A 28	GABRIEL CUBLAS 1/3
	Aux. FI21A
× ×	CLARAMENTE ESTE PROBLEMA TIENE
	SIMBTEIA CILINDRICA, POL 10 TANTO
No.	CONVIENTE PARA APLICUR:
	WILLIAM ALCIONE.
	V = 8 g + 22
	v = 0 0 + 200 + 22 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	$\vec{a} = (\vec{g} - g\vec{a}^2)\hat{g} + (g\vec{a} + 2g\vec{a})\hat{a} + \hat{z}\hat{z}$
Como subenes o	NE CA PARTICULA SE MUEUE EN EL MANTO,
SE TIENE QUE	
	S=R => g= g= 0
	_
$\Rightarrow \textcircled{1} \overrightarrow{V} = R \mathring{g} + \\ \textcircled{2} \overrightarrow{\nabla} = R \mathring{g} \mathring{g}$	72
$\vec{a} = -R\vec{o}^2$	
ADEMÁS, SI MIRAMO	S ESTE FROBLEM SEGUN UN PLAND FRONTAL
	, NOS DAMOS CUBNTA QUE:
754	PODEMOS NOTAR QUE LA PARTI-
No.	FORMA UN ANGULO & CON
	RESPECTO A LA HORIZONIAL Y
	A SU UST ES SIMPLE DARSE
\$ 6 A 2 A 4 A 5 COD 1 -	CUENTA QUE:
	v = v = 0 + v = 2
DONDE:	
	Jo= 1751 cos a
	$r_z = r_r \sin \alpha$
DBRO ADBMAS S	4BBYOS POE BUUNCIADO QUE:
100	=== \(\sigma(\x)\)
POR LO TANTO	
700 00 1000	
(4) R &	$\dot{\vartheta} = \mathcal{N}(t) \cos \alpha$
	$= N(t) \sin \alpha$

ASÍ DESPEVANDO Ó y 2:

$$\dot{o} = \frac{N(t) \cos d}{R}$$

$$\dot{z} = N(t) \sin d$$

PORICO TRUTO:

$$\vec{N} = N(t) \left[\cos \alpha \hat{\sigma} + \sin \alpha \hat{z} \right]$$

ADBNAS PODBNOS NOTAR QUE No INTIÉ:

PARA BUTE (420:
$$\hat{t} = \cos \alpha \, \hat{\theta} + \sin \alpha \, \hat{z}$$

DECIVANDO O y 2 PODEMOS OBTENER:

$$\dot{\Theta} = \frac{\dot{v}(t) \cos \alpha}{R}$$

$$\ddot{z} = \dot{v}(t) \sin d$$
 DONDE $\frac{dv(t)}{dt} = \dot{v}(t)$

$$\vec{a} = -R \left(\frac{v(t) \cos \alpha}{R} \right)^2 \hat{s} + R \dot{v}(t) \cos \alpha \hat{s} + \dot{v}(t) \sin \alpha \hat{z}$$

=)
$$\vec{a} = -\frac{(v(t)\cos a)^2}{R}\hat{g} + \dot{v}(t)[\cos a\hat{\theta} + \sin a\hat{z}]$$

DE LA VITIMA ECUACIÓN DODBHOS DEDUCIR QUE

$$a_m = (N(t) \cos a)^2$$

DONDE

$$\hat{t} = \cos \alpha \hat{o} + \sin \alpha \hat{z}$$

$$\hat{m} = -\hat{g}$$

3/3 EL PADIO DE CURVATURA ESTÁ DEFINIDO COMO: Scuru = 1513 PARA CUALQUIER MOVIMIENTO EN ESTE ASO: 17 = v(+) $\vec{\alpha} \times \vec{n} = \left[-(\nabla(t)\cos\alpha)^2 \hat{S} + \vec{n}(t) \left[\cos\alpha \hat{S} + \sin\alpha \hat{Z} \right] \times \nabla(t) \left[\cos\alpha \hat{S} + \sin\alpha \hat{Z} \right]$ $= \frac{(\nabla(t)\cos a)^2 \nabla(t)\cos a}{R} \nabla(t)\cos a \frac{1}{2} \cdot \frac{(\nabla(t)\cos a)^2 \nabla(t)\sin a}{R}$ $\Rightarrow |\vec{a} \times \vec{w}| = v(t)^3 \cos^2 \alpha$ REEMPLASANDO $=) S_{CURV} = \frac{V(t)^3}{V(t)^3 \cos^2 x}$ Scurv = R Cos2d GABRIEL CUEVAS AUXILIAR FIZMA