2.4. Teorema del punto fijo de Banach

Definición 2.33. Sea (X, ρ) un espacio métrico y $\Omega: X \to X$. Decimos que Ω es una **contracción** si existe una constante 0 < k < 1 tal que

$$\rho(\Omega(x_1), \Omega(x_2)) \le k \, \rho(x_1, x_2)$$

Teorema 2.34 (Punto fijo de Banach). Sea (X, ρ) un espacio métrico completo $y \Omega : X \to X$ una contracción. Luego, existe un único $x \in X$ tal que $\Omega(x) = x$.

Demostración. Sea $x_0 \in X$ y definamos la sucesión $\{x_n\}$ en X como sigue

$$x_1 = \Omega(x_0), \quad x_2 = \Omega(x_1), \dots, x_n = \Omega(x_{n-1}).$$

O sea, $x_n = \Omega^n(x_0)$ donde Ω^n es componer n veces la función Ω . Nuestra intención es probar que esta sucesión es de Cauchy, cuyo límite es precisamente el punto que es invariante bajo la acción de Ω (también es conocido como el *punto fijo* de Ω). Para ello notemos que

$$\rho(x_n, x_{n+1}) = \rho(\Omega(x_{n-1}), \Omega(x_n)) < k \, \rho(x_{n-1}, x_n) < \dots < k^n \, \rho(x_0, x_1).$$

Luego, para todo $m, n \in \mathbb{N}$ tendremos que

$$\rho(x_n, x_{n+m}) \le \sum_{i=1}^m \rho(x_{n+i-1}, x_{n+i}) < k^n \rho(x_0, x_1) \sum_{i=1}^m k^{i-1} < \frac{k^n}{1 - k} \cdot \rho(x_0, x_1)$$

de donde se tiene que $\{x_n\}$ es una sucesión de Cauchy en X. Entonces existe $x \in X$ tal que $x_n \to x$, cuando $n \to \infty$.

Ahora, dada la continuidad de Ω y de la métrica ρ , tendremos

$$\rho(x,\Omega(x)) = \lim_{n \to \infty} \rho(x_n,\Omega(x_n)) = \lim_{n \to \infty} \rho(x_n,x_{n+1}) = \rho(x,x) = 0$$

de donde se concluye que $\Omega(x) = x$. Para probar la unicidad del punto fijo, supondremos la existencia de dos. Sean estos x e y que satisfacen

$$\rho(x,y) = \rho(\Omega(x), \Omega(y)) \le k \rho(x,y)$$

lo que no es posible porque tendríamos que

$$(1-k)\rho(x,y) \leq 0$$

entonces x = y. Por lo tanto, existe un único $x \in X$ tal que $\Omega(x) = x$.

Ejemplo. Consideremos la ecuación $x = \cos x$ para $x \in [0, \pi/2]$. Probaremos que esta ecuación tiene una solución única. En efecto, $\Omega x := \cos x$ define una función desde $[0, \pi/2]$ en si mismo. Además,

$$|\Omega x - \Omega y| = |\cos x - \cos y| = |x - y| \sin \alpha, \tag{2.4}$$

donde α se encuentra en el intervalo definido por x e y. Ahora, como $|\cos x| \leq 1$, cualquier solución de la ecuación $x = \cos x$ tiene que tener la propiedad $|x| \leq 1$. Además, es obvio que Ω tiene su imagen en el intervalo cerrado [0,1]. Pero en tal intervalo, por (2.4) y el hecho que $|\sin \alpha| < \sin 1 < 1$, Ω es una contracción. Aplicando el teorema del punto fijo de Banach vemos que exite una solución única de la ecuación.