6 Introduction

where € is the void fraction defined as the volumetric fraction of the
material occupied by the interstitial gas. Strictly equation (1.1) should
be written

Po = pu(1 |ﬂv +ﬁwn AHNV

where p, is the gas density. However, since the gas density is typically
one-thousandth of that of the solid, equation (1.1) is sufficiently
accurate.

Whilst the particles themselves may be compressible, the change in
solid density over the range of stresses normally encountered is usually
small, so that p, is effectively a constant for a given material. On the
other hand, the bulk density is found to vary significantly with
applied stress, mainly as a result of rearrangement of the particles.
Unfortunately on reduction of the stress, the material does not
necessarily expand and as a result the bulk density depends not only
on the current stress in the material but also on its stress history. Thus
for a given material p, may be treated as a constant but the value of
po Will depend on the present and past treatment of the material.

When considering the flow pattern within a discharging bunker, it
is usual to distinguish between mass and core flow. In a mass flow
hopper, all the material is in motion as illustrated in figure 1.1(a). In
such a hopper the first material to be loaded is the first to be
discharged, giving the ‘first in, first out’ flow pattern. However, mass
flow can only occur in comparatively narrow hoppers. If the hopper
half-angle a is large the flow will be confined to a narrow core
surrounded by stagnant material as illustrated in figures 1.1(b) and
1.1(c). If the core is narrower than the width of the silo, as in figure
1.1(c), the material near the top will cascade down the top surface
into the flowing core and will be discharged before material at a lower
level, giving the ‘first in, last out’ pattern. However, the width of the
flowing core normally increases with height and for a tall, narrow silo
the flowing core will reach the upper parts of the walls. The Draft
British Code of Practice (BMHB, 1987) subdivides what is usually
known as core flow, i.e. the patterns illustrated by figures 1.1(b) and
1.1(c), into core flow in the strict sense in which the core reaches the
upper parts of the walls, as in figure 1.1(b), and internal flow in which
the flowing core never reaches the wall, as in figure 1.1(c). In this
work we will use the older definitions of mass flow, in which all the
Bﬂmam_ is moving, and core flow, in which some of the material is
stagnant.
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The analysis of stress and strain rate

2.1 Introduction

In this chapter we will develop relationships for the analysis of stress
and rates of strain which will be familiar to many readers from their
knowledge of fluid mechanics or elasticity. Such readers may wish to
proceed directly to chapter 3, but their attention is drawn to §2.3 and
§2.5 in which the sign conventions used in this book are defined, since
these differ from those commonly used in fluid mechanics.

The nature of forces and stresses is discussed in §2.2 and in vm:.nc_mn
we note that force is a vector but that stress is a somewhat more
complicated quantity and cannot therefore be resolved by the familiar
techniques of vector resolution. The simplest method for determining
the stress components on a particular plane is known as Mohr’s circle
and this is derived in §2.3 and compared with alternative methods in
appendix 1.

Forces are generated as a result of stress gradients and these are
related to the acceleration of the material by Euler’s equation which
is derived in §2.4. Finally in §2.5, we define the strain rate in terms
of the velocity gradients and note that strain rates, like stresses, can
be analysed by means of a Mohr’s circle.

In an attempt to reduce the tedium of this chapter, most of the
derivations are presented only for Cartesian co-ordinates and the
results for other co-ordinate systems are given, without derivation, in
the appendices.

2.2 Force, stress and pressure

It is assumed that the reader is fully familiar with the concept of force
and with the fact that force is a vector. As a consequence of its
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8 The analysis of stress and strain rate

vectorial nature, a force F can be expressed in terms of its components
F,, F, and F, parallel to the three co-ordinate directions and by
convention these components are taken to be positive when acting in
the direction of the co-ordinate increasing. Forces can be resolved in
any chosen direction by the techniques of vector algebra but it is more
usual to rely on a graphical construction known as the triangle of
forces. This construction is, however, so simple that it is often possible
to write down the answer by inspection without the necessity of drawing
the diagram itself. In particular the component of a force F in a
direction inclined to it by the angle 6 is Fcos 0, a result sometimes
known as the cosine law of vector resolution.

The concept of stress is less familiar and is best illustrated by
considering an elementary cuboid with edges parallel to the co-ordinate
directions as shown in figure 2.1. It is usual to name the faces of such
a cuboid according to the directions of their normals and there are
therefore two x-faces as shown in the figure. On each face there may
be a force and we will denote that acting on one of the x-faces by F,.
Since the cuboid is of infinitesimal size the force on the other x-face
will not differ significantly. The force F, will not necessarily be normal
to the x-face and we can resolve it into its components in the three
co-ordinate directions, F,,, F,, and F,,. Dividing by the area of the x-
face, A,, we obtain the stresses on that face and it is usual to distinguish
between the normal stress o,,, obtained from F,,, and the other two
stresses which are called shear stresses and denoted by 7,, and T,,.

y-face

y-face

Em":n 2.1 Components of force acting on the face of an elementary cuboid.
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There are similarly three stress components on each of the two
remaining pairs of faces, so that in total we have nine stress components
which may be written in the form,

Tox Tey Tuz
Tyx a,, Tyz
Tax 4«& T2z

It should be noted that in this formulation, the first subscript refers
to the face on which the stress acts and the second subscript to the
direction in which the associated force acts. A vector has three
components in three-dimensional space and it is therefore clear that a
stress, having nine components, cannot be a vector.

The components of a stress in any other set of co-ordinate directions
can be obtained by matrix manipulations or by the techniques of tensor
analysis. Fortunately most of the problems with which we are concerned
are essentially two-dimensional; for such systems the very much simpler
device known as Mohr’s circle can be used and this has particular
advantages as it fits conveniently with the basic relationships governing
the behaviour of granular materials. Mohr’s circle is considered in the
next section and the matrix methods of co-ordinate transformation are
given in appendix 1.

Circumstances can occur in which all three normal stresses are equal
and all the shear stresses are zero. This is more common in the field
of fluid mechanics and is known as a state of isotropic pressure.
Pressure, which is a scalar since it acts equally in all directions, is
therefore a particular case of a stress. Unfortunately, the words
‘pressure’ and ‘stress’ tend to be used indiscriminately. For example
the Draft British Code of Practice (BMHB, 1987) recommends the
use of ‘stress’ within the material but denotes the stresses exerted on
the containing walls as ‘pressures’. This usage is contrary to that
Qw_._._aoi_.: found in mechanics and will be avoided in this book. We
will use the word ‘stress’ to apply to both internal and external stresses
wE_ reserve the word ‘pressure’ to the cases when the stress state is
1sotropic or when we need to consider the motion of the interstitial
medium, which is usually air.

2.3 Two-dimensional stress analysis — Mohr’s circle

Ew of the _u__oc_n._sm of industrial importance have sufficient symmetry,
either planar or cylindrical, to make a two-dimensional analysis realistic.
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This is a great convenience as the manipulation of stresses in two-
dimensional systems is very much easier than in three dimensions. The
rather more complicated analysis of stress in three-dimensional systems
is outlined in appendix 1.

The method we will use is known as Mohr’s circle. This method
does, however, have one disadvantage in that it requires a different
sign convention from that required for matrix or tensorial manipulation
of stresses. Some authors have attempted to combine the sign
conventions by unsatisfactory devices such as reversing the signs of
shear stresses if the subscripts are in alphabetical order. It is the
opinion of the present author that it should be acknowledged that
different sign conventions are necessary and that one should keep to
the one appropriate for the technique in use.

Since granular materials can only rarely take tension, it is convenient
to take compressive stresses as positive and, having selected this
convention, the use of Mohr’s circle requires that shear stresses should
be taken as positive when acting on the element in an anticlockwise
direction. Recalling that Mohr’s circle is applicable only to two-
dimensional situations, we can illustrate our sign convention by means
of figure 2.2. The directions in which the stresses acting on the element
are numerically positive are shown by the arrows in this figure.

If we take moments about an axis normal to the paper we find that,
for stability,

— T (2.3.1)

and thus the shear stresses occur as a complementary pair.

Figure 2.2 Definition of stresses.
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X
Figure 2.3 Definition of co-ordinate axes.

Let us consider a set of Cartesian axes (x,y) and a second set (u,v)

-.where the u-axis is inclined at angle 0 anticlockwise from the x-axis as

shown in figure 2.3. Our objective is to predict the stress components
Cuus Tuvs Oy, and 7, from the known values of o,,, T,,, o,, and 7,,.
We can do this by considering a wedge-shaped element of unit ao?:
normal to the paper having faces parallel to the x and y co-ordinates
and a face inclined at angle 6 anticlockwise from the x-face as shown
in figure 2.4. The stresses on the x- and y-faces are (o,,,7,,) and (a,,,
7,.) and are positive in the directions shown. The stresses on the
remaining face are strictly o, and 7, but they will be denoted simply
by o and 1 for convenience.

If we take the area of the hypotenuse plane to be unity, the area
of the x-face will be cos 8 and that of the y-face will be sin 0. Thus
the forces on the x-face are o,, cos 8 and 7,, cos 8 and those on the
y-face are gy, sin 8 and 1, sin 0.

Resolving the forces in the direction of @ we have

O = 0,, €08 6 cos § — 7,, cos Bsin @ + 0,, sin Osin O + 7, sin 6 cos 6
(2.3.2)

and resolving in the direction of 7 gives

T = Gy, €08 B5in 6 + 7,, cos 6 cos B — o, sin B cos O + 7, sin O sin @

(2.3.3)
Substituting from equation (2.3.1) and recalling that
cos28 = 1 — 2sin%0 = 2 cos?0 — 1 (2.3.9)
and that
sin 26 = 2 sin 6 cos 6 (2.3.5)
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(c) Forces

Figure 2.4 Stresses and forces on a wedge-shaped element.

we have |

0= 104+ 0yy) + 10— 0,) COS 20 — 7,50 20 (23.6) !

and

T = 104 — 0yy) 5in 20 + 7, cOS 20 (2.3.7)

Defining the symbols p, R and A by

pP= WAQ.\k + Q.\E\v ANumv
— 2
R?= Aq}: 5 q.xmv + 7,2 (2.3.9)
! 27
tan 2\ = — (2.3.10)
Aq\; - Q.‘_Qv
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equations (2.3.6) and (2.3.7) take the form
o =p+ Rcos(20 + 2)\) (2.3.11)
7= Rsin(26 + 27) (2.3.12)

It can be seen that these two equations define a circle on (o,7) axes
which is known as Mohr’s circle. The circle has its centre at the point
(».,0) and its radius is R as shown in figure 2.5. Every point on the
circle represents the combination of ¢ and 1 on some plane and in
particular the stresses on the x- and y-planes, (o,,,T,,) and (g,,,7,,)
are marked by the points X and Y respectively. From equations
(2.3.11) and (2.3.12) we see that the stresses on a plane inclined at 0
anticlockwise from the x-plane are given by the end of the radius
inclined at 20 anticlockwise from the radius to the point X. In particular
the stresses on the y-plane, for which 8 is 90° are therefore given by
the other end of the diameter from the point X. Inevitably therefore,
Ty = —Ty and it is this result that necessitates the use of a sign
convention in which complementary shear stresses are equal and
opposite and which prohibits the use of the sign convention required
for matrix or tensor manipulation.

The stresses on the u-plane (o,7), or more correctly (o,,.,,7..), are
given by the point U on figure 2.5. We see from equation (2.3.11) and
(2.3.12) that the radius to the point U is inclined at an angle 28 to the
radius to point X. Thus, we move round Mohr’s circle in the same
direction as we rotate our axes but through twice the angle. If we had

Y
(0,,. 1)

Figure 2.5 Mohr’s circle for stresses.
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taken as a sign convention that normal stresses were positive when
compressive and that shear stresses were positive when clockwise, we
would have found that rotation in Mohr's circle was in the opposite
direction to that in physical space. This is clearly less convenient than
the sign convention we have adopted.

There are two planes of particular interest, namely those on which
the shear stress is zero. These are indicated in figure 2.5 and are
known as the principal planes. The corresponding stresses o, and o;
are called the major and minor principal stresses. From the figure it
can be seen that the major principal plane lies at an angle A clockwise
from the x-plane and that the minor principal plane lies at an angle
90 — A anticlockwise from the x-plane. Since the principal planes lie
at opposite ends of a diameter, they are inevitably at right-angles to
each other. :

We can illustrate this analysis with a simple example. Let us consider
a situation in which o,, = 12kN m™2, 0,, = 4kN m 2 and 7,, =
3 kN m~2. We can identify the points X and Y since they have co-
ordinates (12,3) and (4,—3) and plot them on a Mohr's diagram as in
figure 2.6. These two points lie on opposite ends of the diameter,
which can therefore be drawn. The centre of the circle can be found
by inspection or from equation (2.3.8) as the point (8,0). Consideration
of the triangle OXA or equation (2.3.9) gives R = 5 kN m~2. Thus
the principal stresses are 8 =+ SkN m~2i.e. 0, = 13 kN m~? and o,
= 3 kN m~2. Also by inspection tan 2\ = 3/4 or A = 18.43°. Thus the
major principal stress acts in a direction inclined at 18.43° clockwise
from the x-axis. We can find the stresses on a plane at 30° anticlockwise
from the x-plane by constructing the radius at 2 X 30° = 60° anticlock-

X(12.3)

Brmm——————

a)

=]

(4.-3)

Figure 2.6 Example of the use of Mohr’s circle.
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wise from the radius to point X. The co-ordinates of the end of this
radius, (o,,,7.) are clearly

Ou. =P + Rcos(20 + 20) = 8 + 5 cos(60 + 36.86) = 7.40 kN m -2
Ty = Rsin(20 + 20) = 4,96 kN m~2 .
The stresses on the perpendicular plane are
g,, =8 + 5¢0s(36.86 + 60 + 180) = 8.60 kN m~2
Tou = 55in(36.86 + 60 + 180) = —4.96 kN m~2 .

It should be noted that Mohr's circle can be used as a graphical
construction, in which case the results are inevitably approximate, or
can be used as the basis for a geometrical analysis, as above, in which
case the results are exact.

It can be seen that this two-dimensional analysis will be valid in
real, three-dimensional, space if the force on the z-plane of figure 2.4
has no component in the x- or the y-direction. Thus the shear stresses
T, and 7., must be zero and consequently the stress o,, must be a
principal stress. Therefore, in general we can draw a set of three
nesting Mohr’s circles as shown in figure 2.7. Each circle represents
rotation about one of the three principal axes. The three principal
stresses are given by the intersections of the circles with the o axis
and are known (despite the rules of English grammar) as the major,
the intermediate and the minor principal stresses and are conventionally
denoted by o, o, and o, where o, > o, > o,. In almost all the
analyses in this book we will be concerned only with the Mohr's circle
containing both the major and minor principal stresses, as it is found

ay

Figure 2.7 Mohr’s circles for the rotation about the three principal axes.
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experimentally that the value of the intermediate principal stress is
irrelevant in a great many of the situations of interest. Thus, as a
result of the nature of granular materials we can normally work in two
dimensions and ignore the intermediate principal stress and its
associated Mohr’s circles.

The sign convention defined above cannot, in general, be used for
three-dimensional systems, but can be adapted for systems of axial
symmetry. Here we may use the convention as defined above in the
positive quadrant, but in the negative quadrant we must work in mirror
image as this quadrant becomes the positive quadrant when viewed
from behind the paper.

2.4 The stress gradient and Euler’s equation

If we consider the two-dimensional infinitesimal element shown in
figure 2.8, we can note that the stresses on opposite sides of the
element will differ if there is a stress gradient. We will denote these

stress differences by do,, etc.

Recalling that the lengths of the sides are 8x and 8y and taking unit
distance normal to the paper, we can evaluate the force per unit
volume in the x-direction, P,, by

P,5x8y = 0,8y + T,,8% — (0py + 80,8y — (7,5 + 87,,)0x (2.4.1)

or

1,y + 3,

[N a,, + 80,

Oyy

Figure 2.8 Stresses on an infinitesimal element.
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do ot
p.o=— = TTpx
. P 3y (2.4.2)
Similarly there is a force in the y-direction given by
90, 0T,
= - + ==
P, ay Py (2.4.3)

It should be noted that in these equations all stresses appear as their
derivatives with respect to their first subscript, and that a particular
component of P is obtained by summing all the terms with the
appropriate second subscript. The difference in sign in equations (2.4.2)
and (2.4.3) results solely from the sign convention imposed upon us
by the use of Mohr’s circle.

In most of the analyses of chapters 3 to 7, we will be considering
the statics of a mass of material and we will take a set of Cartesian
axes with x measured horizontally to the left and y measured vertically
downwards. Thus the forces P, and P, are respectively 0 and —pyg
where py, is the bulk density. Thus, from (2.4.2) we have

w..wm + www =0 (2.4.4)
and from (2.4.3)
Wor 4 Wox g (2.4.5)
y ox
where we have made the substitution, 7,, = ~ 7,, for subsequent

convenience.

If the material is in motion, the force per unit volume, resulting
from both the stress gradients and the gravitational effects, will equal
the product of the mass per unit volume and the acceleration. Thus,

IU: m:m:m:
Py=po 5y =pol 5, Uzt v

Y Ve (2.4.6)

where u and v are the velocities in the x- and y-directions, ¢ is time
and Du/Dt denotes the total derivative, defined by the second part of
this equation. Thus we have that

ot =0 (247

A% u .Ev do,, o1
ax dy




