predicting future CPU needs within 15% is difficult be- 
cause of uncertainties about workload, cache behavior, TLB 
behavior, and interrupts. For example, the CPU cycles to de- 
compress and blit a frame can vary by more than an order 
of magnitude in the MPEG player used in Section 4. Fur- 
ther, even when predictions are exact, only about 10% more 
deadlines are made using DBS than using BVT. 

This basic result should apply to other deadline-based 
scheduling approaches, such as SMART [11] and EEVDF 
[4]. These systems differ from DBS primarily in their algo- 
rithm for deciding whether to accept a reservation request, 
adding requirements beyond mere feasibility (e.g. to im- 
prove fairness). We do not expect these differences to affect 
the result. 

5.4 Utility of deadline scheduling 
The utility of deadlines as the basis for an operating system 
scheduler seems limited. Many tasks, such as network input 
processes, do not have specific deadlines by which to accom- 
plish their processing, so the deadline notion does not apply 
even though these tasks are latency sensitive. 

Also, many tasks cannot predict their processing require- 
ments well in advance and thus risk having deadline requests 
being refused at an intermediate point in the execution of 
the system. For example, the network input process cannot 
predict that it needs to process a packet until that packet ar- 
rives, and cannot predict how many cycles will be required 
to process it when it does arrive. The request for a dead- 
line for this processing right when the packet arrives can be 
refused, leaving the thread to time slice with other low pri- 
ority threads. On the other hand, threads that a r e  suitable 
for deadlines (because they have predictable processing re- 
quirements so they request reservations well in advance) are 
typically periodic tasks whose requirements are easily ex- 
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pressible as BVT parameters 5 and thus can be handled by a 
simpler, more general scheduler such as BVT. 

Jitter control is also difficult with deadline schedulers. A 
thread that allows only a short time between the requested 
starttime and deadline risks the request being refused (be- 
cause the scheduler has less latitude to satisfy it) causing it to 
run time-sliced with unpredictable delay and jitter. A thread 
that allows a long time instead risks significant jitter in its 
periodic execution (because the scheduler is free to dispatch 
it any time after the start time as long as it is sufficiently 
before the deadline). 

Finally, deadlines introduce extra complexity into the 
scheduler as well as into writing the task code that specifies 
the deadlines and handles their refusal. 

A claimed benefit of deadline-based scheduling is that it 
ensures that (at least) some threads make their deadlines in 
an open system under overload, as opposed to all threads be- 
ing degraded and missing their deadlines. However, in prac- 
tice, a system needs to ensure that particular threads make 
their deadlines over others, not just some random subset. 
Thus, the system needs to partition the threads into the criti- 
cal and non-critical, and limit the threads that are allowed to 
make reservations to the critical set, sized so that their dead- 
line requests can in fact be satisfied. Consequently, the sys- 
tem is necessarily closed for those that can make deadlines 
and only open for those that cannot, the best efforts threads. 
Given this partitioning, it is feasible to instead use multi- 
level BVT and place the critical threads in a first-level sched- 
uler, and the non-critical threads as the open portion in a 
second-level scheduler. With this structure, another claimed 
benefit of deadlines becomes less relevant, namely avoiding 
the "priority inflation" of priority-based scheduling, where 
designers pick increasing priority levels in an attempt to en- 
sure they meet response requirements. With a closed real- 
time system, the set of threads and their requirements can be 
known and the warp parameters can be algorithmically set. 
(And the warp parameters of the best-effort threads can be 
controlled by the system, as described in the next section.) 

Overall, deadline-based scheduling appears to be of lim- 
ited utility for applications that we can identify, given the 
ability of BVT support real-time scheduling and its ability to 
address, at lower cost and complexity, a much wider range 
of system requirements and configurations, as described in 
the next section. 

6 Configuring BVT scheduling 

Configuring BVT to meet application response and CPU 
sharing requirements requires careful selection of parame- 
ters and levels, especially for hard real-time systems. This 
section describes how to configure BVT scheduling for these 
systems. 

There are three key dimensions to configure for each 
thread: CPU share, warp limits and response time. The CPU 

SConversely, the warp time limit and unwarp time requirement 
might be regarded as an efficient way to specify deadline-like re- 
quirements for periodic tasks. However, these parameters are use- 
ful in another cases as well. 

share is the portion of the CPU allocated to this thread over 
an extended period of time, either absolutely or relative to 
other threads. From the standpoint of CPU share, there are 
two types of threads: 

• Reserved Effort (RE): A thread for which a specified 
percentage of CPU cycles are reserved. 

• Best-Efforts (BE): A thread that shares the CPU cy- 
cles left over from those used by the RE threads, claim- 
ing its share relative to the demands of other threads. 

Systems using BVT may be entirely RE, entirely BE or a 
combination of the two, as described below. 

The warp limits of a thread specify limits on the CPU 
dispatch preference the thread can use, limiting the amount 
it can temporarily warp the scheduling from its weighted fair 
sharing. 

The response time of a thread is the real time from when 
a signaling event occurs for that thread until it has dispatched 
and handled that event. 

The key BVT parameters per thread, weight, warp, warp 
time limit and unwarp time requirement, are set to achieve 
the desired behavior for the application, as described in the 
following subsections. 

6.1 Hard real-time systems 

A hard real-time system reserves CPU share and response 
time for some threads so they can be guaranteed to respond 
to events within specific real-time limits. 

6. I. 1 CPU share 

Given a static set of RE threads, the system designer or ad- 
mission control module selects the MCU advances to obtain 
the desired sharing and to determine the scheduling window, 
the time interval over which the desired sharing is guaran- 
teed to occur. To illustrate the calculation, consider three 
threads that are to receive 10%, 30%, and 60% of the CPU 
respectively and assume (for now) that the threads do not 
warp. 

The system designer first calculates the MCU advance 
for the threads by taking the reciprocals of the weights and 
then scaling so they are small integers. In the example, the 
weights are 0.1, 0.3, and 0.6; the reciprocals are 10, 10/3, 
and 5/3; normalizing (multiplying by 3/5) yields the MCU 
advances of 6, 2, and 1. The system designer then calcu- 
lates the virtual window (V), which is the smallest amount 
of virtual time with the property that if the system starts in a 
state with the threads at virtual times vl, v2, and v~, and all 
threads remain runnable, then at some later point, the sys- 
tem will reach a state where the threads are at virtual times 
Vl + V, v2 + V, and v3 + V. To calculate V, the designer com- 
putes the least common multiple of the MCU advances times 
C/meu. In the example, suppose that C = 2mcu. Then the 
virtual window V is 2.1cm(6, 2, 1) = 12. That is, if we start 
all threads at virtual time 0, then at some later point, they all 
reach virtual time 12. Finally, the system designer calculates 
the physical window (W) which is the amount of real time 
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it takes for all threads to consume V units of  virtual time. 
In the example, it takes the threads 2 mcu, 6 mcu, and 12 
mcu  respectively to consume 12 virtual time units; thus, the 
physical window is 20. The system designer now knows that 
out of  any 20-mcu real-time window, if all threads remain 
runnable, then each thread will receive exactly its weighted 
share. 

Now, let's extend this analysis to threads that warp. 
With high-priority warping threads, the warp time limits 

are typically set to limit the CPU share they can use within 
the scheduling window. Moreover, these limits may restrict 
the thread to running far less than C or even an mcu. For 
example, in the above example, there could be two hard 
real-time threads, each allocated 5 percent of  the CPU, but 
limited by the warp time limits to using no more than this 
amount over a scheduling window. In this case, the CPU 
share specified for these threads need not be accurate as long 
as it corresponds to more than the share provided by the warp 
limits. To handle these threads in the calculations of  weights, 
their CPU share is deducted from the total available, and the 
weights of  the remaining threads are determined as above. 
For example, to allow for the 10 percent required by these 
two threads, we reduce the CPU share of  the last thread in 
the original example to 10% and perform the same calcula- 
tion, but with the shares of  these threads adding up to 90%, 
not 100%. 

For warping threads with no unwarp time limit, the MCU 
advance should accurately specify the CPU share, changing 
the choice of  V if necessary to get this accuracy. For exam- 
ple, if one of  the above real-time threads had no unwarp time 
limit and a 5 percent share on the CPU, its mcu advance mi 
can be set to 20. In the worst case, one of  these threads could 
unblock at S V T ,  warp and run for m of  its CPU shares, 
where m = W i / V ,  i.e. the number of  scheduling windows 
its warp allows it to advance. For example, if m = 4, it could 
run for 4 of  its CPU shares in the current scheduling window. 
In this case, we can allow m * wi as its worst-case share of  
the CPU in computing that available to other threads within 
this scheduling window. For example, we would have to al- 
low for 20% in the above example relative to other threads 
if the actual CPU share allocated was 5 percent. Alterna- 
tively, we can increase the application notion of  scheduling 
window from the minimum window we have been consider- 
ing so far, and use a lower multiple for the CPU share. For 
example, with an application scheduling window of 4 times 
the minimal or 80 mcu, the above thread can use at most 
7 times its CPU share over 4 scheduling windows or less 
than twice its share in the worst-case. This approach is at- 
tractive because many applications do not generally need a 
very fine-grain guarantee on sharing. For instance, with 10 
millisecond mcu, a thread allocated 10 percent of  the CPU 
would receive its share over 800 milliseconds without warp- 
ing, even if another thread was sleeping and then warped 
aggressively to run as much as possible 6. 

An RE system requires an admission control module that 

6This behavior again reflects that fact that a thread, by warping, 
is borrowing from its future allocation which it has to pay back, and 
is not gaining a long-term advantage. 

checks on each attempt to create a new RE thread that the 
system is able to accommodate the new thread. For exam- 
ple, a new thread requiring 10 percent of  the CPU when only 
5 percent is unallocated should be refused or cause the re- 
moval or reduction in shares of  existing threads, depending 
on system policy. If  acceptable, the system needs to readjust 
the weights o f  the threads as new threads are created and oth- 
ers terminate. This situation can arise at system design time, 
system configuration time, or even during system execution 
for systems supporting dynamic configuration. 

This admission control module is explicitly not part of  
BVT so different systems can use different modules and 
policies, depending on requirements while all using the same 
BVT scheduler. For example, in a statically configured RE 
system, the admission control can be performed by a module 
that checks the allocation at configuration or system initial- 
ization time and is not even present during normal system 
execution. A system with a dynamic set of  threads may need 
this module present during execution. 

6.1.2 Warp limits 

Setting the Li and Ui values as accurately as possible mini- 
mizes the negative impact of  a thread failure on the dispatch 
latency and response time of  other threads. The values are 
selected by measuring the time of  the thread's longest pro- 
cessing and adding some safety margin, plus determining 
the minimum reasonable time between when it needs to run 
warped. Here, we focus on high priority periodic threads 
with reasonable predicting processing requirements and be- 
havior. These parameters work less well for unpredictable 
non-periodic threads. 

Accurately setting these parameters is particularly im- 
portant for very high priority periodic threads. For lower 
priority threads, the need to set these parameters is less crit- 
ical. For example, the network input thread may use 0 for 
its unwarp time requirement, relying on the CPU share to 
limit its impact on the system on overload (but allowing for 
it using a multiple of  its CPU share within the scheduling 
window in the worst case, as discussed earlier). However, 
it may even be attractive to set a non-zero unwarp time limit 
for this thread if the input packet buffer is large enough, even 
though packet inter-arrival times are unpredictable. With a 
non-zero unwarp time requirement, this thread is delayed in 
dispatch to handle incoming packets when the traffic level 
is high, causing it to batch-process several packets at a time 
rather than waking up for each individual packet. The re- 
sult is more efficient packet handling and more cycles for 
other threads, at the cost of  slightly delaying input packet 
handling. 

The warp value a thread may use is fixed at its creation in 
general, thereby putting a limit on this dimension of  warping 
as well 7. The above admission control mechanism must also 

7An earlier formulation of BVT provided a separate warp limit 
per thread, allowing the thread to use a warp value up to this limit. 
We simplified the scheme after observing that threads were, in prac- 
tice, either warped or not. However, a thread could be allowed mul- 
tiple levels of warp to deal with, for instance, priority inversion-like 
issues. 
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limit the warp values to allow other threads to achieve their 
response requirements, as developed further below. 

6.1.3 Response time 

Our approach to response time is to pick warp values to 
mimic the behavior of  a conventional priority scheduler, as- 
suming that the application or system threads have already 
been assigned priorities according to their latency sensitiv- 
ity. Thus, a thread i that is more latency-sensitive than an- 
other thread j is classified as higher priority, meaning it gets 
higher priority to dispatch and run when the two (or more) 
threads are competing for the CPU. 

For RE threads, the priority is mapped to a warp value 
per thread using the following algorithm: 

1. Set the current warp value to 0 and consider the lowest 
priority level p. 

2. Set the warp value Wi for all threads i at priority p to 
the current warp value. 

3. Go to the next priority level, p - 1. Increment the cur- 
rent warp value by Li/wi, where Li/wi is the maxi- 
mum value across all threads at priority p - 1. (Li/wi 
is the amount the thread's AVT increases by running 
for the full Li time period.) 

4. If  more threads, go to step 2, else terminate. 

Low priority interactive threads may operate with a warp 
time limit of  0 (i.e. no limit) so they may have fairly long 
execution times occasionally without losing their warp. In 
these cases, we assume a value of  Li = C for the purposes 
of  the above calculation, taking the view that threads at this 
level should timeslice when they run for longer than C. 

Let's consider the dispatch latency and response time for 
an RE thread with this assignment, assuming the thread is us- 
ing the CPU within its share limit, as specified in the weight, 
wi and within its warp limits Li and Ui. (This assumption 
is reasonable because an RE thread is within these limits un- 
less it has failed or the parameters have been set incorrectly. 
And, when a thread fails, we are concerned about contain- 
ment of  damage, not response time.) 

The highest priority or most latency-sensitive thread i is 
dispatched immediately after being signaled, executed with 
a warp value Wi that ensures that it runs for up to its warp 
time limit Li before being preempted by the second most 
latency-sensitive thread, unless it blocks first. If  this thread 
requires t < Li microseconds of  processing time to respond 
to the event, its response time is t + e where c is the context 
switch time, including any interrupt disable time latency, c 
was 5 microseconds in Section 4. 

This response time assumes there are no other threads of  
the same priority that are dispatched during the same time. If  
there are other such threads, the response time is increased in 
the worst-case by the sum of  the response times of  all these 
other threads s. In the typical case, each thread's response 

SHowever, some threads explicitly schedule themselves at non- 
conflicting times so do not conflict based on application-level 
schedules. 

time is significantly less than C so each equal priority thread 
is executed sequentially, the same as would occur with a con- 
ventional priority scheduler. The context switch allowance 
C ensures the second competing thread at the same logical 
priority level does not run until the first has executed for at 
least C real time. 

For lower priority threads, the worst-case dispatch la- 
tency and response time is as above plus the worst-case times 
for all higher or equal priority threads, the same as for a 
conventional priority scheduler, in the absence of  failures. 
I f  a higher priority thread i fails by going into an infinite 
loop 9, its response time processing from the standpoint of  
lower priority threads and their response time calculation is 
Li,  after which it is unwarped and presumably preempted 
by other well-behaved threads, as was demonstrated in Sec- 
tion 4. Thus, assuming the unwarp time requirements are 
such that the higher priority threads can only be dispatched 
once within the application scheduling window, the worst 
case is the sum of all the Li's for all higher or equal priority 
threads. However, this case requires all of  these threads to 
unblock at the same time and fail in infinite loops, presum- 
ably extremely improbable. 

With a warping thread that has a zero unwarp time re- 
quirement, we assume that, if it fails in an infinite loop, it 
exceeds its Li causing it to get unwarped and run timesliced 
with the lowest priority threads until it is restarted. Even 
lower priority threads may run with a zero Li indicating no 
warp time limit. Here, we assume the warp is small, so by 
running one or a few C times, the thread's EVT is compara- 
ble to SVT so it begins to timeslice with other lower priority 
threads. Also, such a thread has a response time requirement 
that is necessarily comparable C because it is effectively re- 
lying on timeslicing to control excessive use of  CPU at its 
priority level by itself and other threads. This is the case for 
interactive applications. 

The equivalence of  the above scheme (in the absence of  
failure) to a conventional priority scheduler with timeslicing 
allows BVT to be used directly with systems and applica- 
tions designed for priorities with little or no modification 1° 
In this sense, BVT can be regarded as mapping the notion 
o f  "priority" into virtual time so that both share and latency 
requirements can be effectively evaluated by scheduler in a 
single, simple consideration of  thread EVT. A more complex 
model of  managing warp values is possible but has not been 
necessary for the applications we have considered to date. 

The above scheme provides the basis for an admission 
control module for a hard real-time system. 

9It makes sense for the scheduler to focus on this particular 
thread failure because sandboxing techniques and memory protec- 
tion can catch other forms of failure that might harm the system but 
cannot solve this "halting problem". Application-level checks can 
catch higher-level forms of failure, such as performing the wrong 
action, even if within the right time. 

1°To handle failures, a watchdog thread can run periodically to 
detect and restart failed threads. More sophisticated failure detec- 
tion and handling are also an option. 
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6.1.4 Example: flight control system 

A life-critical flight control system would use an RE sched- 
uler where the critical flight control threads are guaranteed 
shares of the CPU and response times, but with strict lim- 
its on the maximum they can use, both over the short term 
using the warp limit parameters and over the long term, us- 
ing weight. These tasks can be determined, characterized 
and fixed at system design time, allowing these parameters 
to be set accurately and system performance guarantees to 
be verified. 

6.2 Best-efforts systems 

In an entirely BE system, the threads can be allocated one 
of a fixed range of weights, corresponding to different allo- 
cation preferences. For example, interactive tasks may have 
a weight of 10% while batch threads may have a weight of 
5%, giving them half as many cycles as interactive threads 
in the fully loaded case. As the number of threads in the 
system increases, the share of the cycles that each thread 
receives decreases accordingly, but the relative weights be- 
tween threads are preserved. 

6.2.1 Warp limits 

Warp limits are set the same as for reserved effort systems 
with non-zero limits primarily for the higher priority threads, 
such as our MPEG player. However, the warp limits can be 
used in conjunction with the scheduler logging facility to de- 
termine whether the application threads are in fact executing 
within the execution parameters that the developer is expect- 
ing. 

6.2.2 Response time 

The RE warp assignment scheme can also be used in a BE 
system where the response time analysis assumes the BE 
share of the CPU available to the thread is adequate to meet 
its processing requirements. The response time degrades 
proportional to the thread's CPU share when the scheduler 
experiences overload. To provide a simple API to conven- 
tional applications, the system could provide a single prior- 
ity parameter to specify at thread creation time for the thread 
and/or its signal handler. The system then maps this pri- 
ority value to a fixed set of values of weight, warp, warp 
time limit and unwarp time requirement, according to sys- 
tem administrator-selected values. For example, a user pri- 
ority of 1 might be used for latency-sensitive user threads 
such as an MPEG display thread, providing it with a weight 
of 10 (versus 5 for normal threads), a warp time limit of 20 
milliseconds, and a warp computable as above, relative to 
priority 2 interactive threads. 

Most BE threads have no warp or a small warp, such as 
interactive threads. The latter normally execute with Li = 0 
but with a presumption of executing warped less than C' nor- 
mally, so their warp is computed assuming Li = C (as de- 
scribed earlier). If  these threads are the lowest priority ones 
with a non-zero warp, the warp is such that an interactive 

thread i 's EVT Ei is the same as SVT after executing C 
time in any case, and so will start to timeslice with other 
interactive threads after executing for at most C' + mcu. 

6.2.3 Example: large-scale web server 

A large-scale web server such as the Google search engine 
[1] receives a large number of competing search requests. 
Most requests are simple and can be handled within a small 
number quanta, but less frequent complex queries take 150 
times as long to process on the average. Using BVT, the sys- 
tem designer can guarantee fair share for long queries while 
providing good response time to short queries in most cases. 
A fixed number of threads (say, 10) are assigned to handling 
requests. Each thread repeatedly dequeues a request from 
the request queue, processes it, and repeats, sleeping if there 
are no requests on the request queue. When a new request 
arrives, it is given to the sleeping thread that has slept the 
longest, or added to the request queue if all threads are busy. 
Each thread is assigned the same weight and a warp suffi- 
cient to handle a typical simple request (say, 50). 

To illustrate the dynamics that arise from this setup, con- 
sider the scenario in which the system begins idle and then 
receives a complex query. Thread 1 dequeues the query and 
begins working on it. SVT advances along with thread l ' s  
EVT. Then a simple query arrives and thread 2 wakes up to 
process it, with AVT advanced to SVT as part of wakeup. 
With 50 units of warp, thread 2 may run for up to five quanta 
in a row while thread 1 waits. Thus, short queries complete 
in half the time compared with Unix-style round robin. Next, 
a third complex request arrives, awakening thread 3, which 
runs for five quanta and then time slices with thread 1. Sub- 
sequent short requests now complete in one-third the time 
compared with round robin. 

The behavior above continues until the system becomes 
overwhelmed by short queries for a sustained time period. 
When a simple query is running, borrowing time from a 
complex query, the AVT of the thread handling the simple 
query is advancing while SVT is not. SVT only advances 
past a given point when all threads' EVT (including the com- 
plex query thread) have passed that point. Thus, once the 
other threads have consumed their warp on short queries, 
the complex queries get a chance to run; no matter what the 
offered load, each complex query receives its weighted fair 
share of the CPU in the long run. 

6.3 Combined real-time and best-efforts sys- 
tems 

A system supporting a mixture of BE and RE threads is con- 
figured with a two-level BVT scheduler, the first level han- 
dling RE threads and the second-level handling BE threads, 
dividing the CPU cycles available to it among these BE 
threads according to their weights. The second-level sched- 
uler or BE scheduler uses threshold mode, so threads are 
only run warped relative to the first level when their warp is 
over a specified threshold. Thus, the first-level or RE sched- 
uler corresponds to an RE system, with some CPU share as- 
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signed to BE threads through the BE scheduler, so the RE 
techniques above are applied to the first level and BE tech- 
niques are applied to the second. 

The BE scheduler can have its warp value set to effec- 
tively give it higher priority than some or all of the other RE 
threads, if desired. The impact on the response time of other 
RE threads of giving this BE scheduler priority is limited 
by the scheduler's warp time limit and unwarp time require- 
ment, the same as other threads. For example, the BE sched- 
uler might have a warp value that is greater than that of an 
RE thread that handles the disk subsystem. Then, an MPEG 
player frame update (for example) can be dispatched with 
lower latency providing the BE scheduler thread is within its 
CPU share and Li without significantly increasing the file 
system response time, given the latter is dominated by phys- 
ical disk latencies. When the BE scheduler thread exceeds 
its share and/or warp limits, the behavior of the BE threads 
degrade accordingly, as appropriate for best-efforts schedul- 
ing. With this configuration, the user sees high-quality video 
play under normal (non-overloaded) conditions, with disk 
actions occasionally being delayed in favor of displaying a 
new video frame, but the delay is no more than that occur- 
ring from rotational latency or a longer seek latency. 

The RE scheduler can also handle non-latency-sensitive 
threads that simply need a reserved CPU share. For instance, 
a periodic review or housekeeping task can be executed by 
the RE scheduler with a warp of 0 and a weight equivalent 
to 10 percent of the CPU, ensuring the review is performed 
no matter want the demand is from other threads. 

This two-level BVT scheduler approach supports RE and 
BE threads using the same BVT scheduling algorithm at 
each level, but with a clean interface and separation between 
the two levels. It also allows the system configuration to 
specify the aggregate CPU share reserved for BE threads. 
Finally, it minimizes the need to modify the weight and warp 
values of threads at both the RE and BE levels. Supporting 
RE and BE threads in a single scheduler incurs the overhead 
of revising the weights and warp values of all threads every 
time a new thread was created or deleted. A single scheduler 
would also not allow full control of the aggregate CPU share 
available to BE threads. 

6.3.1 Example: router software 

A modem router includes a performance-critical real-time 
component that deals with packet forwarding plus real-time 
routing protocol tasks and timesharing-like command-line 
interpreter (CLI) tasks for managing the router. Packet for- 
warding can use BVT-scheduled RE threads (including in- 
terrupt service routines as their signal handlers), providing it 
with low latency dispatch and a guaranteed share of the CPU. 
The routing protocol tasks can run at the RE level but with 
lower priority. Moreover, a thread implementing the signal 
processing of A-to-D and D-to-A processing for a "soft" mo- 
dem would execute under the RE scheduler. It can then be 
guaranteed low latency dispatch, yet limited to a specified 
long-term share of the CPU plus a limited number of cycles 
per C units of time. 

A second-level scheduler runs the CLI threads, which 
can vary in number, depending on the users and administra- 
tors accessing the router. The BVT guarantee of a specified 
CPU share to the routing protocol tasks and the CLI threads 
is critically important to ensure that packet forwarding over- 
load cannot disable either of the former tasks. For instance, 
a network administrator must be able to use the CLI to cor- 
rect a misconfiguration of the router that could be causing 
an excessive level of packet forwarding. BVT insures that 
packet forwarding receives low-latency service as long as the 
system is not overloaded, while routing protocol processing 
is assured of receiving CPU in accordance with its weight 
in the long term. Using BVT for all scheduling in a router 
rather than various specialized and ad hoc throttling mecha- 
nisms keeps the router implementation and behavior simpler 
and thus less error-prone. 

6.3.2 Example: multi-user timesharing 

A conventional timesharing system such as Linux uses vari- 
ous heuristics in the scheduler to guess which programs are 
latency-sensitive (i.e. interactive) rather than requiring ex- 
plicit setting of a parameter such as warp. For example, 
Linux uses a counter parameter that is decremented as a 
process runs a full quantum and when the process is not dis- 
patched when it unblocks, all heuristic indications of it not 
being an interactive latency-sensitive program. It is incre- 
mented when the process blocks before the end of a quan- 
tum. 

This heuristic learning mechanism can be readily 
adapted to BVT. 

A warp value Wint is selected that is less than the warp 
of real-time applications. Then, the Linux counter mech- 
anism is modified to update the warp value between 0 and 
Wi,~t, depending on how interactive this process behaves. 
Consequently, a process that behaves "batch-like" ends up 
with a 0 warp while one that acts interactive retains the full 
warp value of Wi,~t. Thus, when an interactive task un- 
blocks, it typically has an EVT of S V T  - W i n t ,  causing 
it to run immediately unless delayed by a real-time applica- 
tion such as an MPEG player, just as latency requirements 
would dictate. The interactive thread's warp is relatively 
small because it is meant to enable rapid completion of a 
small amount of work, rather than to enable the thread to 
monopolize the CPU for an extended time period. 

This warping provides the same behavior as well-proven 
systems such as Unix, where the scheduler grants a modest 
preference to a thread that has recently awoken in order to 
improve the response time of interactive tasks. However, it 
is provided as part of a more general scheduling mechanism 
that also accommodates real-time tasks. 

To prevent undue interference between users, a process 
can inherit its weight and warp parameters from its parent 
process. A user process can effectively "nice" his or her 
processes by reducing their warp parameters and weight in 
the same spirit as the UNIX n i c e  command, but cannot 
increase them. 
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7 Related work 

Various scheduling algorithms use a number of different 
bases for selecting the next thread to dispatch. 

Several previous systems [14, 5, 4, 11] use the same vir- 
tual time basis as BVT for measuring and controlling long- 
term sharing of the CPU, or something that behaves simi- 
larly. However, most do not provide application control over 
low-latency dispatch and those that do introduce extra mech- 
anisms such as deadlines. Start-time fair queueing (SFQ) [5] 
also describes the use of a hierarchy of schedulers, similar to 
our multi-level scheduling with BVT. 

In contrast to virtual time-based BVT, priority-based 
schedulers base dispatch decisions on the priority value as- 
sociated with each thread, running the ready thread with 
the highest priority, often represented as the lowest numeric 
value. These schedulers have the problem that a high pri- 
ority thread going into an infinite loop permanently starves 
the lower priority threads. For example, in POSIX real- 
time scheduling, the user may assign a fixed high priority to 
latency sensitive threads, thereby assuring low-latency dis- 
patch to at least the highest-priority thread. Nieh et al.[10] 
show that this mechanism can significantly skew long-term 
CPU allocation to the point of total starvation of all but the 
single highest priority thread. Priority scheduling can be ex- 
tended by providing time slicing of threads of equal priority 
and also having the system modify the priority of timeshar- 
ing threads based on their CPU consumption, as commonly 
done in Unix implementations. However, this requires a sep- 
arate accounting of CPU usage and mechanism to modify the 
priority as part of thread execution. 

In deadline-based scheduling, such as in Spring [13], 
SMART [11] and Rialto [7], threads declare future CPU 
needs to the system. A periodic thread may express a se- 
quence of similar reservations as a single period length and 
need per period. The system either accepts the request, in 
which case the thread is guaranteed to be dispatched accord- 
ing to its predeclared need, or the system rejects the request, 
in which case the thread receives no preferential dispatch. 

Using BVT, this reservation capability is modularly sep- 
arated from the scheduler and provided as a higher-level sys- 
tem function in a reservation or admission control module, 
as described in Section 6. For instance, it appears that the Ri- 
alto "system resource planner" [6] could perform this func- 
tion on top of BVT. This separate facility also allows the 
unit of CPU resource accounting and planning to be sepa- 
rate from abstractions such as threads or processes, as done 
in Mercer et al. 's processor capacity reserves [8] and in Ri- 
alto. 

The SMART scheduler [11] adds deadline-based 
scheduling for real-time threads to the basic virtual time 
mechanism, notifying applications that it determines can- 
not make their deadlines. SMART adds a bias to the vir- 
tual times of non-real-time threads, thereby preferentially 
dispatching the real-time threads, but does not provide ap- 
plication control of this bias. We believe that BVT schedul- 
ing performs comparably to SMART for the video player 
application without incurring the complexity of deadlines. 
Furthermore, in SMART as in other deadline-based systems, 

there is some risk that the system predicts that some dead- 
line cannot be met when in fact they could be (due to other 
threads not using their full reservation), and there is some 
risk of the converse as well (in the case of sudden network 
interrupt overload, for example). 

8 Conclusions 

BVT scheduling in a multi-level implementation provides 
a universal scheduler, configurable to support applications 
from hard real-time tasks to interactive applications to batch 
jobs while ensuring weighted fair sharing among competing 
threads and protecting against low-latency threads using ex- 
cessive processing cycles. The two-level BVT scheduler al- 
lows hard real-time threads to run in a strictly admission con- 
trolled regime while so-called soft real-time, interactive and 
batch thread run in a second level scheduler that gracefully 
degrades under increasing load. A Linux implementation 
demonstrates that this scheduler is simple to implement and 
provides good performance while incurring a low time and 
space overhead, all within the context of a general-purpose 
operating system kernel. 

BVT, as its primary innovation, extends virtual time- 
based scheduling with the ability for a thread to warp back 
in virtual time so that its effective virtual time for schedul- 
ing is earlier, causing it to be dispatched earlier. Using this 
warping mechanism with its associated warp limits, our re- 
sults show that BVT provides real-time performance com- 
parable to specialized deadline schedulers while still sup- 
porting general-purpose task scheduling. Also, the standard 
technique of giving unblocking interactive threads a slight 
priority boost can be realized in BVT using a correspond- 
ing warp value, unifying this proven heuristic into a general 
scheduler framework. 

The virtual time base of  BVT provides a single simple 
measure that handles both CPU share and latency require- 
ments, superior to using priority or deadlines as the basis. 
In particular warping effectively encodes priority into the 
virtual time paradigm using a simple algorithm (described 
in the paper) yet without disrupting the fair sharing mecha- 
nism. We have used a context switch allowance and migra- 
tion penalty to factor the costs of these operations into this 
same virtual time measure to prevent thrashing of between 
threads, on the same processor and between processors. 

BVT supports unpredictable threads with a response 
time commitment within their CPU share without extra 
mechanism in the scheduler. It also supports best-efforts 
scheduling together with reserved-effort threads, allowing 
even best-effort threads to request low latency dispatch. 
Moreover, these requests are honored to the limit of the 
availability of CPU resources at the time of  execution rather 
than being accepted or denied based on worst-case esti- 
mates of future CPU demands, as occurs with deadline- 
based scheduling. This advantage is analogous to that for 
a best-efforts datagram networks where bandwidth is shared 
more efficiently than circuit-switched approaches while free- 
ing applications from the requirement of fitting all commu- 
nication mechanisms into small fixed-size pipes. 
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Contrasting with the merits of BVT, our measurements 
show that deadline-based scheduling has a significant vul- 
nerability to inaccurate prediction of processing require- 
ments, causing this approach to underperform BVT when 
the predictions are off by as little as 15 percent. This predic- 
tion problem is significant, if not insurmountable, in many 
practical situations because the processing requirements of 
even a strictly periodic task such as MPEG playback can 
vary by almost an order of magnitude. Also, interrupt ser- 
vice routines can effectively steal cycles, making the num- 
ber of cycles available in some time period uncertain. We 
also point out the difficult trade-off in sizing the scheduling 
window of a deadline reservation to minimize jitter. These 
issues and the implementation complexity of the deadline- 
based approaches further support our conclusion that virtual 
time-based scheduling extended as in BVT is the superior 
solution, even for hard real-time. 

BVT demonstrates a key principle of operating system 
design: It is better to provide to a single simple measure, 
such as virtual time, that provides well-specified behavior 
relative to other tasks and have applications map their re- 
quirements onto this measure than to require applications to 
specify their requirements in detail. With the single measure 
approach, applications and system policy modules contain 
their policies in the mapping to the measure whereas other- 
wise, the operating system itself performs a complex and 
fixed mapping that effectively incorporates fixed policies 
and makes it more difficult for applications to achieve their 
desired results. Moreover, the simple measure approach, 
besides fitting with the principle of separating policy from 
mechanism, allows some systems to determine the mapping 
at design or configuration time, rather than forcing it to al- 
ways take place at run-time with the attendant overhead. 

Overall, we see BVT as an important step to achieving a 
fully general yet efficient and stable operating system kernel 
that can simultaneously execute a wide range of applications 
with different requirements, behaviors and failure modes. 
We hope in on-going work [3] to see it tested and deployed 
across this spectrum to further support our results to date. 
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