19. Electronics

19.1 Introduction

Electronics is the art of controlling the flow of electrons. It began with the discov-
ery of the ancient Greeks that a piece of amber (fiextpov) could attract and hold
small objects after being rubbed. The path leading to electrons’ controlled removal
from matter included the observation early in the eighteenth century that the elec-
trical conductivity of air increases in the vicinity of a hot poker, continued with
Franklin’s kite experiment relating lightning to static electricity, and culminated
in the middle of the nineteenth century with experiments of Crookes who passed
electricity between high-voltage plates in evacuated tubes. Edison noticed in 1883
that if he placed a metal plate inside a light bulb, current would flow to the plate if it
was at a positive voltage with respect to the filament, but not otherwise. Edison did
not think this observation of rectification particularly significant, but it has turned
out to have as many consequences as his electric lights.

Credit for the discovery of the electron is given to J. J. Thomson, whose exper-
iments on the flow of electricity from heated filaments in evacuated tubes isolated
it as a particle with a definite ratio of charge to mass. The name “electron” was
proposed by G. J. Stoney in 1894 for the unit of charge equal to 10" coulombs,
and this term gradually superseded Thomson’s term “corpuscle” for the new par-
ticle. The first practical electronic device was built by J. A. Fleming, who built
upon the work of Thomson and Edison to create a cathode ray tube with a heated
filament capable of rectifying oscillating currents. He called it a “valve,” but it is
now better known as the diode, and is depicted in Figure 19.1. Commercial radio
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Figure 19.1. The essential action of a diode is to send current in one direction in response
to an applied voltage, and not the other. The origin of this asymmetry is the fact that met-
als at elevated temperatures emit electrons long before they emit positively charged ions.
A heated cathode therefore sends off an appreciable current toward a positively charged
anode, but almost none toward a negatively charged anode.
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Figure 19.2. The triode serves not only to rectify current, but also to amplify small signals.
It accomplishes this task through the interposition of a grid between cathode and anode.
The potential between cathode and grid determines whether electrons begin the journey
between cathode and grid at all. However, once electrons arrive at the grid, they discover
that a much larger positive potential awaits them at the anode and accelerate toward it.
Because only a small proportion of the electrons enters the grid, small grid currents control
large cathode—anode currents.

transmission became feasible soon after with the invention by L. De Forest of the
triode, shown in Figure 19.2. Rectification is essential to practical radio transmis-
sion because the time average electrical field of a propagating radio wave is zero,
and even if the amplitude of such a wave is modulated to encode sound, it cannot
directly drive a speaker. Once the signal is passed through a rectifier, time averages
no longer vanish, and the signal can easily be decoded. The triode was essential not
only because it allowed amplification of weak signals, but also because by feeding
a portion of the output back in to the control grid, it could be made into a powerful
and stable source of radio-frequency oscillations.

Up through the 1970s much of electronics consisted in the study of cathode ray
tubes. They have now almost entirely been superseded by semiconductor devices,
which are much more reliable, and have slowly managed to capture even high-
power and high-frequency applications that at first seemed out of reach. However,
the basic concepts of controlling current, rectification, amplification, and switching
all first developed in the context of cathode ray tubes and were then taken over and
further developed by semiconductor descendants. Even the basic physics of the
various devices has many points of similarity. For this reason, it is advisable to
begin the study of electronics with the physics that made the cathode ray tubes
possible.

19.2 Metal Interfaces

As sketched in Figure 19.1, the cathode ray tube diode relies upon the fact that a
heated piece of metal emits electrons, but not positively charged ions. This effect
becomes most clearly visible when air is evacuated from the region in which the



Metal Interfaces 519

electrons are to travel, and for this reason cathode ray tubes are also known as
vacuum tubes or electron tubes. The physical question that needs to be answered
is how a metal surface in contact with vacuum emits electrons as a function of
temperature and electrical potential.

19.2.1 Work Functions

All the calculations of electronic energy levels up until now have been carried out
relative to one another. For example, the Fermi level was sometimes calculated
relative to the energy of the lowest single-particle electronic level, and in the band
structure diagrams of Section 10.4, the Fermi level was defined to be zero. None of
these calculations answers the question of the amount of energy needed to remove
an electron from an electrically neutral solid in vacuum. This energy is defined to
be the work function and is often denoted by ¢. It can be measured by optical meth-
ods to be discussed in Section 23.6.1, or by properties of thermal emission to be
discussed immediately below. To calculate it requires understanding what happens
when an electron is dragged through the interface between metal and vacuum.

The work function must be contrasted with the chemical potential, which is
the energy required to take an electron from the bulk and remove it to infinity.
Inspection of Table 23.2 shows that the experimentally measured energy required
to pass an electron through one crystal surface typically differs by 10-20% from
the energy required to move it through an inequivalent one. As the energy required
for transit from bulk to infinity cannot depend upon path, it is necessary to establish
carefully what the experiments actually determine.

electron

Figure 19.3. An electron at a distance x from
a metal surface is attracted to the surface by
an image charge of opposite sign which guar-
antees that electric field lines will be normal
to the surface.

The electrostatic potentials contributing to the work function operate on three
separate length scales:

Atomic. In passing through the surface of a crystal, an electron passes through a
highly inhomogeneous environment where the crystal terminates. Although
the surface is almost completely electrically neutral, there is always a strong
dipole layer. The electron is buffeted by strong forces as it passes through this
layer, but the range over which these forces operate is only on the order of a
few lattice spacings, due to the effectiveness of screening in a metal.
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Micron. After the electron exits the metal, it interacts with an image charge,
whose presence enforces the boundary condition that the tangential electric
field vanish on the surface, as shown in Figure 19.3. The force F at distance x
from the surface is

2
F=—— 19.1
202’ (19.1)
which implies that the electron has a potential energy
U =-% = -133.102umev (19.2)
Ty T H ' ’

Work functions are on the order of several electron volts, and therefore further
changes due to the image charge energy become negligible by the time an
electron has traveled a few microns from the surface.

Macroscopic. Because different crystal faces have different dipole layers, the re-
gions outside them must be at different electrical potentials, produced by
minute shifts in electron density near the crystal surface. The existence of
this potential is absolutely necessary, because there is no other way to bring
an electron out of the bulk through one surface, return it through another sur-
face, and have it return to the original bulk energy. The spatial scale for the
variation of this potential is the size of the crystal itself.

Figure 19.4. The work function is defined as
the energy needed to remove an electron from
the bulk of a metal, and bring it within about
a micron of a particular surface.

Therefore, as indicated in Figure 19.4 the work function is defined to be the
energy of electrons brought out to distances on the order of microns from crys-
tals whose dimensions are larger than microns. Holzl and Schulte (1979) describe
many additional complications that can arise in attempting to calculate or to mea-
sure work functions, such as what happens when surfaces are rough, or contain a
layer of adsorbate atoms.

19.2.2 Schottky Barrier

Equation (19.2) fails when an electron is too close to the crystal surface, because
the potential energy U diverges, and more realistic calculations require explicit
“description of the electronic surface states of a metal. However, it is adequate for
the purpose of estimating the effect of an externally applied electrical potential on
the work function. Suppose that a positively charged metal plate is placed at a large
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distance to the right of the metal surface, creating a linear electric field of strength
—E. Now the potential energy U (x) of the electron is
2
U(x) = —— —e|E|x, (19.3)
4x

which creates a barrier, shown in Figure 19.5, at distance

e
X = 7E| = U(x) = —ey/e|E|. (19.4)

Therefore an externally applied electric field changes the barrier restraining an
electron within the metal by ey/¢|E|.
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Figure 19.5. An externally applied electric field, created by placing at a distance a large
plate at an elevated voltage, lowers the barrier an electron must surpass in order to exit a
metal.

=1 Having first found the effect of applied electric fields, the next goal is to exam-
ine the thermionic emission of electrons that results from heating the metal. This
task is accomplished by considering the electrons in the metal to be in equilibrium
with a dilute gas of electrons hovering outside it, For simplicity the electrons are
treated within the semiclassical approximation, which makes it possible to speak
of the probability for an electron to have wave number & at position x outside the
metal

1
- = . Compare with Eq. (17.16). Here it is more 19.5
f xk ﬁ(EE—FU{-\’)—,u) 1 convenient to keep 4 constant and describe ( )
e + the spatial change in potential through U(7).

The probability of finding electrons does not vanish as x travels far from the metal.
Finding the vacuum full of electrons may seem unacceptable, but is an inevitable
consequence of the fact that no solid or liquid can ever be in equilibrium with a vac-
uum at nonzero temperature. Entropy always favors total evaporation. However, a
solid can exist in equilibrium with a dilute vapor of a particular concentration, and
that is what Eq. (19.5) implies for the electrons in a metal. The properties of the
electron vapor are fixed by the observation that because it is in equilibrium with
the metal, the two must have the same chemical potential. Taking “far from the
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metal” to denote distances on the order of a micron, the chemical potential must
be replaced by the negative of the work function, ¢ = —p > 0. Work functions
are typically on the order of several electron volts, as shown in Table 23.2, so for
temperatures much less than 10000 K, Eq. (19.5) can be replaced by

f* - £°+U(x)+¢} (19.6)

In order to find the current drawn from the metal in the presence of an applied
electric field, one should write down the Boltzmann equation and calculate the
nonequilibrium function g ;. However, it is adequate to consider a simple approx-
imation, which is to assume that the electron gas is in equilibrium at all points to
the left of xp and that all electrons that reach xq and are traveling to the right escape
over the barrier and run off as a current. This idea predicts a current

j=—eexp {—Bl¢+U(x)]} f [dk] m‘* O (k) e~ PR 2m For @fe (19.7)
=—AT? exp {—ﬁ[¢ L e\/fﬁ] } , From Eq. (19.4). (19.8)
where %1
A= mkﬁ =1202 Acm™2 K2, (19.9)

Equation (19.8) is called the Richardson—Dushman equation when used for
E = 0, while the reduction of the work function by the square root of an applied
field is called the Schottky effect. The current does not vanish when the electric
field E goes away, which means that if one places a cold grounded plate at some
distance from the heated metal and provides a path for the electrons departing from
the metal to return to it, current will flow through the vacuum even in the absence
of a voltage difference. The factors outside the exponential in Eq. (19.8) are not
particularly to be trusted, but the exponential scaling with temperature and electric
field can be verified experimentally and can be used to measure the work function
¢. Equation (19.9) was derived by Schottky (1938), and it provided theoretical
underpinning for the development of cathode-ray tube electronics.

19.2.3 Contact Potentials

Whenever two dissimilar materials are brought together, charge moves between
them. The reason is that they have in general different work functions, and elec-
trons from the material with the smaller work function rush into the material with
the larger one. As this process occurs, charge builds up in the second material, and
at some point Coulomb repulsion brings the charge transfer to a halt. The effects
of Coulomb repulsion can, however, be minimized if the electrons that flow to the
second material are located as close as possible to the (positive) holes flowing to the
first material. For this reason, the electrons and holes arrange themselves as surface
charges along the interface between the two materials, the electrons on the side of
the second material, the holes on the side of the first. Variations on this basic sce-
nario follow mainly from the widths of the regions with surface charge. When two
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metals are brought in contact, the regions with excess charge have atomic dimen-
sions. When semiconductors are brought into contact, charge densities are much
smaller than in metals, and the length scales over which charges build up turn out
to be much larger, as will be shown in Section 19.4.2.

Figure 19.6. Two metals with work func-
tions ¢ < ¢, are arrayed as plates of a ca-
pacitor, and charge is allowed to pass be-
tween them through an ammeter. By mea-

®

g S suring the current J and from it deducing
- = the total charge transfered, the difference
~ "l between the metals’ work functions is de-

d "~ termined using Eq. (19.11).

For now, consider the case of two metals in contact. To bring an electron from
one metal to its neighbor costs energy ¢, but recovers energy —¢,, where ¢ is the
work function of the first metal, and ¢; is the work function of the second. Assum-
ing ¢, > ¢, electrons continue to flow from metal 1 to metal 2, until the Coulomb
repulsion of the additional charges added to metal 2 cancels out the advantages of
the difference in work function. This difference in electrical potential is called a
contact potential. As shown in Figure 19.6, by using two different metals as two
plates of a capacitor and then connecting them with a wire, one can measure the
difference in their work functions. Because the metals are arrayed as a capacitor,
the electrical potential difference V between them is

V =Ed =4nod, (19.10)

where ¢ is the magnitude of the surface charge on each of the metals, and d is the
spacing between them. In equilibrium, the potential energy —eV needed to bring
an electron from one plate to another equals the difference in work functions, so

b — ¢ = 4meod. (19.11)

One way to measure the difference in work functions is simply to measure the total
current that flows between two metals at known spacing after they are connected
by a wire. A more accurate procedure is to find an external potential difference
imposed between the two metals so that no current flows when the spacing be-
tween the two metals is changed slightly. This potential difference must be just the
difference in work functions shown in Eq. (19.11).

Double Layers and Reconstruction. Expressions (19.4) and (19.11) provide re-
lations for metals in contact with vacuum or each other by cleverly evading ques-
tions of what happens at short length scales. Equation (19.4) must break down
when electrons come within a few angstroms of a metal surface, while Eq. (19.11)
should fail when two metals come closer than within a few angstroms of each other.
Qualitatively, however, each of them is correct. For angstrom-scale separations be-
tween metals, Eq. (19.11) predicts that a double layer of charge will build up, with
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charge density on the order of 5 - 10 *electrons/A%. Compared to the the normal
density of electrons along any surface of a metal, this number is not particularly
large. However, the electric fields involved are on the order of 1eV/A, and they
are enormous compared to fields normally generated in the laboratory. The double
layer of surface charges is a dipole layer, and one can view the work function of a
metal generally as arising from the presence of such layers at the surface.

Band structure programs are able to calculate detailed properties of surfaces
with a fair degree of success, and they find such quantities as work functions. Early
work along these directions was described by Lang (1973) and Appelbaum and
Hamann (1976), and a more recent review is given by Zangwill (1988). Because the
computer programs depend upon using Bloch’s theorem, they must have a periodic
crystal in which to carry out the calculations. One solution of this difficulty is to
carry out calculations with a unit cell such as depicted in Figure 19.7.

Figure 19.7. Band structure programs study surfaces by creating a unit cell (left) that upon
repetition in all directions produces an array of slabs (right). The thicker the slabs, the more
realistic an account of surface and bulk states the program can provide. The figure does
not show any surface reconstruction, which often occurs and whose analysis is a frequent
aim in the calculations.

19.3 Semiconductors

The beginnings of modern electronics lay in the control of current rectification
by the cathode-ray diode. However, the cathode-ray tube did not provide the first
case in which rectification was observed. It was seen independently by Braun
(1874) and by Schuster (1874). Braun conducted experiments in which a crystal
such as ferrous sulfide was contacted with a very thin wire, and the resistance was
measured as a function of the direction in which current was flowing. Such point
Jjunctions do rectify current, although the effect is quite small and had no immediate
practical consequences.

The first diodes were produced by placing a whisker of metal in contact with a
semiconductor crystal, and are described by Henisch (1957). Early devices could
rarely compete with cathode-ray tubes, because they were still comparatively in-
cfficient and unpredictable. In order to make them work at all, it was sometimes
necessary to slide the whisker around until a region of good contact was found at
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random. The progress of basic research into solid-state physics in the 1930s and
late 1940s found the cause of the apparent unpredictability of semiconductors: the
presence of certain crucial impurities in extremely small quantities. Once the role
of these impurities was understood, and methods developed to control them, diodes
and triodes based upon semiconductors took part in a remarkable development that
eventually displaced the cathode-ray tubes that had inspired them, and they led
electronics to a level of extraordinary complexity.

The discussion will begin with the simplest basic physics, and gradually deco-
rate it with additional effects, until the mechanisms responsible for semiconductor
electronics emerge. The starting point is the statistical mechanics of pure semicon-
ductor crystals, followed by statistical mechanics of semiconductor crystals doped
with small quantities of impurities, and finally the theory of conductivity in junc-
tions between differently doped semiconductors.

19.3.1 Pure Semiconductors

Preliminaries. Semiconductors are bad insulators. At zero temperature all elec-
trons lie within completely filled valence bands separated from conduction bands
by an energy gap of magnitude €,. Important features of the bands of silicon,
germanium, and gallium arsenide appear in Figure 19.8. One would expect these
materials simply to be insulators, except that the energy gap is small, on the order
of 2 eV or less. At room temperature the occupation of the conduction band is
proportional to

—f8€g/2 110 For 3 =1/ksT =1/40eV and &, = 1 eV. The factor
. 10 * of 1/2 is a bit surprising, but will arilcrge from analysis. (19.12)

Because thermal excitation provides exponentially growing numbers of mobile
charge carriers, the electrical conductivity of semiconductors grows exponentially
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Figure 19.8. Essential features of band structures of silicon, germanium, and gallium
arsenide. All have band gaps on the order of 1 eV. The bottom of the conduction band for
silicon and germanium does not lie at I, so these materials have an indirect gap. Gallium
arsenide, by contrast, has a direct gap. These diagrams are extracted from Figures 23,15
and 23.16, which contain information on how they were obtained.
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with temperature, in contrast with metals where scattering generally reduces con-
ductivity as temperature goes up. As the band gap €, sinks below 1 eV, thermal ex-
citation becomes a sufficiently important source of carriers that the semiconductors
conduct at room temperature. More important is the fact that the electrical prop-
erties of semiconductors are enormously sensitive to the presence of certain types
of impurities, which make their presence felt even at concentrations on the order
of one part in 10'°, Before the role of impurities was understood, semiconductors
seemed capricious and unreliable. Now that they are not only understood but can
be controlled, the impurities are employed to give semiconductors tremendously
interesting and variable electrical transport properties, with which the electronics
industry has developed and grown for over four decades. The word “impurity”
connotes something undesirable, so one stops using it in reference to elements in-
tentionally added to semiconductors and refers to “dopants” and “doping” instead.
Band Structure of Semiconductors. Because of the great importance of the en-
ergy gap in semiconductors, a few words are in order on how it is measured and
calculated. In fact, neither experimental measurement nor theoretical calculation is
straightforward. The most precise experimental technique is optical absorption.
According to a simple band-theory picture, light falling upon a semiconductor
should pass through unimpeded until the energy of a photon is adequate to cre-
ate an excitation of energy &,, after which absorption should rapidly increase. The
actual story of what happens in such experiments is sufficiently complex and in-
teresting that it is deferred to Chapters 21 and 22. Some of the effects should,
however, be mentioned now.

1. Any transition involving a photon must conserve not only energy but also mo-
mentum. The momentum carried by a photon turns out to be negligible com-
pared with that of typical electron states. In Figure 19.8, the lowest-energy
spot in the conduction band of silicon lies at about 8/10 of the way toward X,
while the highest-energy spot in the valence band lies at I'. An electron oc-
cupying a state near X cannot transfer to I" simply by emitting a photon. The
transition is therefore comparatively rare, with phonons supplying the missing
momentum. For this reason, silicon is called an indirect semiconductor, as it
has an indirect gap. Germanium is also an indirect semiconductor, and the
bottom of its conduction band lies at L. Many optical applications demand
a direct semiconductor, where the lowest point of the conduction band lies
directly above the highest point of the valence band. For these applications,
GaAs is the most important material.

2. Near the band edge, where optical absorption is supposed to vanish, it usually
displays one or more thin sharp peaks. These peaks are signatures of excitons,
which are bound electron-hole pairs whose energy can sit slightly below any
states describable in the one-electron picture.

3. Photons whose energy lies below the band gap and out of range of excitons
continue to be absorbed, at a rate that decreases exponentially the farther they
lie below the band edge. This absorption is due to impurities and fluctuations.
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Table 19.1. Semiconductor data

Com- &, d€g/dT n; & mh omy, my Jn M
pound  (eV) (eV/K) (em™?) (m) (m) (m) (cm?/Vs) (cm?/Vs)
Si i 1.11 —9.0-107° 1.02-10'° 11.9 1.18 0.54 0.15 1350 480
Ge i 074 —=3.7-107% 2.33-10 16.5 055 0.3 0.04 3900 1800
GaAs d 143 —3.9-107%  2-10° 12.5 0.067 0.50 0.07 7900 450
SiC 122 -58:107* 9.7 0.82 1 900 50
AlAs i 214 —4-100% 2-107 100 05 05 026 ~ 294

AlSb i 1.63 —4-107¢ 120 03 1 0.5 200 400
GaN d 344 —-6.7-107% 2-10Y 120 03 1 440

GaSb d 07 -3.7-107* 10 15.7 0.05 0.3 0.04 7700 1600
InP d 134 —29.107* 12-10° 152 0.073 0.6 0.12 5400 150
InAs d 036 —3.5-107* 1.3-10 152 0.027 0.4 0.03 30000 450
InSb d 0.18 —2.8-10~* 2.0-10' 16.8 0.013 0.4 0.02 77 000 850

Data on whether a compound has a direct (d) or indirect (i) gap, energy gap, static dielectric
constant, effective masses, and mobilities, for some semiconductors. The electron effective
mass m}; is the density of states effective mass defined in Eq. (19.23). The data refer to room
temperature, and to samples with donor and acceptor impurities at densities of 10'% ¢m™>
or less. Source: Landolt and Bornstein (New Series) vol. 17 and Pierret (1996).

Despite these experimental complications the experimental determination of
band gaps can be made rather precisely. Not only the energy gap, but also the
structure of the energy bands in the neighborhood of valence band maxima and
conduction band minima, is important. One can fit the energy to a quadratic form
and write

2
& =E+ fiz._?e* M % For electrons in the conduction band. (19.13a)
52 ”
8?2 =&, — Ek*M_lk’ For holes in the valence band. (19.13b)

where M is the effective mass tensor. For silicon, germanium, and gallium ar-
senide, the bands at the valence maximum would be threefold degenerate in the
absence of spin. The spin-orbit interaction splits off one of the bands, leaving
two above it that still are degenerate at I'. The two bands have, however, differ-
ent curvatures near I', leading to heavy holes (low curvature) and light holes (high
curvature), both of which contribute to the transport properties of semiconductors.
Because of the great degree of symmetry associated with I, the energy surfaces of
these holes are spherically symmetrical, and the effective mass tensors are multi-
ples of the unit matrix.

The conduction band minimum in gallium arsenide is nondegenerate and spher-
ical. In silicon and germanium, the conduction band minima are guite anisotropic,
and consist in a number of symmetrically arrayed pockets of electrons, as shown
in Figure 19.9. The effective mass tensors have been measured by the technique of
cyclotron resonance, to be discussed in Section 21.2.
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(A) (B)

Figure 19.9. (A) The conduction band minima in germanium lie along (111) and strad-
dle the zone boundary, producing four inequivalent pockets of electrons with a highly
anisotropic effective mass. (B) In silicon, the conduction band minima lie 8/10 of the way
toward (100), producing six pockets of electrons, but only three with distinct symmetries,

19.3.2 Semiconductor in Equilibrium

Electron and Hole Densities.  In equilibrium, the numbers of mobile charge
carriers in a semiconductor are given by the Fermi function. The volume density
of electrons n above the conduction band edge is given by

n= :o dé D(S)m%}_l_—l, (19.14)
while the density of holes p below the valence band edge is
Ev 1
pzjim d€ D(€) {l—m} (19.15a)
&y 1
= o dé D(S);m. (19.15b)

Nondegenerate Semiconductors. These expressions simplify for a nondegenerate
semiconductor, which is one for which the probability of occupying states near the
band edge is exponentially small; that is,

Ee—p>kpT and p—&,> kgT. Apractical criterionis & — > 37, (19.16)

When these conditions hold, the semiconductor is quite different from most met-
als. Whereas in metals carrier concentrations are on the order of 10?2 electrons per
cubic centimeter, for nondegenerate semiconductors carrier concentrations are on
the order of 10' cm~3 or less. Whether a semiconductor lies in the nondegener-
ate limit or not will depend upon the density of dopants (impurities) added to it.
In semiconductor devices, dopant densities are frequently great enough to cause
violation of inequalities (19.16). Nevertheless, the nondegenerate limit is of great
utility because the transport properties of semiconductor devices are largely deter-
mined by the regions with light doping, while the regions with heavy doping act
like short circuits and can often be ignored.
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Given conditions (19.16), the Fermi functions (19.14) and (19.15) can be re-
placed by Boltzmann factors, and the equations for electron and hole concentration
in the nondegenerate case become

n=Ne Pt  p=N,e Plu-¢&) (19.17)
with
N,= | d&D(&)ePE-E) . (19.182)
&
£y
Ny = / de D(€)e #&s—E), (19.18b)

Effective Masses. ~With reasonable approximations, one can calculate N, and
N,. It is not sufficient to take the density of states D(E) just to be a constant.
In Eq. (19.18) the exponential factor places heavy emphasis on states just at the
edges of the bands where the density of states vanishes, so there is an interplay
between the two terms in the integrand. Still, only states within a narrow strip
near the valence maximum or conduction minimum are important, and one can
use the quadratic approximations (19.13) to evaluate the density of states. For the
conduction band, one has

R 1 — -
D(€) = ] @) (&~ &~ SPEME)  rorldi), seBa. 619, (19.19)

5 1 Changing to a k basis in which M
= [[dk] 5(8 _ 8:: ! Eﬁ:’- Z k%/ml) . s diagoualfjwaith :lsel:lg;m m(:. (19.20)
!

Defining
ms = [mimyms]'/® and G = (ki /ma, ka/ma, ks /ms) (19.21)
gives
o [ 32 9 (e g _Lp
D{E)—Z[mn (%)36(8 ee—5¢) (19.22)

s ’32(8 — 5 )EI;SEM gﬁiﬂfﬁﬁffﬁﬁ:ﬁf ?rfinima in the (19.23)
=2 ¢ HS 2 L conduction band, equaling six for >
silicon and eight for germanium.
Because ) is defined so as to bring the density of states D(€) into a simple
form, it is called the density of states effective mass; experimental values for sev-
eral semiconductors appear in Table 19.1. In the case of holes, one can repeat the

steps leading to Eq. (19.23) for heavy and light holes separately and define m;3/ 3

to be the sum (m;;)” 2+ (m;,,)g’f 2 of the light and heavy effective hole masses.
Then

* 3/2
NC=% (2”:::23T> M, (19.24a)

1 (2mksT \ ¥?
N":Z( :ﬁf ) : (19.24b)
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In order to find equilibrium densities of electrons and holes from Eq. (19.17),
one needs to determine the chemical potential ;1. However, there is a convenient

relation independent of it, the law of mass action, obtained by multiplying together
the expresgions for »n and p, to find

np = N Nye P& Theenergy gap &, = &, — &, (19.25)
19.3.3 Intrinsic Semiconductor

An intrinsic semiconductor is a pure single crystal. For every electron excited into
the conduction band, a hole must be left behind in the valence band, so the intrinsic
electron density n; is

n; = NCIN,Dg_-ﬁESﬂ From Eq. (19.25), setting n = p. (19.26a)
* 3/4 3/2
) & 1o, —3 [ MMy 1/2 ( T ) —88,/2
=2.510-10"¢cm (—m2 ) M, 300K e, (19.26b)

Solving Eq. (19.17) for the chemical potential gives immediately the intrinsic chem-
ical potential z;

- & 3
i = kgT In ;TUFEC: €+ 2+ ZkaT In(riy m3). (19.27)
i

Table 19.2. Binding energies of common donors and acceptors in
some semiconductors at room temperature

Group V donors, €. — &4 (meV)
Host Eq.(1830) N P As Sb Bi
Si 113 140 45 53.7 42.7 70.6
Ge 28 129 14.2 103 12.8
Group III acceptors, €, — &, (meV)
Host Eq.(1830) B In Ga Al Tl
Si 48 45 155 74 67 25
Ge 15 973 12.0 11.3 10.8 13.5
Donors, &, — €4 (meV)
Host Eq.(1830) Pb Se Si S Ge C
GaAs 5.8 58 58 58 59 59 59
Acceptors, £, — & (meV)
Host Eq.(1830) Be Mg Zn Cd C Si Ge Sn Mn
GaAs 23 28 29 ‘31 35 27 3% 40 167 113
InP 21 31 31 46 57 41 210 270
Apart from the case of donors in GaAs, the simple theory of Eq. (18.30)
gives no more than the order of magnitude of the binding energy. Improve-
ments on the theory, more properly incorporating anisotropy of the effective
mass, and corrections due to the strong potential in the central cell near the

impurity are discussed by Yu and Cardona (1996), Chapter 4. Source; Lan-
dolt and Bornstein (New Series), vol. 17,
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The logarithm in Eq. (19.27) is of order unity or even zero if holes and electrons
have the same effective mass, so because kgT ~ 1/40 eV at room temperature and
band gaps are around 1 eV for semiconductors, the chemical potential sits smack
in the middle of the band gap. Thus it cooperates in enforcing (19.17), making the
semiconductor as nondegenerate as possible by staying away from the band edges.

Compact Expressions. Combining Egs. (19.26) and (19.25) puts the law of mass
action in the general compact form

np =n? (19.28)
and allows rewriting Egs. (19.17) for electron and hole densities as

n=mne Plo—n — p= nie~PlH—0), (19.29)

19.3.4 Extrinsic Semiconductor

Acceptor Donor
states states

Energy € —

Figure 19.10. The effect of adding donors to a semiconductor is to create a population of
bound states sitting just below the conduction band, while adding acceptors creates bound
states just above the valence band. At room temperature, almost all the bound states break
apart; each donor gives an electron to the conduction band, while each acceptor gives a
hole to the valence band.

When certain sorts of impurities are used to dope a semiconductor, the physics
changes rather dramatically. The most interesting impurities are noncompensated,
lying one column to the right or one column to the left of a semiconductor in the
periodic table. Examples of common dopants appear in Table 19.2. As discussed
in Section 18.3, addition of these impurities creates a population of bound states.
Atoms from column V added to a semiconductor of column IV create states just
below the conduction band edge called donors, while atoms from column III added
to a semiconductor of column IV create states just above the valence band edge
called acceptors (Figure 19.10). However, at room temperature, these bound states
are not occupied; they are almost completely ionized. Thus the practical effect
of adding a donor is to add a single mobile electron, while the practical effect of
adding an acceptor is to add a single mobile hole.

The energies in Table 19.2 do not make it obvious that impurity states should
be ionized completely. The thermal energy at room temperature is around 25 meV,
which is at best comparable to the binding energies. It is entropy more than energy
that ionizes the impurities. For the purposes of a rough estimate, let the density
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of impurity sites per volume be Ny, and denote by N, the density of conduction
states per volume into which an electron could choose to move. In a system of
volume V, the number of different ways to arrange electrons originally bound on
the impurities among the conduction states is roughly (N:/N,) "¢, leading to en-
tropy kgVNy In N./N,4. Therefore the temperature at which ionization occurs is
not kgT = Cp, but kpT In N./Ng = €. The fewer impurities there are, the more
mobile their electrons become. In practice, for doping levels of N; < 10'8 em—3,
ionization is probably complete, but if doping rises higher the approximation must
be checked, because N, =~ 10%* cm 2.

Verifying these claims requires a simple statistical calculation. Consider a crys-
tal with a valence band, a conduction band lying at energy €, = €, — €, higher,
and donor states with maximum binding energy &4 just below the bottom of the
conduction band. Because the impurity potential is weak, the probability of an
electron being trapped in anything but the “ground state” of the effective hydrogen
atom problem is negligible. In addition to occupying the conduction and valence
bands, electrons can also occupy the donor bound states. The donor occupation
number can be zero, and the donor can trap an electron with either spin up or spin
down, but it cannot bind simultaneously two electrons of opposite spin. There-
fore, in the grand canonical ensemble conventionally used for the Fermi gas, the
occupation probability f; of the donor levels is

_0x14+1x2xe HEan)
S W yope

(19.30)

= —————— <« |. Equation (19.38) will show that u lies typi-, (19.31)
1+ Lop(Ey—u) cally in the middle of the gap, so that at room
2 temperature £y — p is much larger than &z 7",
and f; is nearly zero,
Similarly, if acceptor impurities are placed at an energy £, above the valence band,

the probability that a hole, spin up or spin down, will be localized on them is
1 The factor of 1/4 appears in the denominator
because the valence maximum is fourfold de-
fa= 1 oB8(n—8a) 1 1 <1 generate, including spin degeneracy. Again, Eq. (19.38) (19.32)
3¢ i shows that typically this occupation number is
much less than 1.

The way that entropy ionizes impurities is hidden in the value of the chemical
potential, and the chemical potential is determined simply by the total number of
mobile electrons. Suppose that a density of N donors per volume is added to the
semiconducting crystal, which otherwise contains » electrons per volume in the

g cry P

valence and conduction bands. The total density of electrons is then

1 1 |

n+Ny= s, dé D(S)m m + Nafa. (19.33)
Because the integral of D(E) over the valence band gives n, and assuming f; is
negligible,

Nd:/' de D(€)
u é‘-l’.'

% / e D(&)

1 & 1
T~ Dl

2> Ny=n—p= nie—.ﬁ(ﬁts—ﬂ-] = me—ﬁ(#—#s). (19.35)

(19.34)
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When both donors and N, acceptors per volume are present, then similarly
n—p=Ng—N,. (19.36)

Using the law of mass action Eq. (19.28), one now easily solves for n and p, and
finds

1/2
ﬂ=%[Nd—Na]+% [(Na = No)2 +4n?] ; (19.37a)
1 1/2
p= E[Na—Nd]Jr% [(Ng = Na)? +4n?] - (19.37b)

To check that everything is consistent, one needs to make sure that the chemical po-
tential is in fact in the middle of the gap, making f; and f, small. From Eq. (19.29)

n—p=2n; sinh B(u— i) = p = pi+ksT sinh™* ([Ng—Ng]/2n;) . (19.38)

Thus dopants must exceed by many orders of magnitude the intrinsic carrier density
before the chemical potential departs far enough from the center of the gap to
endanger the conditions for nondegeneracy in (19.16).

Equation (19.37) simplifies when Ny 3> N,, and it becomes

naNy The number of mobile electrons is essentially (19.39a)
the number of donors.
n?
pr N—‘d Holes are the minority carrier. (19.39b)

There is a similar result when the number of acceptors exceeds the number of
donors; in this case,

PR Na The number of mobile holes is essentially the (19.40a)
number of acceptors.
n?
nes ﬁi 1 Electrons are the minority carrier. (19.40b)

19.4 Diodes and Transistors

The first semiconductor device was the point-contact rectifier or Schottky diode, in
which a metal whisker was placed against a semiconducting crystal. The contact of
metal with semiconductor remains an important element in electronic design, and
it is worth understanding the conditions under which this junction rectifies current.

Ideal Schottky Diode. Suppose that an ideal contact between semiconductor and
metal is possible, in which the atoms of the metal join seamlessly with those of
the semiconductor. Such a joint is actually extremely difficult to create in practice
for numerous reasons. Immediately after cleaving, semiconductor surfaces acquire
oxide layers; any sort of mechanical polishing produces surfaces that are far from
atomically flat; and even conventional molecular beam epitaxy often fails to lay
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metal smoothly down upon a semiconductor surface, producing instead blobs and
islands. Nevertheless, suppose that a smooth contact has been achieved, After
examining this ideal case, the consequences of a defective interface will also be
mentioned.

Figure 19.11 shows the equilibrium behavior of an n-doped semiconductor
brought into contact with a metal. The work function of the semiconductor is
taken to be less than the work function of the metal; if the reverse is the case, the
junction may have little or no rectifying power, and the contact is called ohmic, as
in Problem 2. Because of the higher chemical potential, electrons rush from the
semiconductor to the metal, lowering the voltage of the metal until electrostatic
forces prevent further motion of charge. The resulting potential profile is depicted
in the lower parts of Figure 19.11. The representation of the junction in Figure
19.11 explains why the electrostatic potential is said to cause band bending.

When an external voltage V, is applied to raise the metal relative to the semi-
conductor, the sitnation changes qualitatively as in Figure 19.12(A). The barrier for

Vacuum level

Figure 19.11. (A) In the first instant that a metal and semiconductor are brought together,
their chemical potentials do not coincide. (B) Very quickly, however, charge moves from
the solid with higher chemical potential to the one with lower chemical potential—in this
case, from the n-doped semiconductor to the metal—until the rise in voltage of the semi-
conductor compensates for the difference in chemical potential. (C) The customary rep-
resentation of the potentials experienced by the electrons and holes shows the chemical
potential y as constant, and it adds the electrostatic potential —eV to the conduction and
valence band levels. The bands have been bent by the potentials which form across the
junction. The chemical potential is often referred to as the Fermi energy &
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electrons is lowered, and the electrons flow into the metal from the semiconductor
as a current. However, if the voltage changes in the opposite fashion, as in Figure
19.12(B), the barrier seen by electrons in the metal does not change, and therefore
current does not increase in the opposite direction.

Positive voltage Va¢— electrons 5 —eV(x)

L 8 jieV(x) Figure 19.12. (A) When the
i voltage of the metal is raised
relative to the semiconductor
by eV, electrons flow to the
Negative voltage Vo ¢y — (£, — EF) —eVy metal. (B) However, when the
(f)b 8 - ev(x) VOltagF of the metal is low-

- ered, the barrier perceived by

&, —eV(x) the electrons does not change,

and little current flows.

1+ (metal)

(B

Quantitative Theory. The quantitative theory for rectification in the Schottky
diode is almost identical to the theory of thermionic emission from metals. The
electrons in the semiconductor with enough energy to travel to the metal are those
in the conduction band whose velocity toward the metal is large enough that they
can cross the barrier between semiconductor and metal. According to Figures
19.11(C), and 19.12, the height of this barrier in the presence of an applied voltage
Va i8 ¢ — (€. — i) — V4, so the condition is

K2 k2 Using the density of states effective mass in
5 * > be LS ( - “) _ EVA. g;gmmmanon for the (anisotropic) kinetic (1941)

The current density js due to this collection of electrons is

2 e Fe
JHm—/dk h k2 — [y — (E¢ —p:)—eVA) fz% e BPR/2mi+E—1) (19 .42)

Using the uondegcncrate limit of the Fermi function and assuming the electrons
to travel in the —x direction, with the minus canceling the sign of the charge.

[dk] defined in Eq. (6.15).

232
2 2mimksT 1 - (ﬁ_k ) e~ PUPR/2mi+Ec—4) (19.43)
r"l‘.“r eVy

“@r)? @ h 2m:
Domg the integrals over kr and ky.

i .AT2 exp {—0[ds —eVal} . A=120A K2 cm~? was given (19.44)
in Bq. (19.9).

When V4 = 0, the reverse current j,, ., flowing from metal to semiconductor
must equal the one calculated in Eq. (19.44), and because the barrier seen from the
metal does not change with V4, the current flowing in this reverse direction will be
independent of applied voltage. So the total current in the junction is

j="5 AT fexp {~Blg —eVal} ~ 1].. (19.45)
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Vacuum level
b O
Pm
e i n+eVix)
-« surface states e
1]

Figure 19.13. Effect of surface states on metal-semiconductor junction. (A) The elec-
trochemical potential z + eV at the surface of the semiconductor is fixed at a particular
location in the gap independent of doping. (B) The bands are bent so that the barrier
between metal and semiconductor is a constant ¢ that depends mainly upon properties
of the semiconductor surface, and only slightly upon either metal or semiconductor work
functions.

19.4.1 Surface States

Experimental measurements confirm Eq. (19.45), but with one troubling discrep-
ancy. The constant ¢, does not equal ¢,, — ¢ — (€. — i) as it should according
to Figure 19.11, and it is almost independent of the metal or doping level of the
semiconductor involved in the contact. For example, n-type GaAs almost always
appears to have ¢, = 2€,/3 = 0.95eV, while p-type GaAs almost always appears
to have ¢y, = €,/3 = 0.47¢eV. The explanation, proposed by Bardeen (1947), is that
the surface of the semiconductor joins the metal in a rough fashion. At the inter-
face there is a high density (10" em™2) of dangling bonds—that is, atoms eagerly
expecting to join onto neighbors to form a perfect diamond lattice, but frustrated
by the presence of the surface. It is energetically favorable to steal charge from
the nearby bulk and to place electrons on the dangling bonds, leaving a positively
charged region several hundred angstroms thick below the semiconductor surface.
In addition, there is a large density of propagating surface states with energies lying
right within the gap and localized states due to defects. A schematic representation
of the consequences for energy bands appears in Figure 19.13. When the metal
and semiconductor come into contact, the chemical potentials equilibrate as charge
moves from the metal into the surface states, creating a dipole layer at the interface.
Because the charge density needed to create this layer is often small compared to
the density of dangling bonds, the space charge distribution within the semicon-
ductor is not much altered by the approach of the metal.

Semiconductor electronics avoids the problem of surface states by building
junctions out of single crystals. Instead of preparing two separately doped crystals,
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polishing the surfaces, and gluing them together, the dopants are injected into a
single sample at desired locations, either as an ion beam or by diffusion.

19.4.2 Semiconductor Junctions

Junction in Equilibrium. Consider a junction between an n-doped and a p-doped
region. Electrons move from the n-type region to the p-type region until charge
buildup cancels out the advantage of populating lower energy levels. Figures 19.14
and 19.15 help in visualizing why.

p—doped region n—doped region

E
£
i,
4

(B)
E.—eVix)
p
i —eV(x)
© g —eWia)

Figure 19.14. (A) In the first instant that #- and p-doped semiconductors are brought to-
gether, their chemical potentials do not coincide. (B) Therefore, electrons move from the
region with higher chemical potential into the region with lower chemical potentials leav-
ing holes behind. As electrons move in and holes move out, the voltage of the p-doped
region begins to decrease, while that of the n-doped region begins to increase, raising the
electrostatic potential energy of the electrons and holes. When the ensemble comes to equi-
librium, the electrochemical potential u + eV has the form depicted. (C) The customary
representation of the potentials experienced by the electrons and holes shows the chemi-
cal potential 4 as constant, and it adds the electrostatic potential —eV to the conduction
and valence band levels. The bands have been bent by the potentials that form across the
junction.

To obtain a quantitative theory, observe that in the presence of an electrical
potential V (x), the densities of electrons n and holes p in a nondegenerate semi-
conductor are given by

Generalize Egs. (19.29) to include spatial varia-

— p.pP(pteV(x)—pi) tions; valid if spatial gradients are small enough
n(x) = nie that the semiconductor is locally in equilibrium. (19.46a)

Pla)= nieﬁ(ﬁi—fv{x)—#)_ (19.46b)
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p-doped, p-doped, n-doped,  m-doped, mo-
mobile holes depleted depleted  bile electrons

Total charge density
Na+n—Ng—

Electrostatic
potential V (x) —>

Figure 19.15. Illustration of the redistribution of mobile charges near a p—n junction. The
mobile carriers abandon the region between x, and x,, leaving nonzero ionic charge density
behind.

Far to the left of the junction (x — —oc), on the p-doped side, the total charge
density must vanish, which requires p = N,,. Similarly, n =N, far to the right of
the junction (x — oc). Multiplying Eq. (19.46a) for x — oo by Eq. (19.46b) for
X — —0C gives

n(o00) p(—00) = NgNg = = pdeleVise)—2Vi—e0)) (19.47)
= eV = e[V (o0) — V(—oc)] (19.48)

= NdN NaNa
—kpT In : +hsT Inf3 ] (19.49)

where Vy; is the built-in voltage across the junction, an intrinsic potential difference
due to the fact that the electrons of the n-doped region combine with the holes of
the p-doped region.

Charge Distribution. Real junctions have complicated three-dimensional forms,
but the essential features are captured in a one-dimensional calculation, as a func-
tion of the spatial index x. The tricky part of the calculation comes from the fact
that the potential V(x) is produced by the charge densities n(x) and p(x), so the
problem must be solved self-consistently, using Poisson’s equation. The charge
density is the sum of a number of terms. The impurity states are fully ionized,
leaving behind charged ions that contribute

€fions — e[:Na(x) == :Nd(x)]' (19.50)

In addition, one has to consider the contributions from the electrons n(x) in the
conduction band and the holes p(x) in the valence band, so Poisson’s equation
reads
o*V
ox*
with €” the dielectric constant.
For the junction depicted in Figure 19.15 there is an abrupt transition between
an n-type semiconductor and a p-type semiconductor, so

= —4me[—Ng(x) —n(x) +Ny(x) + p(x ]/Eﬂ (19.51)

Nalx) = Nyf(—x) 6(x) is a Heaviside step function. (19.52a)
Na(x) =Ngb(x). (19.52b)
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Junctions are not actually infinitely sharp, but they can certainly be less than 100
A, which is going to be the scale of the depletion regions in which charge builds
up.

Equation (19.46) shows that once the potential begins to deviate from its value
at infinity, the number of carriers n or p drops below N, or N, like a stone. It is
therefore reasonable to construct an approximation in which the charge density is
zero everywhere up to x, < 0, at which point the charge density abruptly changes
to —eNy. At x = 0 the charge density rises to eN,, and finally at some x, > 0, it
falls abruptly back to zero. The potential produced by such a charge density is

V(—o0) forx < x,
Na 2
V(—o0) +2me—-(x—xp)° for0>x>x,
Vix) = ﬁ (19.53)
V(o) —27e ch{.ir—x,,)2 forO0<x<x,
V(o) for x > x,,.

Equation (19.53) is obviously a solution of Eq. (19.51), and the only thing left to
check is that the solution and its first derivative are continuous at x = (. Continuity
of (19.53) at 0 demands that

Na Na »
V(-oo)+27ree—01§, =V(oo)—2‘.rre£—or‘m (19.54)
while continuity of the derivative requires that

Naxn = —Naxp. (19.55)

Solving Eq. (19.54) and Eq. (19.55) for the lengths x, and x,, gives

ON, Vi
i \/27reNd[Na +NJ] (12:562)
R ON Wi
= \/ZﬂefNa, N+ N’ (20

using again the built-in voltage V;; defined in Eq. (19.48). Placing typical numerical
values into Eq. (19.56), dopant densities on the order of 10'® cm—3, and potential
differences eV, on the order of 0.1 eV gives depletion layers on the order of a
few hundred angstroms. Because the depletion region has no mobile change, its
resistance is considerably greater than that of the doped regions to either side.
When an external voltage Vj is applied to such a junction, the net effect de-
pends greatly upon the direction in which it happens. If the potential of the left-
hand side is raised relative to the right-hand side, electrons are attracted to the left,
and holes are attracted to the right. As a consequence, xp moves further to the
left, and x,, moves further to the right. Conversely, if the potential is lowered to
the left, electrons are repelled from the left, and the size of the depletion region
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decreases. Quantitatively, applying a voltage corresponds to a case in which the
system departs slightly from equilibrium, so that the chemical potential . is no
longer constant, but instead changes by amount eV, from one end of the sample to
the other. Most of the voltage drop occurs in the depletion region. One does not
need to determine the spatial profile to observe, however, that because 1 is now dif-
ferent on the two sides of the sample, the potentials V(oo) and V(—oc) must also
change accordingly so as to maintain charge neutrality, and the difference between
them also changes by V4. According to Eq. (19.56), the effect of applied voltage is
to send Vi — Vii — V4 and thereby change the lengths of x, and x, by a factor of
V1—=Va V.

The applied voltage V, is taken positive if it raises the voltage of the p-doped
region with respect to the n-doped region in Figure 19.15. As the size of the deple-
tion region varies, the amount of current that flows through the junction changes
dramatically, increasing exponentially as V4 increases. The reason for the expo-
nential rise is that for an electron to flow through the depletion region, it must be
a mobile carrier on the left side of Figure 19.15 with enough thermal energy to
surmount the potential barrier ¢V;; the number of such electrons is proportional to
exp[—BeVi;] and changes in response to external voltages as exp[3eVs]. When the
external voltage is zero, the number of electrons returning from the left must ex-
actly equal the number jumping over the potential barrier from the right; electrons
in the p-doped region are always attracted back to the n-doped region and have no
barrier to cross. This electron current from left to right should not change much
while external voltage rises from zero, so the total current J has the form

Joce®Va_ 1, (19.57)

showing the exponential dependence upon external voltage that characterizes rec-
tification.

19.4.3 Boltzmann Equation for Semiconductors

Once an external voltage V is applied across a junction and current begins to flow,
equilibrium equations such as (19.46) no longer directly apply. One must return
to the Boltzmann equation, Section 17.2, and solve for the distribution function
g:;- The most convenient form of the Boltzmann equation for semiconductors is
somewhat different from the most convenient form for metals because:

1. It is valuable to write the equations in a form that emphasizes the separate
roles of electrons and holes.

2. It is useful to simplify the equations by averaging over wave vectors k.

Using the Hamiltonian structure (17.1), rewrite Eq. (17.13) in the relaxation time
approximation as

(19.58)
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The density n of electrons at position 7 is defined by

n= [ 4 gg,

The integral is over the first Brillouin Zone,
and [dk] is defined in Eq. (6.15).

541

(19.59)

with g giving the occupation probability of states in the conduction band. Integrat-

ing dk over both sides of Eq. (19.58) gives

on 9 n(® _ p  The relaxation time 7 should be independent
—=—— (F)n e , of k to pass through the averaging process:
ot or Tn otherwise, use a constant 7, that gives the

best approximation to the averaged collision
term.

(19.60)

where 7 is the equilibrium density of electrons in the conduction band, and (7) is

the velocity 7; averaged over the Brillouin zone,
()= % j [dK] 847
=+ [ [ {eE
e i

Using Eq. (17.25), employing
R Eq. (17.23) to simplify some of
k the terms.

g9 |

A

af

symmetry. 8f/8p = 3f in the
nondegenerate limit. Finally,
replace f by g, because the two
differ only by small quantities.

3
}] The first term vanishes by

Assuming that the conductivity tensor of Eq. (17.51)

with the mobility i,
50 ()
= — TUS
Hn 3 k is diagonal. Otherwise, mobility and diffu-
sion are tensors.

and the diffusion cor}cstant Dy
Dn = 5 <TUE> = . i

The factor of 1/3 appears because only the

component of © along E survives the average
in Eq. (19.63).

Therefore currents of electrons and holes are

Jn — eHunE At efDnVn Multiply Eq. (19.64) by —ne.

_} p=€lp pE —eD v P, Working in an analogous fashion.

and the equations of motion for the electron and hole distributions are

on 1a - nD—p
—==V-ju+

ot Jn T

ap 1= = p©®—p
b e .
ot e Irt Ty

with the electric field determined from

—

S 4':re(p—n)_

Y

(19.61)

(19.62)
(19.63)

(19.64)

(19.65)

(19.66)

(19.672)
(19.67b)

(19.68a)

(19.68b)

(19.69)
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Recombination and Generation.  Several different physical processes may be
encompassed by the relaxation times 7, and 7,. In addition to scattering off impu-
rities. electrons and holes can collide and recombine; they can also be generated
by very energetic collision events. Therefore, the collision term in semiconductors
is thought of as a recombination and generation current. The relaxation times 7,
and 7, are impossible to tabulate, because they depend sensitively upon sample
purity and temperature, and can vary from 10~° to 10~'* s. They can be measured
in any given sample—for example, by exposing the crystal to a flash of light that
excites electrons into the conduction band and by then measuring the decay of the
conductivity.

19.4.4 Detailed Theory of Rectification

Solving Egs. (19.67)-(19.69) poses numerous difficulties. The equations are non-
linear, because they involve products of n and p with the electric field E. Exact
analytical solution is out of the question, even in the simplified one-dimensional
situation upon which attention is now focused. Numerical solution is also not en-
tirely straightforward because of the wide range of scales over which the various
quantities vary. For example, the characteristic scale of depletion layers is from
10~% to 10~* cm, while the characteristic scale for variation of n and p outside
the depletions layers turns out to be on the order of 1072 cm. In addition, the
magnitudes of the charge distributions vary over many orders of magnitude.

Ideal Diode Equation. The best approach to these difficulties is a conventional
solution, the ideal diode equation. As in the equilibrium case, the diode is divided
into three regions, indicated in Figure 19.16:

Xp X
. n-doped quasi-
neutral region T
+ Electrons control current Holes control current —
E.—eVi(x)
eVa INP””
&, —eV(x)

Figure 19.16. Sketch of p—n junction in forward bias, with voltage of the p side raised
by voltage V4 above n side of the junction. Because the junction is out of equilibrium, the
chemical potentials 1, and 1, in the n and p regions are not equal. The depletion region is
compressed by the voltage difference, and current increases exponentially with V.
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A quasi-neutral n-doped region where the electric field is extremely small and
the density of mobile electrons is close to N;.

A depletion region where the electric field rises rapidly to large values and where
consequently the concentrations of charge carriers rapidly fall below their val-
ues in homogeneously doped samples. In the midst of this depletion region,
the doping changes from # to p type.

A quasi-neutral p-doped region where the electric field drops back to zero and
the density of mobile holes is close to N,,.

The vast majority of mobile charge carriers in the quasi-neutral n-doped region
are electrons. However, there is also a small population of holes. Similarly there
is a small population of electrons in the p-doped region. These two populations
are called minority carriers, and the operation of the diode can be understood by
carefully analyzing their behavior, because whichever of them is least mobile con-
stitutes the main bottleneck restraining charge flow through the diode.

Further progress rests upon two simplifications:

1. The boundary between the depletion region and the quasi-neutral regions is
sharp. In the quasi-neutral regions, the electric field is very small, and the drift
currents ep,nkE (p-region) and ey, pE of the minority carriers are negligible.
That is, in regions where carriers are unlikely, they obey the purely linear

equations
i —f /£
Jn= efDi"-'n Electrons, specializing to one dimension; the (19.70a)
prime means spatial derivative.
: —f
o —e'Dpp Holes. (19.70b)

This approximation is excellent.

2. Recombination and generation of charge carriers is neglected in the depletion
region. This assumption is made for mathematical convenience only. The
faster the charges sweep through the depletion region, the more appropriate it
will be, but for low current flow it leads to appreciable deviation from experi-
ment.

Solution in Depletion Region. The value of the second assumption lies in the
fact that it makes possible an analytical relation for n and p in the depletion re-
gion, allowing the behavior of the diode to be obtained in closed form. Because
recombination and generation are neglected, the currents of electrons and holes are
separately conserved, and both j, and j, are constant in space. Using Egs. (19.67),
one can quickly find a solution for # and p which according to Problem 4 is

() = NPV &)=Y ) {1+ "yl ¢ PAV) V) ?] (19.71a)

ede n v

p(x) =Ny eV @)=V ()] [ efND / dx! PV X))~ pr)] .(19.71b)
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Under equilibrium conditions, where no current flows, the second terms on the
right-hand side of Eqs. (19.71) vanish. Ignoring this second term is very conve-
nient, because use of the first term requires only knowledge of the total change in
potential across the depletion region, while the second would require knowledge of
details of the profile of V(x). Fortunately, for most cases of interest the second term
remains negligible relative to the first, even out of equilibrium. Looking ahead to
Eqg. (19.77), one can estimate its size in the presence of applied voltage V4 to be

2
n; X X, -
i TP 7N BeVa 10719654 junction widths are typically 107 times smaller  (19.72)

NaNa Ly than diffusion lengths, and n? /NN, ~ 105,

Therefore, Eq. (19.71) can be replaced by the law of the junction:

n(x) = NzeelV ¥ =V ()] (19.73a)
p(x) = NPV () (19.73b)
Be[Va—Vai n BeV, i quj‘m(iag'.@}. andlgsiﬂ N
— N ejVa—V¥pi| — "1 eV, it . ). te :
=~ ﬂ(Xp) =Nget 58 W= et ?h?&ﬁﬁéle densﬂgﬁt;%lfﬁnorit; ca(;riers (19.73¢)
X on the left side of the junction 1s

being set by the density Ny of
donors on the right side.

2
p(x“) :Naeﬁe[v.&—vhi] - ;_feﬁf‘{a_ (19.73d)
d

Solution in Quasi-Neutral Region. Equations (19.73) constitute a complete so-
lution for the charge carriers in the depletion region. They cannot be used alone
to find the current flowing through the diode, because Egs. (19.73) produce a com-
plete cancellation of diffusion and drift currents, and putting back in the tiny cor-
rections of Egs. (19.71) to obtain nonzero current means adding back in terms
proportional to j, and j, which are still unknown. In this sense, Egs. (19.73) are
compatible with a huge range of currents through the diode. However, by using
Eqs. (19.73) to impose a boundary condition upon the solutions of Egs. (19.68),
the currents are rapidly determined.
Using the expressions for current (19.70) in Egs. (19.68) gives in steady state

a2 @ Applies only to minority carriers, and
0= "Dp o E_BTP only in quasi-neutral regions. p'"’ and (19.74a)
dx? Tp n'® are the equilibrium minority
carrier densities, given by Eqgs. (19 39)
or (19.40).
d*n n—n
0=D (19.74b)

a2
which have solution

p_pf.o): [p(x.-:) pw}] —(x—x)/Lp Aggth&;whempisthemmomycamer tothe (19.75a)
right of x,

n—n" =[n(x Xp)— n{”}]e{‘ —xp)/Ln iﬁgphﬁi where » is the minority carrier, to the  (19,75b)
eft of xp.

Data and L, =1/Dp7p (19.76)

where
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are the diffusion lengths of electrons in the p-doped region, and of holes in the
n-doped region, respectively. The currents due to these minority carriers are, from
Egs. (19.67),

- D
jn=e L_”[n(x P)_n(ﬂ)] Evaluate Eq. (19.75a) at x,. (19.77a)
(]
ZQ&E[ BeVy _ —1]  UseEgs. (19.73c) and (19.40b). (19.77b)
Lﬂ Nﬁ
—.0 D
Jp=e72[ple) — P, (19.77¢)
P
n2
— e& [eﬁf'-"a 1],  UseEgs. (19.73d) and (19.3%b). (19.77d)
L, Ng

producing a total current per volume given by the ideal diode or Shockley equation,

D,
i — enleBtVa _ i be h h
j=enile 1] [ N Nd:[ ! :ﬁmgﬁ?gw) ey (19.78)
0ad.

One of the most important features of Eq. (19.78) is that because N, and N, appear
in denominators, current flow is set by the side of the diode that is most lightly
doped. The heavily doped side acts like a short circuit. This fact is particularly
important for the design of the transistor.

19.4.5 Transistor

By the 1920s numerous scientists realized that because electronics was based upon
the diode and the triode, and because semiconductor diodes could be created (al-
though unreliably), it would be valuable to create a semiconductor analog of the
triode. Twenty-five years elapsed between the first ideas, and the first practical
implementation, called the transistor by Bardeen and Brattain (1948). The first
working transistor involved contact between thin metal whiskers and semiconduc-
tors, rather like the Schottky diodes. It was unable to carry large currents and never
developed into a commercial device, but the research project in which the point-
contact transistor was created uncovered much of the basic physics of semiconduc-
tor junctions, particularly the fact that transport in diodes is dominated by minority
carriers. The bipolar junction transistor followed not longer after and served as the
foundation for the first developments of semiconductor electronics.

The basic idea of the bipolar junction transistor is to take advantage of the
large disparity between electron and hole currents in a diode where one side is
much more heavily doped than the other. Consider, for example, a p* n junction,
where the superscript + indicates heavy doping, on the order of 10'® cm ™3, so
that the assumption the semiconductor is nondegenerate breaks down. For steady
current flow under forward bias, a tiny electron current flows into the » region, and
a large hole current flows in to the p™ region. In a diode, the hole current would be
drawn to the » region and out of the semiconductor, but in the transistor the hole
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current is diverted by making the n region much narrower than the diffusion length
L, of the minority carriers and placing it in contact with a second pn junction,
which is under reverse bias. The reverse bias means that in the depletion region
electric fields propel holes toward the p region and repel electrons. Whenever a
hole diffusing about in the n region wanders into this second depletion region,
it is trapped and sent off to the collector. The net effect is to split the current
traveling into the emitter into its constituent components, with almost all the holes
going out the collector and almost all the electrons coming in from the base. The
large ratio between these two currents, along with the fact that they are linearly
related according to Egs. (19.77), means that the transistor can function as a linear
amplifier. On the other hand, if the current to the base is reversed, the current out
the collector does not follow it linearly but drops to very low values. Thus the
transistor also rectifies current and can be used as a binary switch.

The mathematical analysis of the binary junction transistor involves no ideas or
assumptions not already present in the case of the ideal diode. The only difficulty
is that there is now a large number of different regions, so the notation becomes
confusing. Once again the basic idea is to assume steady-state conditions and

1. Separate the device into quasi-neutral and depletion regions.
2. Ignore recombination—generation in depletion regions.

Also as before, the strategy is to focus upon the minority carriers in each region.
The fields that need to be found are ng(x), the electron concentration in the emitter,
pa(x), the hole concentration in the base, and nc(x), the electron concentration in
the collector, regions labeled in Figure 19.17.

The concentrations of the minority carriers at the edges of each depletion re-
gion are determined by precisely the considerations that produced the ideal diode
equation. So, in analogy with Eqgs. (19.73¢) and (19.73d),

2

HE
ng ( X a) — 1 ,PeVen ‘N is the acceptor concentration in the emit- (19.79a)
N E ter region, Veg > 0 (for active bias) is the
voltage of emitter over base.
1 F
B ( _xb) = }T‘ g’d eVep Ng is the donor concentration in the base region.  (19.79b)
2
n .
palx:) = i pbeVes Veg < O (for active bias) is the voltage of  (19.79c)
B the collector relative to the base; when Vg is
negative, collector voltage is below base.
2
0o
ne ( xd) = —‘gﬁeVCB, Ne is the acceptor concentration in the col- (19.79d)

C lector region.

These boundary equations are coupled to the diffusion equations in the three quasi-
neutral regions, which are unchanged from Egs. (19.70). The currents of electrons
and holes in the emitter and collector can then be calculated from

jEn=eDgng(x,) (19.80a)
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Emitter Collector
JEp — —
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Figure 19.17. The binary junction transistor can be made from two back-to-back p—n
junctions. When actively biased, the voltage of the emitter is raised by Vg over the voltage
of the base, and the voltage of the base is raised by |Vcp| = —Vep over the voltage of the
collector. The chemical potential of electrons in the three regions is indicated by dotted
lines. The left-hand depletion region shrinks relative to equilibrium while the right-hand
one grows. The currents J are positive.

Jjep=—eDppy(xs) (19.80b)
jep=—eDppl(xc) (19.80c)
jon=€eDenp(xa). (19.80d)

Solving the diffusion equations analogous to (19.74) in the three quasi-neutral
regions subject to the boundary conditions (19.79) results in total currents Jg and
Je to the emitter and from the collector

Jg = Jro(e?€VE8 — 1) — apJro(e®Ve® — 1) (19.81a)
Jo = aplpo (Ve — 1) — Jpo(ePeVee — 1) (19.81b)
Wi 2 2 Ads th dicular t
.:I)E ne ‘J)B ne xr,‘ —Ib 18 eareaperpen IC'!.I.‘ 0
JFO =A [ 2225, e 21 coth u_:urrent_ﬂow'm the transistor. Lz _ 19810)
( Lg Ng L Np ( Lg ) ;i :h]g ;lgLéS.}?Oﬁn).length in the base; (
De n?  Dpn? A
Jro=eA | ——+=——L coth(= 19.81d)
(Lc Nc L Np ( Lg ) ;
1)3 n? Xe — Xp
ardro = arJro = eA— —cosech( ) (19.81e)
LB :NB Lg

Equations (19.81) are the Ebers—Moll equations; they form one of the bases for
practical circuit design, and their detailed derivation is the subject of Problem 5.
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Note that the diffusion length of the base Lg must be comparable to or greater than
X, — Xp, or else control of the collector current by the base is lost.

19.5 Inversion Layers

19.5.1 Heterostructures

The earliest electronic devices depended upon the contact between metal and vac-
uum, the next generation depended upon contact between metal and semiconduc-
tor, and the next industry depended upon junctions between regions of different
doping, as well as junctions between semiconductors and insulators. A new gen-
eration of semiconductor devices is now evolving that depends upon junctions be-
tween different semiconductor alloys. The advantage of these is that they make
possible the creation of heterostructures where the band gap varies in ways that
‘would never occur spontaneously in nature.

A widely employed example is GaAlAs. Aluminum replaces gallium substi-
tutionally in the alloy, lying right above it in column IIIA of the periodic table.
The lattice constant of GaAs is 5.63 A, that of AlAs, 5.62 A, both adopting the
zincblende structure, so there is no appreciable lattice distortion incurred by plac-
ing, say, a layer of Ga7Al 3As upon GaAs. However, the band gap of Ga Al 3As
is 1.82 eV, compared to 1.42eV for GaAs. The technique of molecular beam epi-
taxy, described in Section 4.3, makes it possible to alternate layers of one alloy
with another with atomic scale precision.

Al;GasAs  GaAs Al3GazAs  Goag
'y ; 0.263eV ¢ —//I,/—-
ptev| — o Acc E.—eV(x)
1] !
'l 132eV f €y —eVix)
A (B)

AlsGasAs  GaAs

Figure 19.18. (A) Schematic picture of junction between two semiconductors with differ-
ent band gaps, illustrated with numbers appropriate to Ga 7Al 3As. Calculating the band
offsets is difficult and is discussed by Yu et al. (1992). (B) Same as (A), but drawing differ-
ent quantities to illustrate band bending. (C) In case of heavy enough doping, the chemical
potential can rise above the conduction band edge in a small notch-like region. (D) En-
largement of the conduction band region that would remain occupied even at temperature
T = 0, with a sketch of a bound-state wave function trapped in the potential.
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The formulas describing the profiles of charge around heterostructure junctions
are not dramatically different from those of Section 19.4.2, and the main physical
results can be deduced from diagrams in the spirit of Figs. 19.11 and 19.14, as
displayed in Figure 19.18. The electron bands are discontinuous in the vicinity of
the junction, which permits some interesting possibilities. A notch in the bands,
such as shown in Figure 19.18(C), creates a small region that is occupied even at
zero temperature, called an inversion layer.

Metal-Oxide-Silicon Junctions.

A similar notched potential can be created in a layered structure with a thin in-
sulating coating separating metal and semiconductor, as illustrated in Figure 19.19.
When the semiconductor is silicon and the insulator is silicon oxide, the junction
is known by the acronym MOS. This combination can be used to create very com-
pact, fast transistors, with low power dissipation, and has therefore become the
most important technology in the creation of integrated circuits. The acronym
CMOS refers to complementary metal-oxide-silicon, which means that both p-
and n-type structures are built on the same chip. These structures are discussed in
texts on semiconductor devices, such as Sze (1981) and Sze (1998).

Figure 19.19. Metal-insulator—semiconductor (MIS), and, more particularly, metal-
oxide—silicon (MOS) junctions provide an alternative to heterojunctions in forming in-
version layers. By raising the voltage of the metal by V4 above the silicon, electrons are
pulled over to the interface with the insulator, and the Fermi level u can be pulled above
the conduction band edge.

Twa-Dimensional Electron Gas. Some of the most interesting physical dis-
coveries in heterostructures have been built upon the two-dimensional electron gas
(2DEG), the principle behind which was illustrated in Figures 19.18 and 19.19. By
doping both sides of a heterojunction sufficiently, the chemical potential can be
made to rise until it intersects a small corner of the conduction band, as shown in
Figures 19.18(C) and 19.18(D). Even at the very lowest temperatures, electronic
states must be populated in the vicinity of the corner. One way to view Figure
19.18(D) is that it sets up a one-dimensional problem of elementary quantum me-
chanics, which is to find the eigenstates of a particle in a triangular potential. As
shown in Section 18.3.4, a one-dimensional attractive potential always has at least
one bound state, no matter how shallow and small it may be. The potential barriers
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in the vicinity of the heterojunction are on the order of 0.1 eV. At room tempera-
ture, electrons would escape the restraining potential, and in fact the region to the
right of the junction in Figure 19.18 would constitute an n-doped semiconductor in
the degenerate limit. However, at temperatures of a few kelvin or less where ex-
periments are characteristically performed, only the ground state has measurable
occupation. This restriction to low temperatures is clearly a disadvantage. To over-
come this restriction, it is not sufficient to find materials so that the energy scale of
Figure 19.18 is multiplied by 100. The great mobility of electrons at low tempera-
tures and the great purity achievable in semiconductors are equally important.

Figure 19.18 may lead to a mental picture in which electrons are trapped in one-
dimensional potentials. The trapping is only in the z direction, as shown in Figure
19.20. Along x and y the electrons are free to move; the atomic sharpness of the
heterojunction, the extreme purity of the samples, and the subkelvin temperatures
all conspire to give electrons exceptionally high mobilities in the remaining two
dimensions. For a GaAs—Aly9Gag 71 As interface, the electron mobility reaches
105 em? V="' s~L, while the relaxation time 7 can reach 4-10~2 5. This relaxation
time is two orders of magnitude larger than the characteristic values emerging from
Eq. (16.7).
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Figure 19.20. (A) Geometry of quantum point contact. Electrons can only pass through
the region between the gates, which is shaped more like a blunted arrow than a long narrow
channel. By raising and lowering the gate voltage V,, the effective width of the constriction
can be controlled. (B) Quantized conductance across the constriction, using Eq. (19.90) to
pfocess the raw data, observed by van Wees et al. (1988), p. 849.

The two-dimensional electron gas is the setting for many remarkable experi-
ments, including the quantum Hali effect to be discussed in Section 25.5. In the
context of electronic devices, it constitutes the starting point for building more
elaborate structures.

19.5.2 Quantum Point Contact

To create a quantum point contact, two metal layers are deposited on top of a two-
dimensional electron gas, as shown in Figure 19.21. By applying a negative voltage
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of around —0.5 V to the strips of metal, the Fermi level underneath them is driven
downwards, and the electron gas completely depleted. The only path the electrons
can follow is through the narrow channel left behind. As discussed by Beenakker
(1997) and van Houten and Beenakker (1996), conductance through a channel of
this type is quantized in units of 2¢? /h.

Demonstrating this claim requires a fairly careful consideration of what electri-
cal conductance really means. The quantum point contact is just a static quantum
mechanical potential, through which wave functions travel or from which they re-
flect. Wave propagation conserves energy. Yet any wire with resistivity greater than
zero must dissipate energy. How are these two views compatible? Landauer (1957)
gave a conceptual resolution. He pointed out that experiments measuring conduc-
tivity contain the ingredients shown in Figure 19.21. Saying that there is a voltage
difference between two points in a circuit really means that there are two reservoirs
of electrons independently in thermal equilibrium, and with different chemical po-
tentials, and that they have been connected by the channel whose conductance is to
be measured. Any electron transmitted across the channel must give up energy, on
average, once it arrives at the second reservoir, because the second reservoir is at
lower potential than the first, and the arriving electron comes to equilibrium with
its fellow electrons. All dissipation occurs in the reservoirs, not in the channel, but
the dissipation is inevitable because of the way that voltage differences are defined.

A
X
- L

\

Channe] to be measured

Figure 19.21. Two reservoirs at electrochemical potential py = p+ dp and g = p are
connected by a channel so narrow that quantization of waves in the v direction becomes
important,

The channel depicted in Figure 19.21 is so narrow that quantization in the y
direction becomes important; when this experiment is performed, channel widths
are on the order of tens to hundreds of nanometers. The energy levels in the channel
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therefore have the form

ﬁz kz { is a discrete index. In fact, one does not even have to
Boi e Y assume the free-electron form along x, just that energies 19.82
lhe — %2y + m in the two directions are additive. ( . )

For du > 0, reservoir 1 will populate quantum levels in the channel that cause
electrons to move down the channel along x, with no corresponding current coming
back because those levels are empty in reservoir 2. The net current flowing through
the channel is therefore

1 g
I=3 > —evp [fa(Eu,) — fi(Em,)] (19.83)
i
vy, is the velocity of an electron along the channel, and f; and f5 are

the Fermi functions of the two reservoirs. Summing over ¥ counts
all the particles in the channel, so multiply by /L to get the flux.

8¢€
=Y / dkeDy, i [9 p+op—En)—0(n—Ex)]  (19.84)
i

Specialize to low tcmperahjres, and change the sum over & to an
mtegral using the one-dimensional density of states Dy .

——em ] dE [0(u+ 8 — &) — B(— &)] (19.85)

=z —ei(ﬂu z 9(.“* = 83") Tgnore the rare values of p where p+du > (19.86)

2nh £) and p < €}
2Né? g
= ere N = 4 — &7} is the number o .
p v Where N =Y 8(u—&]) is th berof (19.87)
occupied quantum states along y, and V =
— 4/ e is the voltage.
2Neé? : ; c
= GPC = = Gpctls 1:thc conductance of the quantum point  (19,88)
contact,

Thus each quantum level  and each spin degree of freedom contribute e /h
to the conductance. The form of the energy €y, is irrelevant, just so long as it is
a sum of contributions from x and y directions. This quantized conductance has
been observed, as shown in Figure 19.20. The quantization of conductance was
first predicted by Imry (1987), but the subject remained controversial until matters
were settled by experiment.

To explain the experimental observations, it is necessary also to observe that
the quantum point contact is always in series with other resistors R in a circuit. The
complete relation between current J and voltage V' is

V:J(R+Gl

) Conductance is the inverse of resistance. (19.89)
pc

J
V—JR
The resistance R can be treated as a single free parameter to make the steps in Gp.
of equal height.

i (19.90)

/
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19.5.3 Quantum Dot

Figure 19.22. The quantum dot is a puddle of charge trapped between two quantum point
contacts. Because of the micron-scale dimensions of the trapping region, the number of
trapped electrons can be very small. One side of the trap is a plunger whose voltage can
be raised and lowered to alter the electrostatic properties of the dot. The current J flowing
from source to drain is the main experimental observable.

The quantum dot, as shown in Figure 19.22, is a structure one level more com-
plex than the quantum point contact. It mainly consists of two quantum point
contacts in series, but there is an additional interesting twist. The region between
the point contacts is rather small, an area on the order of 0.5 mx0.5 um. In rough
analogy with the gate region of a transistor, there is also a metallic contact called
the plunger whose voltage can be raised and lowered in order to affect the number
of electrons in the central region.

Although named the quantum dot, the basic operation of this device is in large
part curiously classical. The kinetic energies of electrons, so decisive in metals,
are relatively small in this case, Consider, for example, placing N electrons into a
quantum dot with area d2. The single-electron quantum states would have energies
approximately

Rk? 6 €V
e T 9.
- 1510 Y (19.91)

This energy should be compared with the Coulomb repulsion of two electrons at
distance d, which is )

€ ke N

7 1410 2/Tm]’ (19.92)
The difference in scale between the two energies is overstated by Eq. (19.92), be-
cause the Coulomb repulsion is diminished by screening effects to be discussed
next, but it is still correct to start with Coulomb repulsion as the main physical
effect and then add kinetic energy later as a small perturbation. The energy of
electrons in the quantum dot can be treated as a purely classical problem of adding
particles to a box, because no matter what the shape of their wave functions, only
the Coulomb integral has much importance.
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Screening and Capacitance. To begin, suppose that the quantum point contacts
to the left and right of the dot are impenetrable barriers, and investigate how the
energy of the dot would vary as a function of the number of electrons placed in it.
The electrons in the dot cannot be taken independent of the rest of the universe.
They are in close proximity to the various metal gates, and charge must flow in
and out of these gates so as to maintain them at externally applied voltages when-
ever electrons enter or leave the dot. Classical electrostatics handles this screening
problem by defining a capacitance matrix C, g which posits that the charge O, on
any of the gates, or in the dot, is a linear function of the electrostatic potentials V,,
of the gates and the dot. To make things simple, suppose that the charge on the
dot Q4 depends only upon the potential within the dot, V3, and the potential of the
plunger, V;,. Write the charge on the dot and plunger as

Qa=CyqVy— Cdep’ The minus sign in front of Cy, is conventional, (19.93)
and it ensures that Cyp will be positive.

Op = —CpaVa +CpVp- (19.94)

Because the possibility of electron motion through the junctions is being neglected
for the moment, the only feature of the outside world with which electrons in the
dot interact is the plunger. Therefore the charge on the dot must be a function of
Va — Vp, which means that

The capacitance matrix must be symmetric, be-

- = cause it is given by second derivatives of the en-
Cy = Cop = Cpa- ergy U in Eq. (19.96) with respect to potential, (19.95)
and therefore Gy = Cap.

The plunger is not similarly isolated. It is connected to a large reservoir of electrons
at potential V, that enables it to remain at potential V;, no matter what happens on
the dot. The electrostatic energy of the system is therefore

1
U electrostatic — i [ded + vap] =+ [Qrescrvoir . Qp]vp- (19-96)
Zz
Th ini 5 (i d onl Vo,
=B g, ks s e Mg T 1y g,

2Cy Make use of Eqs. (19.93), (19.94), and (19.95).

The number of electrons preferred on the dot in equilibrium is given by minimizing
Eq. (19.97) with respect to Q4 and is

! NE % _ Cde.
—& e

(19.98)

If C; were a capacitance on the order of 1 farad, this equilibrium number would be
immense. The point of the quantum dot is to generate capacitances C4 so small that
the equilibrium occupation is of order unity—that is, capacitances on the order of
aF= 10~'® F (anofarad). In terms of this unit, Eq. (19.98) can be rewritten as

Ci W
100 aF 102 V'

N =0.625 (19.99)
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showing that voltages on the order of millivolts applied to the plunger should pro-
duce changes of order unity in the number of electrons sitting on the dot. For such
small numbers of electrons, one must take into account the fact that N is an inte-
ger. What Eqs. (19.98) and (19.99) in fact predict is that the number of electrons
N increases in steps, with a transition occurring whenever states with N and N + 1
electrons have the same energy, at a voltage

V=W, S Omm ey (9100

and solve for V.

Having established the energetics of the problem in a simple classical fashion,
quantum features begin to creep into the interpretation of the results. The theory
based upon Eq. (19.98) is the theory of the Coulomb blockade, and it makes three
main predictions. h

1. If a very small voltage is applied across the quantum dot, from source to drain,
the current from source to drain should show sharp narrow peaks as a function
of the plunger voltage V;,, with the peaks spaced in voltage by a distance ¢/Cy.

2. For fixed plunger voltage V},, current from source to drain should be relatively
tiny until the voltage from source to drain exceeds a critical threshold, either
positive or negative. The gap in voltage between the negative and positive
thresholds is e/Cy.

3. The characteristic energy scale on which temperature fluctuations should de-
stroy these effects is kzT ~ €2 /2C4, which works out to be a few kelvin.

The logic behind these predictions has to do with imagining physically how
electrons will manage to traverse the quantum dot in the presence of a voltage
between source and drain. In order to do so, an electron must tunnel across the first
quantum point contact, dwell for some time on the dot, and then tunnel across the
second quantum point contact. If according to Eq. (19.98) the electrostatic energy
of the dot goes up when an extra electron hops on, tunneling will be made difficult.
There are three ways around. First, whenever the plunger voltage sits at one of
the values indicated by Eq. (19.100), the energies of having N and N + 1 electrons
on the dot are degenerate. There is no energy penalty preventing an electron from
flowing in and out of the dot, so for these special plunger voltages the dot has a high
conductivity, leading to prediction 1. Second, for an arbitrary plunger voltage, the
voltage between source and drain can be made large enough that it supplies the
energy needed to hop on and off the dot. Hence a prediction that current through
the dot will rapidly increase after a critical threshold no matter what the plunger
voltage. Third, thermal fluctuations may be large enough to supply the missing
energy, leading to the final prediction of a temperature scale on which the quantum
effects disappear.

All three of these predictions are beautifully verified by experiment. Figure
19.23 shows both (A) the periodic current peaks as a function of plunger voltage,
and (B) the very nonlinear relation between current and source—drain voltage.
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Figure 19.23. (A) Conductance as a function of plunger voltage displaying sharp, equally
spaced peaks. (B) Current across a quantum dot plotter versus the voltage V; across the
dot. [Source: Meirav and Foxman (1996), p. 257.]

Problems

1. Chemical potential in intrinsic semiconductor: Consider a crystal of sil-
icon, with a very low level of doping, but a slight excess of acceptors over
donors.

(a) Atsufficiently low temperatures, the chemical potential moves far away from
the center of the gap. At what temperature does this happen, and why?

(b) Next, consider the same situation, but with a slight excess of donors over
acceptors, and answer the same questions.

2. Ohmic junction: Diagrams of electronic circuits frequently show wires con-
nected to portions of semiconductors. These connections are supposed to be
ohmic, to conduct current with equal ease in either direction, antl in linear
proportion to applied voltage. Because metal-semiconductor junctions have
intrinsic rectifying properties, ohmic response cannot be taken for granted.

(a) To have a sense of ways to obtain such junctions, copy the three parts of
Figure 19.11, but assuming that the work function of the semiconductor is
greater than the work function of the metal.

(b) Argue from the graphical construction that the rectifying powers of the junc-
tion are plausibly diminished, by considering as in Figure 19.12 how the band
bending is affected by an applied voltage.

3. Thermopower of semiconductors:

(a) Consider an n-doped semiconductor, where transport is dominated by elec-
trons in the conduction band. Measure all energies € relative to the bottom of
the conduction band, so &. = 0. Assume that & = m*v?/2, that D(€) x V&,
that 7. = a€~*, and that the matrices of Eq. (17.62) are all diagonal. Equation
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(17.63) is still valid, but for semiconductors the approximation in Eq. (17.66)
cannot be used. Show that the thermopower « is given by

7 §— kB—T} . The identity T'(1+x) = xI'(x) is helpful. (19.101)
(b) Now consider a p-doped semiconductor, where transport is dominated by
holes. How does Eq. (19.101) change in this case?

4. Carriers in depletion region: Using Egs. (19.67), veﬁfy Egs. (19.71). Notice
that because (19.71) is obtained from expressions for the current, it cannot be
used directly to predict it.

5. Ebers-Moll equations:

(a) Write down the three equations analogous to Eqgs. (19.74) for minority carri-
ers in the three quasi-neutral regions of the transistor.

(b) Write down the solutions of these equations; in the collector and emitter
regions, the solutions are immediately determined up to an overall constant,
while in the base region, there are two unknown constants to calculate.

(c) Find the unknown constants by imposing boundary conditions (19.79), and
show that the currents described by (19.80) can be put in the form (19.81).
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