A 28

Gabrier Cuevas 1/3
Aux. FI21A
CIARAMENTE ESTE problema tiene simetría cllíndrica, por lo tanto ESE SISTEMA ES EL QUE MÁS CONUIENE PARA APCICAR:

$$
\begin{aligned}
& \vec{r}=\rho \hat{\rho}+z \hat{z} \\
& \vec{v}=\dot{\rho} \hat{\rho}+\rho \dot{\theta} \hat{\theta}+\dot{z} \hat{z} \\
& \vec{a}=\left(\ddot{g}-g \dot{\theta}^{2}\right) \hat{g}+(\rho \dot{\theta}+2 \dot{\theta} \dot{\theta}) \hat{\theta}+\dot{z} \hat{z}
\end{aligned}
$$

Como sabemos que a partícula se mueve en el manto, sé tiene que:

$$
S=R \Rightarrow \dot{\rho}=\ddot{\rho}=0
$$

\Rightarrow (1) $\quad \vec{r}=R \hat{\rho}+z \hat{z}$
(2) $\vec{v}=R \dot{\theta} \hat{\theta}+\dot{z} \hat{z}$
(3) $\vec{a}=-R \dot{\theta}^{2} \hat{g}+R \ddot{\theta} \hat{\theta}+\ddot{z} \hat{z}$

A Demás, si mipamos este problera segín un plano trontal a la partícula, wos amos cusmita que:

Podemios notar que la partí cula posee una verocises qué forma un ánguco a con RESPBCTO A LA HORIZONTAL Y A SU UBZ ES SIMPCB DARSE cuemat que:

$$
\vec{v}=v_{\theta} \hat{\theta}+v_{z} \hat{z}
$$

Dondes:

$$
\begin{aligned}
& v_{\theta}=|\vec{v}| \cos \alpha \\
& v_{z}=|\vec{v}| \sin \alpha
\end{aligned}
$$

Dero arsmas sabemos poe enunciado que:

$$
|\vec{v}|=v(t)
$$

Por lo tanto
(1) $R \dot{\theta}=v(t) \cos \alpha$
(2) $\dot{z}=v(t) \sin \alpha$

Así DESPGUANDO $\dot{\theta}$ y \dot{z} :

$$
\begin{aligned}
& \dot{\theta}=\frac{v(t) \cos \alpha}{R} \\
& \dot{z}=v(t) \sin \alpha
\end{aligned}
$$

Porico nouto:

$$
\vec{v}=v(t)[\cos \alpha \hat{\theta}+\sin \alpha \hat{z}]
$$

ADEMAS PODESOS NOTAR QUE $\vec{v}=|\vec{v}| \hat{t}$:

$$
\Rightarrow \quad \hat{t}=\frac{\vec{v}}{|\vec{v}|}
$$

Panat bute also:

$$
\hat{t}=\cos \alpha \hat{\theta}+\sin \alpha \hat{z}
$$

DeRIVANDO $\dot{\theta}$ y \dot{z} pODEMOS OBTENER:

$$
\begin{aligned}
& \ddot{\theta}=\frac{\dot{v}(t) \cos \alpha}{R} \\
& \ddot{z}=\dot{v}(t) \sin \alpha \\
& \text { DO NDG } \frac{d v(t)}{d t}=\dot{v}(t)
\end{aligned}
$$

$$
\begin{aligned}
\vec{a} & =-R\left(\frac{(v(t) \cos \alpha}{R}\right)^{2} \hat{\rho}+\frac{R \dot{v}(t) \cos \alpha}{R} \hat{\theta}+\dot{v}(t) \sin \alpha \hat{z} \\
\Rightarrow \vec{a} & =-\frac{(v(t) \cos \alpha)^{2}}{R} \hat{\rho}+\dot{v}(t)[\cos \alpha \hat{\theta}+\sin \alpha \hat{z}]
\end{aligned}
$$

De la última ecuación podsmos deducir que

$$
\begin{aligned}
& a_{t}=\dot{v}(t) \\
& a_{m}=\frac{(v(t) \cos \alpha)^{2}}{R}
\end{aligned}
$$

Dondes

$$
\begin{aligned}
& \hat{t}=\cos \alpha \hat{\theta}+\sin \alpha \hat{z} \\
& \hat{m}=-\hat{\rho}
\end{aligned}
$$

El DADIO dé CURUATURA ESTA' DEFINIDO como:

$$
S_{\text {curv }}=\frac{|\vec{v}|^{3}}{|\vec{a} \times \vec{v}|} \text {, Para cualquibr movimiento }
$$

EN ESTE ASO:

$$
\begin{aligned}
&|\vec{v}|=v(t) \\
& \vec{a} \times \vec{v}= {\left[-\frac{(v(t) \cos \alpha)^{2} \hat{\rho}+\dot{v}(t)[\cos \alpha \hat{\theta}+\sin \alpha \hat{z}]}{R}\right] \times v(t)[\cos \alpha \hat{\theta}+\sin \alpha \hat{z}] } \\
&=\left[-\frac{(v(t) \cos \alpha)^{2}}{R} v(t) \cos \alpha \hat{z}+\frac{(v(t) \cos \alpha)^{2}}{R} v(t) \sin \alpha \hat{\theta}\right] \\
& \Rightarrow|\vec{a} \times \vec{v}|=\frac{v(t)^{3} \cos ^{2} \alpha}{R}
\end{aligned}
$$

Reemplazando

$$
\begin{aligned}
\Rightarrow \quad S_{\text {CuRV }} & =\frac{v(t)^{3}}{\frac{v(t)^{3} \cos ^{2} \alpha}{R}} \\
S_{\text {CURV }} & =\frac{R}{\cos ^{2} \alpha}
\end{aligned}
$$

