Everything should be made as simple as possible.

but not simpler. Albert Einstein

When a mathematician has no more ideas,
he pursues axiomatics. . .
p Felix Klein

I hope, good luck lies in odd numbers ...
They say, there is divinity in odd numbers,
either in nativity, chance, or death.
William Shakespeare

Chapter 1. Topological Degree in Finite Dimensions

In this basic chapter we shall study some basic problems concerning equations of
the form f (x) = y, where f is a continuous map from a subset Q < R”into IR” and
y is a given point in IR". First of all we want to know whether such an equation
has at least one solution x € 2. If this is the case for some equation, we are then
interested in the question of whether this solution is unique or not. We then also
want to decide how the solutions are distributed in £2. Once we have some answers
for a particular equation, we need also to study whether these answers remain the
same or change drastically if we change f and y in some way. It is most probable
that you have already been confronted, more or less explicitly, by all these ques-
tions at this stage in your mathematical development.

Let us review, for example, the problem of finding the zeros of a polynomial.
First we learn that a real polynomial need not have a real zero. Then we are taught
that a real polynomial of odd degree, say p, ,,41(t) = t*™*! + p,,.(2), has a real
zero, and you will recall the simple proof which exploits the fact that p,,,(z) is
‘negligible’ relative to t*™* ! for large t, and therefore p,,,. ;(f) > 0 for t = r and
DPam+1(t) < Ofort = — r with r sufficiently large, which in turn implies that p, ,,+ ;
has a zero in (— r, r), by Bolzano’s intermediate value theorem. Next we learn that
every polynomial of degree m = 1 has at least one zero in the complex plane C.
Then we introduce the multiplicity of a zero z,. If this is k, then z, is counted k
times, and by means of this concept the more precise statement is arrived at that
every polynomial of degree m = 1 has exactly m zeros in €. At this stage the
problem of finding the zeros of a polynomial over C is solved for the pure
algebraist and he will turn to the same question for more general functions over
more general structures. The ‘practical’ man, if he is fair, will appreciate that the
‘pure’ fellows have proved a nice theorem, but it does not satisfy his needs.
Suppose that he 1s led to investigate the behaviour as t — oo of solutions of a linear
system x’ = 4 x of ordinary differential equations, where 4 is an n X n matrix.
Then the information that the characteristic polynomial of A has exactly n zeros
in €, the eigenvalues of A4, is not enough for him since he has to know whether they
are in the left or right half plane or on the imaginary axis. In another situation he
may have obtained his polynomial by interpolation of certain experimental data
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which usually contain some hopefully small errors. Then he may need to know
that the zeros of polynomials close to p-are close to the zeros of p.

Now, we want to construct a tool, the topological degree of f with respect to
Q and y, which is very useful in the investigation of the problems mentioned at the
beginning. To motivate the process, let us recall the winding number of plane
curves and its connection with theorems on zeros of analytic functions. If you
missed this topic in an elementary course in complex analysis, you may either
consult Ahlfors [1], Dieudonné [1], Krasnoselskii et al. [1], or believe in what we
are going to mention in the sequel, since we shall indicate in § 6.6 how the winding
number is related to the degree in the case of IR?.

Let I = € be an oriented closed curve with the continuously differentiable (C*
for short) representation z(¢) (t € [0, 1], z(0) = z(1)) and let a € C\I. Then, the
integer
" @=L 00 - 00

20 + 72 (0

27rzrz——a_ dt
for z(t) =x@®) +iy(t) + a
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is called the winding number (or index) of I' with respect to a € €\, since it tells
us how many times I" winds around a, roughly speaking. If I" is only continuous
then we can approximate I" as closely as we wish by C'-curves, and it is easy to
see that all these approximations have the same winding number provided that
they are sufficiently close to I. More precisely, if z, () and z,(t) are C*-representa-
tions of the closed curves I; and I, with the same orientation as I" and are such
that .
max{|z;t) —z(®)|:t€[0,1} <min{la — z()[: t€[0,1]} for j=1,2

then w(l;, a) = w(l,, a). Therefore, we can define w(I, a) to be w(l;, a) for any
such I;. Then we have defined

w: {(Il, a): I closed continuous, ac C\I'} - Z

and it is not hard to see that this function w has the following properties:

(a) w is continuous in (I a), i.e. constant in some neighbourhood of (I} a).

(b) w(I, -)is constant on every connected component of C\I" —in particular, equal
to zero on the unbounded component.

(c) If the curves I and I are homotopic in €\ {a}, then w(ly, a) = w(l3, a). More
explicitly, let z,(¢) and z, () be representations of I, and I; such that there exists
a continuous h: [0, 1] x [0, 1] —» €\{a} satisfying (0, t) = z,(t) and h(1, t) = z, (¢)
in {0, 1]and h(s, 0) = h(s, 1) for every s € [0, 1]; then w(I,, a) is the same integer for
all s € [0, 1], where [} is the closed curve represented by h(s, *).

(d) If '™ denotes the curve [’ with its orientation reversed, then w(I ™, q)
= — w(I, a).

Property (c) is the most important one, since it allows us for example to
calculate the winding number of a complicated curve by means of the winding
number of a possibly simpler homotopic curve. Furthermore, (a) and (b) are
simple consequences of (c).
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Now, let G = € be a simply connected region, f- G — € be analyticand I’ = G
be a closed C*-curve such that 7 (z) & 0 on I. Then the ‘argument principle’ tells
us that

dz

_ 111w ]
@ WIO =5 I = [ s dr =S wii s,

where the z, are the zeros of f in the regions enclosed by I' and the o, are the
corresponding multiplicities. If we assume in addition that I" has positive orien-
tation and no intersection points, then we know from Jordan’s curve theorem,
which will be proved in this chapter, that there is exactly one region G, < G
enclosed by I, and w(I, z,) = 1 for every z, € G,. Thus, (2) becomes

w(r (), 0) = 2 o,

i.e. the total number of zeros of f in G, is obtained by calculating the winding
number of the image curve f (I") with respect to 0. In general, w([I, z,) can also be
negative and then we can only conclude that f has at least |w(f (I"), 0)| zeros in
the regions enclosed by I

In the more general case of continuous maps from subsets of R” into R” we
shall imitate these ideas. We consider open bounded subsets 2 <« IR" instead of the
regions enclosed by I, continuous maps f: 2 — IR” and points y € R” which do not
belong to the image f (0£2) of the boundary of Q. With each such ‘admissible’
triple (f, €2, y) we associate an integer d(f, 2, y) such that the properties of the
function d allow us to give significant answers to the questions raised at the
beginning. Of course, as in daily life, we cannot achieve everything, but the follow- °
ing minimal requirements and their useful consequences turn out to be a good
compromise.

The first condition is simply a normalization. If f = id, the identity map of R”"
defined by id(x) = x, then f(x) = y € Q has the unique solution x = y, and there-
fore we require

d1) | did, 2, y) =1 for ye Q.

The second condition is a natural formulation of the desire that d should yield
information on the location of solutions. Suppose that 2, and £, are disjoint open
subsets of 2 and suppose that f (x) = y has finitely many solutionsin Q; U 2, but
no solution in Q\(2, U €,). Then the number of solutions in Q is the sum of the
numbers of solutions in ©; and Q,, and this suggests that d should be additive in
its argument €2, that is

(d2) d(f,Q,y)y=4d(f,Q2,,y) +4d(f, 2,,y) whenever Q, and 2, are disjoint
open subsets of  such that y ¢ 1 (Q\(2; U 2,)).

The third and last condition reflects the desire that for complicated f the
number d(f, 2, y) can be calculated by d(g, 2, y) with simpler g, at least if f can
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be continuously deformed into g such that at no stage of the deformation we get
solutions on the boundary. This leads to

(d3) d(h(t, ), 2, y(v) is independent of t € J = [0, 1] whenever h: J x Q@ — R"
and y: J —» IR” are continuous and y(t) € h(t, 0Q) for all t € J.

There are essentially two different approaches to the construction of such a
function d. The older one uses only concepts from algebraic topology, which is
quite natural, since (d 1)—(d 3) involve only topological concepts such as open sets
and continuous maps and a ‘little bit’ theory of groups like Z; see, for example,
Alexandroff and Hopf [1], Cronin [2], Dold [2], Dugundji and Granas [1].

We shall present the more recent second approach which is simpler for ‘true’
analysts, not worrying much about topology and algebra, since it uses only some
basic analytical tools such as the approximation theorem of K. Weierstraf3, the
implicit function theorem and the so-called lemma of Sard (see § 2). Presentations
still using topological arguments can be found in books on differential topology,
for example, in Guillemin and Pollack [1], Hirsch [1]and Milnor [2], while purely
analytical versions have been given by Nagumo [1]and Heinz [1]in the 1950s. An
interesting mixture of the two methods has been given in Peitgen and Siegberg [1]
— an outgrowth of recent efforts in finding numerical approximations to degrees
and fixed points, based on the observation that the essential steps of the old
method can be put into the form of algorithms.

In principle, it is an inessential question how we introduce degree theory, since
there is only one Z-valued function d satisfying (d 1)—(d 3), as you will see in § 1,
and since it are the properties of d which count, as you will see throughout this
chapter. Starting with the uniqueness of d, by exploiting (d 1)—(d 3) until we end
up with the simplest case f(x) = Ax with det 4 + 0, has the advantage that the
basic formula, which a purely analytical definition has to start with, does not fall
from heaven - it is enough that the natural numbers do (according to
L. Kronecker) — and that we are already motivated to introduce some prerequi-
sites which we need anyway later on. However, you will keep in mind that choos-
ing the analytical approach we lose topological insight to a considerable extent,
while going through the mill of the elements of combinatorial topology you will
hardly become aware of the fact that the same goal can be arrived at so simply by
an analytical procedure. Thus, the essential question is why we introduce degree
theory, but this has already been answered by the general remarks given in the
foreword and the more special ones in this introduction which we are going to
close by a few historical remarks.

The winding number is a very old concept. Its essentials can already be found
in papers of C. F. GauBl and A. L. Cauchy at the beginning of the 19th century.
Later on L. Kronecker, J. Hadamard, H. Poincaré and others extended formula
(1) by consideration of integrals of differentiable maps over {x e R": |[x| = 1}.
Finally, L. E. J. Brouwer established the degree for continuous maps in 1912. It is
now tradition to speak of the Brouwer degree. The way towards an analytical
definition was paved by A. Sard’s investigation of the measure of the critical
values of differentiable maps in 1942. You will find much more in the interesting
papers of Siegberg [1], [2].
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§ 1. Uniqueness of the Degree

In this section we shall show that there is only one function

d: {(f,2,y): 2 = R" open and bounded, f:Q — R" continuous,

yeR" f(0Q)} - Z
satisfying

(d1) d(d,2,y) =1for yeQ

(d2) d(f, 2, y)=4d(f,2,,y) + d(f, 2,,y) whenever 2, , 2, are disjoint open sub-
sets of 2 such that y ¢ f (Q\(2; U 2,)).

(d3) d(h(t, -), 2, y(t)) is independent of t € J = [0, 1] whenever h:J x Q@ - IR" is
continuous, y: J — IR" is continuous and y(t) ¢ h(t, 0Q2) for all t € J.

This will be done by reduction to more agreeable conditions, the final one being
the case where f is linear, i.e. f(x) = Ax with det A = 0. During the simplifying
process we introduce basic tools which are also needed for the construction of the
function d in § 2, and you will see already here that the homotopy invariance (d 3)
of d is a very powerful property.

Let us start with some notation for the whole chapter.

1.1 Notation. We let R" = {x = (x;,...,x,):x; € R for i =1,..., n} with
1/2

x| = (Z xf) . For subsets A = R" we use the usual symbols 4, 84 to de-
i=1

note the closure and the boundary of A, respectively. If also B = R" then
B\A4 = {x € B:x ¢ A}, which may be the empty set §. The open and the closed ball
of centre x, and radius r > 0 will be denoted by

B,(xo) = {x e R":|x — xo| <7} = xo + B,(0) and B,(x,) = B,(x,).

Unless otherwise stated, 2 is always an open bounded subset of R”.

For mapsf:AcR">R" we let f(A)={f(x):xeA} and [~ 1)
= {x € A:f (x) = y}. The identity of R" is denoted by id, i.e. id(x) = x for all
x € R". Linear maps will be identified with their matrix A = (a;;) and we write
det 4 for the determinant of A. We shall also use L. Kronecker’s symbol 6,
defined by 6;; = 1 for i =j and J;; = 0 for i & j, so that id = (;;). If B < IR" is
compact, i.e. closed and bounded, then C(B) is the space of continuous f: B — IR",
and we let | f |, = max | f (x)| for fe C(B). We shall write fe C(B; R™) to empha-

B

size f(B) = R™, if necessary.
You will recall that f: Q — IR" is said to be differentiable at x, if there 1s a
matrix f'(xq) such that

f(xo+h) =f(xq) +f'(x0g) h + w(h) for heQ — x5 = {x — xo:x €2}

where the remainder w (h) satisfies |w (h)| < ¢ |h|for |h| < J = J(e, X;). In this case
S (x0);; = 0; fi(x0) = 0fi(x0)/0x;, the partial derivative of the ith component f;
with respect to x;.



6 Chapter 1. Topological Degree in Finite Dimensions

At several points in this book it will be more.convenient to use E. Landau’s
symbol instead of the ¢ — J formulation of the condition for the remainder, i.e. we
shall say that ‘w(h) = o(|h|) as h - 0’ iff |w(h)|/|h| — O as |h] — 0. Thus differen-
tiability of f at x, means f(xy + h) — f (xo) —f'(xo) h = o(|h]|) as h — 0. The
formal advantage consists in the freedom to write things like xo(|h]) = o(|h]) if «
is constant, or w;(h) + w,(h) = o(|h|) if w;(h) =o(h]) for i =1,2, etc. We
denote by

C*(©2) the set of f:Q2 — IR"™ which are k-times continuously differentiable in
Q, while C¥(Q) = C*(Q) n C(Q) and C*(Q) = [ C*(Q). If f'(x,) exists then

k=1

Jr(xo) = det f7(x,) is the Jacobian of f at x,, and x, is called a critical point of f
if Jg(xo) = 0. Since these points play an important role we also introduce
Sp(2) = {x € Q:J;(x0) = 0} and write S, for brevity whenever Q is clear from the
context. Furthermore, a point y € IR"” will be called a regular value of f: 2 — R" if
f7'() 0 Sp(82) =0, and a singular value otherwise.

In general R-valued maps will be denoted by Greek letters while we shall use
Latin letters for vector-valued functions.

1.2 From C() to C*(£2). The first sfep in the reduction is to show that d is
already uniquely determined by its values on C®-functions. To this end let us
mention the following two facts.

Proposition 1.1. Let A < R" be compact and f: A — R"” continuous. Then f can
be extended continuously to R”, i.e. there exists a continuous f: IR" — IR" such that

F(x) =f(x) for x € A.
Proof. Since A is compact, there exists a dense and at most denumerable

subset {a',a? ...} of A. Let ¢o(x, A) be the distance of the point x to A4, ie.
o(x, A) = inf{|]x — al:ae 4}, and

@i(x) = max {2 — l;(x_,j)l, 0} for x¢A.
Then
7 ALY —1 for xe 4
(x) - <i§1 2t ¢i(x)) i§1 i (”i(x) f(ai) for x ¢ A

defines a continuous extension of f. If you find this difficult, it does not matter,
since we shall give a detailed proof of a much more general extension theorem
later on. [

Proposition 1.2. (a) Let A < R" be compact, fe C(A) and ¢ > 0. Then there
exists a function g € C* (IR") such that | f(x) — g(x)| < ¢ on A.
(b) Given fe C'(Q), e >0 and & > 0 such that Q; = {x € Q2:0(x,02) = 6} + 0,
there exists g € C®(IR") such that | f — glo + max | f'(x) — g ()| = e

Proof. Let f be a continuous extension of f to R” and let

fu¥) = | f(&) 9, —x)dé  for xeR" and x>0,
rs
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where (¢,),> o 15 the family of ‘mollifiers’ ¢,: R" — R defined by
J 1
01 (x) = c exp<—1—_—a—’—g> for |x| <1
l 0 otherwise

with ¢ > 0 such that f(pl(x) dx =1, and ¢,(x)=a""¢,(x/a). We have
]Rn

9. € C*(R", | ¢,(x)dx =1 and B,(0) is the support of ¢,, ie.
R _

supp ¢, = {x e R": 9, (x) & 0} = B,(0),

for every a > 0. Therefore f, € C*(IR") and f,(x) — f(x) as & — O uniformly on 4.
Hence g = f, with « sufficiently small satisfies part (a). The second part follows by
differentiation of f,(x) = | f (¢ + x) ¢, (&)défor xeQ;and a < 5. O

Rn

Now, consider fe C(22) and y ¢ f(82). Then « = o(y, f(02)) > 0 and we
find ge C*(Q) such that |f— g|, < «. The function h:[0,1] x 2 - R", de-
fined by h(t,x)=(1—1) f(x)+ tg(x), is continuous and we have
|h(t,x) —y| = | f(x) —y| — | f— glo > 0 on 0Q. Therefore, (d 3) with y(t) = y im-
plies d(f, 2, y) = d(g, 2, y). This concludes the first step.

1.3 From Singular to Regular Values. Let fe C*(2) and y¢f(0Q2). If y is a
regular value of f then f (x) = y has at most finitely many solutions. To see this,
let us recall .

Proposition 1.3 (Inverse Function Theorem). Let fe C'(Q2) and J;(x,) % O for
some xq € £2. Then there exists a neighbourhood U of x, such that fy is a homeo-
morphism onto a neighbourhood of f (x,).

If you do not remember the standard proof by means of Banach’s fixed point
theorem, you should not be frustrated sinee we shall prove the theorem in a more
general setting later on.

Thus, if y is regular then we have J,(x) #+ 0 whenever f(x) = y, and Prop-
osition 1.3 implies that these solutions are isolated, i.e. to x, € f ~ () there exists
U (x,) such that f~1(y) N U(x,) = {xo}. Consequently, f ~*(y) must be finite.
Otherwise there would be an accumulation point x, € 2 of solutions, by the
compactness of Q. Since f is continuous this would imply f (x,) = y and therefore
X € £2 since y ¢ f (0£2). Hence, X, is an isolated solution, a contradiction.

Now, let y,¢f(0Q) be any point. Then B,(yo)f(©R2)=0 for
a = 9(yo, f(0£2)). Therefore, (d3) with h(t, x) = f(x), y(t) = tys + (1 — 1) y and
y € B,(y,) implies

(1) d(£,2,y) =d(f.2,ye) forevery ye By(yo).

Since our next proposition guarantees in particular that B,(y,) contains regular
values of f, it will then be enough to consider such values.
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Proposition 1.4. Let Q < IR" be open and fe C'(Q). Then u,(f(S;) = 0, where
U, denotes the n-dimensional Lebesgue measure.

Proof. All you need to know here about g, is that u,(J) = [ (b; — a;) for the
i=1

interval J = [a, b] = R" and that M < R” has measure zero (i.e. u,(M) = 0) iff to
every ¢ > 0 there exist at most countably many intervals J; such that M < U J;

and > u,(J;) < e. Then it is easy to see that an at most countable union of sets of
i

measure zero also has measure zero.
Since an open set 2 in R” may be written as a countable union of cubes, say
Q = { ) Q;, it is therefore sufficient to show u,(f(S,(Q))) = 0 for a cube Q < Q,
i

since f(S;(£2)) = U S (S;(Q)). Let ¢ be the lateral length of Q. By the uniform

continuity of f' on Q, given ¢ > 0, we then find m € N such that| f'(x) — f'(X)| £ ¢
forall x, xe Q with |[x — x| < d = ]/;Q/m, and therefore

| f()—f () —f(X)(x —%)| = :f) | f/(x +tx — X)) = f'(X)] |x — x| dt
‘ <e|x — x|

for any such x, x. So let us decompose Q into r cubes QF of diameter J. Since 5/]/;
is the lateral length of Q% we have r = m" and

fX)=fF +f(X)(x —xX)+R(x,x) with |R(x,x)|<ed for x,xeQk

Now, suppose that Q*n S, =+ @, choose xeQ*n S;, let A =f'(X) and
g(y) =f (X +y) — f(%) for y e 0F = Q* — X. Then we have

gy) = Ay + R(y) with |[R(y)| =|R(Xx +y,X)|=ed on O

Since det 4 = 0, we know that 4(Q%) is contained in an (n — 1)-dimen-
sional subspace of IR”. Hence, there exists b'eR" with |b'|=1 and

(x, b!) = 3 x;b! =0 for all xe A(J%). Extending b' to an orthonormal base
i=1 n
{b*,...,b"} of R", we have g(y) = Y (g(y), b)) b* with
i=1

4 g(y), b = (R(y), b)Y = IR |1b*| S &6
an
g, BH < Al ly| + IR =146 +¢ed  for i=2,....n,

n 1/2 ~ . .
where [A| = [(a;)l =| = a,-zj> . Thus, f(Q" = f(X) + g(Q") is contained in an
=1
interval J; around f (X) satisfying

w(J) =R(A]6 +ed)" 268 = 2"(JA| + )" Leom.
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Since f’ is bounded on the large cube Q. we have | f'(x)| < ¢ for some c, in

particular [A4] < ¢. Therefore, f(S;(Q)) = | J, with
k=1
S ) 7 2%e + et edm = 2"c + o T/ no)e,
k=1

1e. f(S;(Q)) has measure zero, since ¢ > 0 is arbitrary. [

Let us remark that Proposition 1.4 is a special case of Sard’s lemma:If 2 < R”
is open, fe C'(Q) and Q* — 2 measurable, then f(Q%*) is measurable and
pa(f (€2%) = | |J;(x)] dx; see e.g. Schwartz [2] for a complete proof.

Q*

1.4 From C®*-Maps to Linear Maps. At the present level we only need to
consider fe C®(Q) and y ¢/ (02 U S)).

Suppose first that £ ~!(y) = §. From (d2) with 2, = 2 and £, = 0 we obtain
d(f, 0, y) = 0, and therefore d(f, 2, y) = d(f, 2,, y) whenever £, is an open subset
of Q2 such that y ¢ f (2\£2,). Hence f ~!(y) = 0 implies d(f, 2, y) = d(/, 0, y) = 0.
In case f~(y) = {x!,..., x"}, we choose disjoint neighbourhoods U; of x' and

obtain d( £, 2,y) = X d(f, U, y) from (d2). To compute d( f, U, y), let A = [’ (x?)
and notice that =!

f(x)=y+ Ax — XY+ o(lx — x']) as |x—x'|—-0.
Since detA + 0 we know that A~! exists, and therefore |[z]|=|4"'Az|
< |A7 '] |Az|,ie. |Az]| = c|z| on R" for some ¢ > 0. By means of this estimate we
see that y(t) = ty and h(t, x) = tf (x) + (1 — 1) A(x — x") satisfy
|h(t, x) — y(@)| = [A(x — X)) + - o(x — x')| Z c|x — x'| —o(x — x'|) >0
for all ¢ € [0, 1] provided that |x — x'| £ J with J > O sufficiently small. Hence
d(f, B5(x%), y) = d(A — AX', Bs(x%), 0) by (d 3). Since f(x) # y in U\ B;(x), we also
have d(f, U;, y) = d(f, Bs(x)), y) by (d2), and therefore
d(f, U, y) = d(4 — Ax', Bs(x"), 0).
Since x' is the only solution of Ax — Ax’ = 0, (d2) implies
d(A — Ax', B;(x"), 0) = d(4 — AX', B,(0), 0)
for B,(0) © B;(x%), and A(x — tx%) + 0 on [0, 1] x 0B,(0) yields
d(f, Ui, y) = d(f'(x"), B,(0), 0),

by (d 3). Finally, r > 0 may now be arbitrary, by (d 2). Thus, we have arrived at a
very simple situation and you will see that
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1.5 Linear Algebra May Help. The only thing that remains to be shown is that
d(A4, B,(0), 0) is uniquely determined if 4 is a linear map with det A = O. It turns
out that d(A4, Q, 0) = sgn det A, the sign of det 4. The proof of this result requires
some basic facts from linear algebra which you will certainly have seen unless you
slept through those lessons which prepared, for example, Jordan’s canonical form
of a matrix. If you did, it is sufficient to accept that our next proposition is true
since we shall prove a more general result in a later chapter.

Proposition 1.5. Let A be a real n X n matrix withdet A £+ 0, let 4., ..., 4,, be
the negative eigenvalues of A and ay,...,a, their multiplicities as zeros of
det (4 — Aid), provided that A has such eigenvalues at all. Then R" is the direct sum
of two subspaces N and M, R* = N @& M, such that

(a) N and M are invariant under A.
b) A,y has only the eigenvalues A, ..., A, and A\ has no negative eigenvalues.
[ m !

(c) dimN = > o.
k=1

j=m+

Let det(4 — 2id) = (— 1) TT (4 — )™ [T (A — u)%. Then
k=1 1

detA =(—1)*TT [A]™ TI w5 with a= 3 o =dimN,
k=1 j=m+1 k=1
hence sgndet A = (— 1)*.

Now, if 4 has no negative eigenvalues then det(t4 + (1 — t)id) &= 0 in [0, 1],
and therefore d(A, B,(0), 0) = d(id, B,(0),0) = 1 = sgndet A by (d 3) and (d 1). So,
let us consider the case N =+ {0} and let us write Q for B, (0).

Step 1. Suppose that « = dim N is even. Since R" = N @& M, every x € R" has
a unique representation x = Px + B x with Lxe N and B xe M. Thus we
have defined linear projections P,:IR*"— N and P, =id — P:IR"—- M. Then
A = AP, + AP, isadirect decomposition of 4 since A(N) = N and A(M) = M by
Proposition 1.5(a). Now, since A P, has only negative eigenvalues and 4 P, has no
negative eigenvalues by Proposition 1.5(b), it is easy to see that A is homotopic
to — P, + B,. We claim that

(2) ht,x) =tAx+(1 —t)(—Px+Px)+0 on [0,1]x0LQ.

To see this, notice first that A(0, x) = 0 implies P, x = B, x, hence F,x = P, x
€ N n M = {0} and therefore x = 0. Next, A(z, x) = 0 with ¢t + 0 means

AP x=iPxeN and APRx=—APRxeM with A=t"'(1—-1>0

which is possible only for P, x = P, x = 0, by the remark on the eigenvalues of A P,
and AP, . Hence, (2) holds and (d 3) implies d(4, 2,0) = d(— P, + B, £, 0). Now,

since « = 2p for some p = 1, we find an x x « matrix B such that B? = — id|y.
Indeed, for p = 1 you may choose a rotation by /2, i.e. ( _? 1 (1)>, and for general
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p you may arrange p such blocks along the main diagonal, i.e.

ij—l,ijlz—sz,Zj_l fOI‘jr—l,...,p and bjk=O

for all other j, k. Since B has only complex eigenvalues we find homotopies
from — P 4+ P, to BP,+ P, and from BP, + P, to id = P, + P,, namely
tBP,—(1—-t)P, + P, and tBP, +(1 —t) P, + P,, as you may easily check.
Hence

d(A4,2,0)=d(— P+ P,2,0) =d(id, 2,0) = 1 = (— 1)2? = sgndet A.

Step 2. Let us finally assume that ¢ =dimN =2p + 1 for some p = 0.
Then we may decompose N = N; @ N,, with dim N, =1 and dim N, = 2p,
Wthh yields projections §,:N—- N, and O, =id|y — 0,: N> N,. Then

= (0, P, + 0, P, and as in the first step we find homotopies, indicated by —,
such that

A——P +Pz—"‘Q~1P1+BQ~2P1+P2“”‘Q~1P1+Q~2P1 + B.

Henced(4,2,0) = d(— 0, + Q,,2,0)withQ, = 0, P, and Q, = 0, P, + P,. No-
tice that Q; and Q, = id — Q, are the projections from the decomposition
R" = N, ® (N, @ M). Since x = 0 is the only zero of — Q; + Q, we may also
replace €2 = B,(0) by any open bounded set containing x = 0, without changing
d, for example by B,(0) n N, + B,(0) with B,(0) = B,(0) n (N, @ M); recall that
Q +Q,={x+y:xe,,yef,}.

Now, you will see immediately that we are essentially in a one-dimensional
situation. Indeed, given 2 = N; open and bounded and g: Q2 — N; continuous
with 0 ¢ g(0R), let d(g,2,0) =d(g° Q, + Q,,2 + B.(0),0).

Then you will convince yourself that (d1) — (d 3) imply

(d1) d(ld,Nl, Q2,0)=1for0eQ.

(d2) d(g,2,0) = d(g, 2,,0) + d(g,2,, 0) whenever 2, , 2, are disjoint open sub-
sets of 2 = N, and 0 ¢ g(Q\(22; U 2,)).

(d3) d(h(t,-), 2, 0) is constant on J = [0, 1] whenever h:J x @ — N, is continu-
ous and O ¢ h(J x 0Q).

In this notation we have to compute
d(—id|y,,$,0) = d(— Q; + 0,2 + B,(0),0),

where Q < N is any open bounded set with 0 € 2. Since we guess d(— id| N, £2,0)
= —1=(—1)?P*1 = sgndet 4 and since (d 1) is the only concrete thing we have
at hand, it is natural to look for a function g and sets 2 o> ©, U £, such that
d(g, 02,0)=0,g|p, 1s homotoplc to —id|p, and gle, is homotopic 1dlg2 , since then
d(—id|y,,2,,0) = — d(llel, Q,,0) = — 1, by (d2) and (d 3). This is roughly the
idea of the

Last step. Since dim N; = 1, we have N, = {le: 1 € R} for some e € R” with
le] = 1. Consider

Q={le:2e(~2,2)}, £ ={le:le(—20), Q,={le:ie(0,2)}
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and f(ie) =(JA] — 1)e. Since f(0) = —e +0and h(t, Ae) =t(jA] —2)e+e+0
on [0, 1] x 0Q, we have

0=d(e,R,0)=d(f.2,0)=d(f.2,,0)+ d(f,2,,0)

by (d2), (d3) and (d2) again. Now, fla,(Ae) = — (A + 1) e has the only zero
—e e, < Q, whence

d(£,92.,0)=d(—id|y, — e,2,0) = d(—id|y,, 2, 0),

since also —Ae—re+0 on [0, 1] x 8€2. By the same argument we obtain
d(f,2,,0) =d(@d|y,, 2, 0), and therefore d(—id|y,, £, 0) = — 1, as we wanted to
show. Thus we have proved

Theorem 1.1. Let
M = {(f, 2, y): 2 = R” open bounded, fe C(Q) and y e R™ f(0)}.

Then there exists at most one function d: M — Z with the properties (d 1) — (d 3).
Furthermore, these properties imply that d(A, 2,0) = sgndet A for linear maps A
with det A £ 0 and 0 € 2.

Having seen that homotopies and linear algebra are useful, you will certainly
enjoy the following

Exercises
. A™ .
1. Let A be a real n x n matrix and e = 3 r Then dete* > Q. Hint: Consider &'
mz20 .

2. Let 4 be a real n x nmatrix with det A > 0. Then there exists a continuous map H from [0, 1]
into the space of all n x n matrices such that H(0) = id, H(1) = 4 and det H(t) > 0 in [0, 1].
Hint: The proof is hidden in § 1.5.

§ 2. Construction of the Degree

At the end of § 1 we reached the simplest situation. Now, progress by stages to the
general case.

2.1 The Regular Case. It will be convenient to start with

Definition 2.1. ILet Q2 < IR" be open and bounded, feC'(Q) and
yeR™ f(82 U S;). Then we define

a(f,2,y)= > sgnJy(x) <agreement: 3= 0).

xef~1(y) 0

In the sequel, the main difficulty will be to get rid of the assumption y € f (Sj).
We already know that this exceptional set has measure zero, and since such sets
are immaterial when we integrate, let us replace >_ sgn J,(x) by a suitable integral.
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Propesition 2.1. Ler 2, f and y be as in Definition 2.1 and let (¢,),-, be the
mollifiers from the proof to Proposition 1.2. Then there exists ¢, = eo(y, /) such
that d(1,2,y) = [ ¢.(f(x) — y) J;(x)dx for 0 <& Z ¢,.

0

Proof. The case [ '(y)=0 1is trivial since ¢, (f(x)—y) =0 for
e<o=po(y Q) If f7'(y) = {x',...,x™}, then we find disjoint balls B,(x")
such that f|g () 1s 2 homeomorphism onto a neighbourhood V; of y and such that

m

sgnJp(x) = sgnJ,(x") in B,(x). Let B,(y) = 'D1 V; and U; = B,(x") nf ~ (B, ().

Then | f(x) — y| = f on Q\ | ) U for some f > 0, and therefore ¢ < f implies
i=1

!) 9. (f (x) — y) Jy(x) dx =i§1 sgn J;(x') g 0. (f (%) = y) | Jp(x)| dx.

Since J,(x) = J,_,(x) and f(U) — y = B,(0), the well-known substitution formula
for integrals yields

J @ (f (x) — ) |, (x)] dx =Bj(0) p.(x)dx =1 for e <min{f,r}. O

2.2 From Regular to Singular Values. Consider fe C*(22) and y, ¢ f (022). Let
o = 0(yo, f (0Q)) and suppose that y', y* € B,(yo) are two regular values of f.
Finally, let 6 = o — max {|y* — yo|: i = 1, 2}. By Proposition 2.1 we find ¢ < 6
such that

d(f,2,y) = ffl e (f (x) —y) Jp(x)dx  for i=1,2.

We shall show that these integrals are equal and then we may define d( f, 22, y,)
as d(f, Q, y') since we know that regular values y* exist in B,(y,). To prove that
the difference of the integrals is zero, notice first that

p.(x — ¥y — @.(x — y") = div w(x)
for w(x) = (y' — yz)(f) @ (x — y' +t(y' — y?)dt,

since divw(x) = 3 Ow;(x)/0x; be definition. Furthermore suppw < B,(y,) for
i=1

r=a—(0—¢ <a since supp ¢, = B,(0). This implies in particular that
f(02) n suppw = 0. We shall show in a minute that this property enables us to
find a map v € C*(IR") such that suppv = 2 and

(1) [0.(f (%) = ¥*) — @.(f () — y)]J;(x) = divo(x) in €.

Then we are done, since integration over a cube Q = [— a, a]” such that @ < Q
yields
d(f,2,y%) —d(f,2,y") = [ dive(x)dx = | divo(x) dx
2 Q

n
=1 —a \ —a 6x,-

i

a a a a N .
[ (j —U’—dxi>dx1...dx,-_1dxi+1...dxn=0.
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To find v we need an old formula which is well-known for people familiar with
differential forms. Since others may not have seen it, let us prove

Proposition 2.2. Let Q = R” be open, fe C*(Q2) and d;;j(x) the cofactor of
Of;(x)/0x; in Jp(x), i.e. d;;(X) is (— 1)* 7 times the determinant which you obtain from
Jr(x) cancelling the jth row and the ith column. Then

5"_: adij(x) _

0 forj=1,...,n.
i=1  OX; ot J el

Proof. Fix j, let 0, = 0/0x, and let f,, denote the column (G fi, ..., 0 fj—1,
Ok fi+1s+--» Ok f). Then ;

dij(x) = (_ 1)i+j det(fx.lz et fxi_la vaxn f;cHl: ey fxn):

where the hat indicates cancellation. Since a determinant is linear in each column,
you may easily check that

0idi;(0) = (= ' T det(furs-oos Juos oo fauois 8 fuaos Jawwisooos S

Let c; = det(®; furs ferrooes fovrenos fonsooes fo) Then c;; = ¢, since fe C2(RQ),
and since the sign of det changes whenever we permute two adjacent columns, we
obtain '

n

(— 1)+ 0;d;;(x) zkgi(“ 1Ty, +k§i(" l)k_zckg =3 (=)o

k=1
with o,; = 1 for k < i, ;; = 0 and g,; = — o, for all i, k. Therefore
(— l)j > aidij(x) = > (= 1)k_1+iakicki = > (= l)i_1+kaikcik
i=1 k=1 : ki=1
= kZ—1(_ D o e

i.e. the sum is zero. [J
Now, let us define v;(x) = ¥ w;(f (x)) d;;(x) on Q and v;(x) = 0 on R"\, for
i=1
i=1,...,n Then suppw < B,(y,) = B,(y,) implies suppv <= 2, and we have

0;v;(x) = . kZ . dij(x) Ok Wj(f (x)) ©; fi(x) + '21 Wj(f(x)) aidij(x)'
J k= i=
Since 3 dy;(x) 8; fi(x) = 8,0 J;(x) with Kronecker’s d,,, Proposition 2.2 yields
i=1 .

divod) = 3 3wy(f (0 Sty () = div w( £ () (),

1.e. the formula (1). Thus we have justified
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Definition 2.2. Let Q < R" be open and bounded, fe C*(Q) and y ¢ f (3Q).
Then we define d(f, Q, y) = d(f, Q, y'), where y' is any regular value of f such that
Iy! — y| < e(y, £(82)) and d(f, 2, y*) is given by Definition 1.1.

2.3 From C?*(2) to C(Q). In this final step we shall show that the degree of
Definition 2.2 is the same for all C*(Q)-functions sufficiently near to a given
continuous map. To this end we use a special case of the implicit function theorem
which is appropriate for the present purpose. A more general result will be proved
in a later chapter. '

Proposition 2.3. Let h:R x Q2 —->R" be continuously differentiable,
h(ty,x0) =0 and Jyq,. ., (x0) =0 for some (ty,x0)€ R x Q. Then there exist
an interval (to —r,to+ 1), a ball Bsg(xo) =2 and a continuous function
x:(to — 7, to + 7) = B,(x,) such that x(t,) = xo and x(t) is the only solution in
Bjs(xo) of h(t,x)=0.

Now, let us prove

Proposition 2.4. Let fe C*(Q) and y & f (0R). Then, for g € C*(Q) there exists
ad=906(f,y,9) > 0suchthat d(f+tg,Q,y) =d(f,2,y) for |t] <.

Proof. 1. In case f ~*(y) = 0 it is obvious that f(x) + tg(x) = y in 2 for |t|
sufficiently small, and therefore both degrees are zero.

2.Let f7 ) ={x},...,x"and J,(x)+O0fori=1,...,m, f=f+tg and
h(t,x) = f,(x) —y. We have h(0,x)=0 and Jyo ,(x)=J,(x)=*0. By
Proposition 2.3 we therefore find an interval (—r, r), disjoint balls B,(x") and
continuous functions z': (— r, r) = B,(x") such that ;" *(y) N V= {z' (1), ..., z™(8)}

for V= {) B,(x%). We choose g also so small that sgn J,(x) = sgn J,(x) on B,(x").
i=1

Since | f(x) — y] > B in @Q\V for some B > 0, we even have
L70) = {21 ), ..., 2"} for |t] < do = min{r, Blglo '}

Finally, since J, (x) is continuous in (t,x), we find 6 <J, such that
[ (x) — J,(x)| < min{|J;(z)|: ze V} for |t| < and x e V. Hence, sgn J,, (z'(1))
= sgn J;(z'(2)) = sgn J;(x’), that is, d(f,, 2, y) = d(f, 2, y) for |t| < J, by Defini-
tion 2.1.

3. For the last case, suppose that y is not regular. Then we choose a reg-
ular y, € B,5(y), where a = o(y, f(02)), and we find a J, >0 such that
d(f:, 2, yo) =d(f,2,y0) =d(f.2,y) for |t| <y, by the second step. Let
6 =min{d,,1glo *o}. Then |y, — f,(x)| > /3 for x €02 and |t| <J, and
therefore |y, — v| < 0(yo, ;(02)). Thus, d(f;,2, y,) = d(f,,R2,y) by Defini-
tion 2.2. [

By means of this result it is now easy to see that the degree is constant on all
C?*-maps sufficiently close to a continuous map. Indeed, let fe C(Q), y & f (0Q)
and a = o(y, f (0€2)). Consider two functions g, § € C2(£2) such that |g — f|o < a
and |§ — flo < &, let h(t, x) = g(x) + t(§(x) — g(x)) and ¢(t) = d(h(, -), 2, y) for
te[0,1].Since h(t, *) = h(tq, *) + (t — to) (§ — g), Proposition 2.4 tells us that ¢ (¢)
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is constant in a neighbourhood of ¢,. Thus, ¢ is continuous on [0, 1] and since this
interval is a connected set, ¢ ([0, 1]) is connected too, 1.e. ¢ is constant in [0, 1]; in
particular, d(g, 2, y) = d(g, L, y). Hence, we have our final

Definition 2.3. Let fe C(Q) and y e R™\ f(32). Then we define d(f, £, y)
1= d(g, 2, y), where g € C*(Q) is any map such that {g — f|, < ¢(y, f(02)) and
d(g, 2, y) is given by Definition 2.2.

Now, you will have no difficulty in proving that d satisfies (d1)—(d 3), by
reduction to the regular case. After so much theory you will find some light relief
in the following

Exercises

1. (a) Let 2 =R be an open interval with 02 and let f(x) = ax* with « + 0. Then
d(f,€2,0) =0 if k is even and d(f, 2,0) = sgna if k is odd.
k—1
(b) Let g(x) =f(x) + > a;x* for x € R, with f from (a). Then d(g,(—r,7),0) = d(f,(—r,1),0)
i=0
for sufficiently large r. )
(¢) Let [a,b] <R, f:[a,b] >R continuous and such that f(a) f(b)+0. Then
d(f,(a, b),0) = %(sgnf(b) — sgn f(a)). Hint: Consider g(x) = ax + f such that g(a) = f(a) and
g(b) = f(b) and show that g is homotopic to f.

2. Let n = 1 and show that d is surjective, i.e. for m € Z there exists an admissible ( f, 2, 0) such
that d(f, 2, 0) = m.

3. Let f:IR? > R? be defined by f;(x,y) = x>—3xy? and f,(x,y) = —y*> + 3x2y, and let
a = (1,0). Then d(f, B,(0),a) = 3.

4. 1etQ=B,(0={zeC=R?*|z|<1},y=0and

|z] for t =0, zeQ
h(t,z) =1 |z|exp(iep/t) for 0<t=<1, z=|z|e? and 0= ¢ =27t
|z| for 0<t<1, z=|z|e'® and 2t < p < 2m.

You will easily verify that h(t, -) and 4(-, z) are continuous on € and [0, 1], respectively. Further-
more, h(t,z) =0 on [0, 1] x 02 and d(h(t, -),2,0) = 1. Finally, A(0, *) is homotopic to f(z)
= (1, 0); consider, for example, g(s, z) = s(|z|, 0) + (1 — s) (1, 0). Therefore d(h(0,-),R2,0) =0, a
contradiction with (d 3)?

§ 3. Further Properties of the Degree

This is an appropriate point to show that the degree is useful. Let us start with

3.1 Consequences of (d1)—(d3). The basic properties (d 1)—(d 3) immediately
yield some simple consequences which we are going to list as (d4)—(d 7) in the
following

Theorem 3.1. Let M = {([,2,y): Q < R" open bounded, fe C(Q) and
ve&f(0Q)} and d: M — Z the topological degree defined by Definition 2.3. Then d
has the following properties.
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(d1) d(id, 2, y) =1 for ye L.

(d2) d(f,2,y) =4d(f,2,,y) + d(f,£2,,y) whenever Q, and £, are disjoint open
subsets of Q such that y ¢ f (Q\(2; U £2,)).

(d3) d(h(t,-), R, v(t)) is independent of t whenever h:[0,1] x @ > R" and
y:[0, 1]— R" are continuous and y(t) € h(t, 02) for every t € [0, 1].

(d4) d(f, @, y) = 0 implies £ 1 (v) + 0. ~

(d5) d(-,2,y) and d(f,Q2,-) are constant on {ge C(Q2):|lg —flo<r} and
B,.(y) = R", respectively, where r = g(y, f (082)). Moreover, d( [, 2, +) is con-
stant on every connected component of IR™\ f (0€).

(d6) d(g. €2, y) = d(f, L2, y) whenever gloq = [ o _
d7) d(f, 2, y) =d(f, 2, y) for every open subset 2, of Q such that y & f (£2\£2,).

Proof. At the beginning of § 1.4 we saw that (d 2) implies(d 7)and d(f,£2,y) =0
if £ ~1(y) = 0, and so (d4) follows. Next, (d 6) follows from (d 3) with y(t) = y and
h(t,-) =tf+ (1 — t) g. The first two parts of (d 5) are obvious by Definition 2.3 or
by (d 3), as you prefer. For the last part, recall first that a (connected) component
is a connected set which is maximal (with respect to inclusion) in the connected
sets. Since R™\ f (0Q2) is open, its components are open, and for open sets in JR”
connectedness is the same as arcwise connectedness. Therefore, if C is a compo-
nent of R™ f(02) and y!, y* are points in C, we find a continuous curve
y:[0, 11— C with y(0) = y! and y(1) = y*; hence the last part follows from (d 3)
again. [

3.2 Brouwer’s Fixed Point Theorem. You have no doubt met situations where
one wants to solve equations of type f (x) = x, and you know that such points x
are called fixed points of the map f. Before we state a fairly general result on
existence of fixed points of a continuous map f: D < R" — D, let us recall that D
is said to be convex if Ax + (1 — 1) y € D whenever x, y € D and 4 € [0, 1], that the
interséction of convex sets is also convex and that the convex hull of D, conv D for
short, is defined as the intersection of all convex sets which contain D. From these
definitions it is clear that D is convex iff D = conv D, and it is easy to see that

conv D ={Z A;x':x'eD;A;el0,1]and I 2, = 1;ne]N}.
. i=1 i=1

Theorem 3.2 (Brouwer). Let D < R” be a nonempty compact convex set and
f: D — D continuous. Then f has a fixed point. The same is true if D is only
homeomorphic to a compact convex set.

Proof. Suppose first that D = B,(0). We may assume that f(x) =+ x on
0D since otherwise we are done. Let h(t, x) = x — tf (x). This defines a contin-
uous h:[0,1] x D - R"” such that 0¢ h([0,1] x 0D), since by assumption
lht, )| = |x]—tlf ()= —t)r>0in [0,1) x 0D and f(x) # x for |x| =r.
Therefore d(id — £, D, 0) = d(id, B,(0), 0) = 1, and this proves the existence of an
x € B,(0) such that x — f(x) = 0, by (d4).

Next, let D be a general compact and convex set. By Proposition 1.1 we
have a continuous extension f:IR”— IR" of f, and if you look at the defining
formula in the proof of this result you see that f(R" < conv f (D) = D since
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m -1 m _
|: 27 gu(x) S 27 p,(x) f(a")is defined for m = m(x) sufficiently large, and
i=1 =1

belongs to conv f (D). Now, we choose a ball B,(0) o D, and we find a fixed point
x of f in B, (0), by the first step. But f(x) € D and therefore x = f (x) = f (x).
Finally, assume that D = h(D,) with D, compact convex and & a homeo-
morphism. Then h~' fh: Dy — D, has a fixed point x by the second step and
therefore f (h(x)) = h(x)e D. [ :

Let us illustrate this important theorem by some examples.

Example 3.1 (Perron-Frobenius). Let 4 = (a;;) be an n x n matrix such that
a;; z Ofor all i, j. Then there exist 4 = 0 and x = O such that x; = O for every i and
Ax = Ax. In other words, A has a nonnegative eigenvector corresponding to a
nonnegative eigenvalue.
To prove this result, let

D = {xe]R": x; =0foralliand > x; = 1}.
i=1

If Ax =0 for some x € D, then we are done, with A = 0. If Ax += 0 in D, then
i (Ax); = o in D for some « > 0. Therefore, f: x — Ax/ i (4 x); 1s continuous in
D and f (D) = Dsince a;; = 0 for all i, j. By Theorem 3. 2 we have a fixed point of
f, i.e. an xo € D such that 4x, = Ax, with 4 = Z (A xgp);- You will find more
results of this type e.g. in Varga [1] and Schéfer [3]

Example 3.2. Consider the system of ordinary differential equations
u' = f(t,u), where u = % and fR x R"—>IR" is w-periodic in ¢, i.e.

f(t+w,x)=f(tx) for all (t,x)e R x R”. Then it is natural to look for
w-periodic solutions. Suppose, for simplicity, that f is continuous and that there

1s a ball B, (0) such that the initial value problems

(1) w=f(tuw, u0) =xeB,0)

have a unique solution u(t; x) on [0, co). If you do not remember conditions on f
which guarantee this property of (1), you will meet them in a later chapter as easy
exercises to Banach’s fixed point theorem.

Now, let Bx = u(t; x) and suppose also that f satisfies the boundary condition

(f(t,x),x)=2 filt, x) x;<Oforte[0,w]and |x| =r.
i=1
Then, we have P: B,.(0) — B,(0) for every t € R™, since

% lu@®? = 2w (©), u(®)) = 2(f ¢, u(@®), u(®)) <0

if the solution u of (1) takes a value in 0B, (0) at time ¢t. Furthermore, B is continu-
ous, as follows easily from our assumption that (1) has only one solution. Thus
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> has a fixed point x, € B,(0), ie. v'= f(t,u) has a solution such that
u(0; x,) = x, = u(w; x,). Now, you may easily check that v: [0, o) — R", defined
by v(t) = u(t — kw; x,) on [kw, (k + 1) w], 1s an w-periodic solution of (1). The
map P, is usually called the Poincaré operator of u' = f (t, u), and it is now evident
that u(-; x) is an w-periodic solution iff x is a fixed point of B,. The problem of
existence of periodic solutions to differential equations will be considered in later
chapters too.

P

Example 3.3. It is impossible to retract the whole unit ball continuously onto
its boundary such that the boundary remains pointwise fixed, i.e. there is no
continuous f: B, (0) — 0B, (0) such that f (x) = x for all x € 0B, (0).

Otherwise g = — f would have a fixed point x,, by Theorem 3.2, but this
implies |x,] = 1 and therefore x, = — f(xo) = — X, Which is nonsense. This
result is in fact equivalent to Brouwer’s theorem for the ball. To see this,
suppose that f: B,(0) — B, (0) is continuous and has no fixed point. Let g(x)
be the point where the line segment from f(x) to x hits 0B;(0), ie
g(x) =f (x) + t(x) (x — f (x)), where t(x) is the positive root of

2 lx = f P+ 20(f (x), x —f(x) + [f(x)]*=1.

Since t(x) is continuous, g would be such a retraction which does not exist by
assumption.

3.3 Surjective Maps. In this section we shall show that a certain growth
condition on fe C(IR") implies f (IR") = IR". Let us consider first f,(x) = Ax with
a positive definite matrix 4. Since det 4 + 0, f, is surjective. We also have
(fox),x)=c|x|* for some c¢>0 and every xelR" and therefore
(fo(x), x)/|x] = oo as |x| — co. This condition is sufficient for surjectivity in the
nonlinear case too, since we can prove

Theorem 3.3. Let fe C(IR") be such that (f(x), X)/|x| — oo as |x| — oo. Then
S (R") =IR" |
Proof. Given ye R, let h(t,x) =tx + (1 — t) f(x) — y. At |x| = r we have

(e x), x) Zrltr + (1 =) (f ) x)/|x] = [y[] >0

for t € [0, 1] and r > |y| sufficiently large. Therefore, d( f, B,(0), y) = 1 for such an
r,ie. f(x) = y has a solution. [J

Another way to prove f (R") = IR"is to look for conditions on f implying that
f (IR™ is both open and closed and to use the connectedness of IR". This will be
done later.

3.4 The Hedgehog Theorem. Up to now we have applied the homotopy invar-
iance of the degree as it stands. However, it is also useful to use the converse
namely: if two maps f and g have different degree then a certain h that connects
f and g cannot be a homotopy. Along these lines we shall prove
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Theorem 3.4. Let Q < R” be open bounded with 0 € Q and let f: 0Q2 — R™"\{0}
be continuous. Suppose also that the space dimension n is odd. Then there exist
x € 0Q2 and A + 0 such that f(x) = Ax.

Proof. Without loss of generality we may assume fe C(Q2), by Proposition
1.1. Since n is odd, we have d(—1id,,0)= —1. If d(f,2,0)+ — 1, then
h(t,x)=(1 —1t) f(x) — tx must have a zero (¢, Xo) € (0, 1) x 0Q2. Therefore,
f(xg) = to(1 —ty) "' xo. If, however, d(f,£2,0) = — 1 then we apply the same
argument to h(t, x) =1 — 1) f(x) + tx. O

Since the dimension is odd in this theorem, it does not apply in €". In fact, the
rotation by % of the unit sphere in €C = R?,ie. f(x,, X,) = (— x5, X,), is a simple

counterexample. In case €2 = B, (0) the theorem tells us that there is at least one
normal such that f changes at most its orientation. In other words: there is no
continuous nonvanishing tangent vector field on S = 8B;(0), i.e. an f: S — R”
such that f(x) += 0 and (f (x), x) = 0 on S. In particular, if n = 3 this means, that
‘a hedgehog cannot be combed without leaving tufts or whorls’. However,
f(x)=(xX3, — X15.-.»X2m» — Xam—y) 18 @ nonvanishing tangent vector field on
S < R?™ :
Having reached this level you should have no difficulty with the following

Exercises

1. Let @ = IR* be open bounded, fe C(Q), g C(Q) and |g(x)| < |f(x)| on 0R2. Then
d(f+ g,8,0) = d(f, 22, 0). For analytic functions this result is known as Rouché’s theorem. Hint:
Use (d 3).

2. The system 2x + y -+ sin{x + y) =0, x ~ 2y + cos(x 4+ y) = 0 has a solution in B,(0) = ]Rz,r

where r > 1/]/5.

3. Let 2 = B,(0) = R", fe C(2)and 0 & f (Q). Then there exist x, y € 02 and 1 > 0, u# < 0 such
that f(x) =Ax and f(y) =puy, ie. f has a positive and negative eigenvalue, each with an
eigenvector in 0£2.

4. Let Q = B,(0) =« R*™"! and f: 02 — 02 continuous. Then there exists an x € 82 such that
either x = f(x) or x = — f (x).

5. Let A be areal n x n matrix with det 4 + 0 and fe C(IR") such that |x — Af (x)| S a|x| + B
on R” for some x€[0,1) and = 0. Then f(IR") = R".

6. Consider, as in Example 3.2, the ODE u’ = f (¢, u) in R" with w-periodic f such that the IVPs
u = f (t, u), u(0) = x have a unique solution u(z; x) on [0, c0). Let us call x € R"” w-irreversible if
u(t; x) = x in (0, w]. Suppose that 2 < R" is open bounded, 0 ¢ f (0, 0£2) and every x € 0L2 is
w-irreversible. Then d(id — P,,2,0) =d(—f (0, *), 2, 0). Example 3.2 is a special case of this
result, which is from Krasnoselskii [3]. Hint: Constder the homotopy, defined by

1 —¢
(x—u(wt;x))-(——+t> for t+0
rw

h(t, x) =
— (0, x) for t =0.
7. Let A be a symmetric n x n matrix and let s, > s, > ... > s, be given real numbers. Some
applications require the determination of a-diagonal matrix ¥V = diag(v,,..., v,)such that 4 + V
has the eigenvalues s, ..., s, (inverse eigenvalue problem).
Letg; = 3 la;|ands; —s;,, > 2max{g;,g;.,} forj =1,...,n — 1. Then such a V exists,
=

*J
satisfying in addition |v; —s;| < g;forj=1,...,n.

SN e 5= e
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Similarly, given a positive definite 4 and s, > ... > 5, > 0, find a positive diagonal ma-
trix V such that VA has the eigenvalues s;,...,s,. This problem has a solution if

n

S;— S;.1 > 2max{g;, g;.,) s, for j=1....,n — 1. Hint: Without loss of generality, a;; = 0 in

the first problem and g;, =1 in the second one; let D = diag(a,,,....q,,) and consider
DV(D~1? 4D~1Y2) DY? in the second case to see this. Consider

={veR"s, +ez2v,2v,2...2v,25,—¢&; forsome ¢>0

and H(t, v) = (A (t), ..., 4,(t)) e R", where 4,(t) = ... = 4,(¢) are the eigenvalues of t 4 + V and
V(I + t{4 — I))in the first and second problem, respectively. Notice that s = (s;, ..., s,) € C and
H(Q, -) = id. The verification of s & H(t, 0C) for t € (0, 1] requires some knowledge about the
Gerschgorin discs {A: |4 — v;| £ g;}. These results are from Hadeler [2] where you will find the
proofs. Applications are indicated in, for example, Hadeler {1].

§ 4. Borsuk’s Theorem

Whenever we want to show by means of degree theory that f(x)= y has a
solution in £2, we have to verify d(f, £, y) #+ 0. The following result of Borsuk [2]
helps a lot.

4.1 Borsuk’s Theorem. Recall that (2 is said to be symmetric with respect to the
origin if @ = — Q, and a map f on £ is said to be odd if f(— x) = — f(x) on Q.

Theorem 4.1. Let Q < IR” be open bounded symmetric wzth 0eQ. Let fe C(Q)
be odd and O & f (02). Then d(f, 2, 0) is odd.

Proof. 1. We may assume that fe C'(22) and J,(0) % 0. To see this, approxi-
mate fe C(2) by g, € C*(Q), consider the odd part g,(x) = $(g,(x) — g, (— X))
and choose a J which is not an eigenvalue of g5 (0). Then f= g, — J -id is in
C*(£2), odd with J-(0) + 0, and close to f if 6 and |g, — f|o are chosen sufficiently
small. Hence d(f, 2, 0) = d(f, £, 0).

2. Let fe C'(Q) and J,(0) # 0. To prove the theorem, it suffices to show that
there is an odd g € C' (Q) sufficiently close to f such that O ¢ g(S,), since then

d(f.£2,0)=d(g,£2,0) =sgnJ,0) + >  sgnJ,(x),

O*xeg~ 1(0)

where the sum is even since g(x) = 0 iff g(— x) = 0 and J,(-) is even.
3. Such a mapg will be defined by induction as follows. Consider
= {xeQ:x; # 0 for some i < k} and an odd ¢ € C!(R) such that ¢ (0) =0
and p(t)=0iff t = 0.

Consider f(x) =f(x)/¢(x,) .on the open bounded 2, = {xeQ:x; % 0}.
By Proposition 1.4, we find y' ¢ 7 (S7(22,)) with [y'| as small as necessary in the
sequel. Hence, 0 is a regular value for g,(x) =f(x) — ¢(x,) y' on Q,, since
g1 (x) = @(x;) f'(x) for x € 2, such that g, (x) = 0. Now, suppose that we have
already an odd g, € C' (Q) close to f on 2 such that 0 ¢ g, (S,, (€2,)), for some k < n.
Then we define g, 4 ; (x) = gi(x) — @ (x4 1) y*+* with [y** 1| small and such that O
is a regular value for g, on {x € 2: x;,; =+ 0}. .
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Evidently, g+, € C*(£2) is odd and close to f on Q. If x €2, ,, and x;,, =0
then x € 2, gi+(x) = g (x) and gj+,(x) = gi(x), hence J, , (x) & 0, and there-
fore 0 ¢ g+ 1(S,, ., (@i+1)- Thus, g = g, is odd, close to f on £ and such that
0 ¢ g(S,(\{0})), since Q, = Q\{0}. By the induction step you see that we also
have g'(0) = g7 (0) = f7(0); hence 0 ¢ g(5,(©2)). U

This proof is from Gromes [1]. The following generalization is an immediate
consequence of Theorem 4.1 and the homotopy invariance.

'Corollary 4.1. Let Q < IR" be open bounded symmetric and 0 € Q. Let fe C(Q)
be such that 0 & f (02) and f(— x) &= Af (x) on 0Q for all A = 1. Then d(f, L2, 0) is
odd. '

Proof. h(t,x) =f(x) — tf (— x) for t €[0, 1] defines a homotopy in R™\ {0}
between f and the odd g, defined by g(x) = f(x) —f(—x). O

4.2 Some Applications of Borsuk’s Theorem. The first result is known as the
Borsuk-Ulam theorem and reads as follows:

Corollary 4.2. Let 2 <= R” be as in Theorem 4.1, f. 082 — IR™ continuous and
m < n. Then f(x) = f(— x) for some x € 0%2.

Proof. Suppose, on the contrary, that g(x) =f(x) — f(— x) = 0 on 02 and
let g be any continuous extension to £ of these boundary values. Then
d(g, 22, y) = d(g, £2,0) %= 0 for all y in some ball B,(0), by Theorem 4.1 and (d 5).
Thus, (d4) implies that the R"-ball B,(0) is contained in g(2) = R™, which is

nonsense. [

In the literature you will find the metereological interpretation that at two
opposite ends of the earth we have the same weather, i.e. temperature and pressure
(n = 3 and m = 2). Our second result tells us something about coverings of the
boundary 0. Sometimes it is called the Lusternik-Schnirelmann-Borsuk theorem,
and it will play a role in later chapters.

Theorem 4.2. Let 2 < R" be open bounded and symmetric with respect to
0eQ, and let {A,,..., A,} be a covering of 0Q by closed sets A; — 082 such that
A, (—A)=0 fori=1,...,p. Then,p =2 n + 1.

Proof. Suppose that p < n; let fi(x) =1 on 4; and f;(x) = —1 on — A4; for
i=1,...,p—1and fi(x) =1 onQfori=p,...,n Extend the f withi < p — 1
continuously to Q and let us show that f satisfies f'( — x) = Af (x) on 022 for every
A= 0.Then d(f, 2,0) &= 0 by Corollary 4.1, 1.e. f (x) = O for some x € £; a contra-
diction to f,(x) =1 in Q.

Now, x € A, implies — x & 4, and therefore — x € 4, for some i < p — 1, Le.

p—1
xe— A;. Hence 0Q < | ) {4, u(— A4)}. Let xe0Q. Then xeA; implies
i=1

filx) =1and fi(—x)=—1, and xe — 4; implies f;(x) = —1 and f;(—x) = 1.
Hence, f( — x) doesn’t point into the same direction as f (x) in both cases. [
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Thus you have seen, in particular, that you need at least n + 1 closed subsets
A; containing no antipodal points if you want to cover 0B,(0) = R”" by such sets.
In this special case n + 1 of them are also enough; consider, for example, three arcs
of length £ 7 in case n = 2.

Finally let us apply Theorem 4.1 to the problem of finding conditions sufficient
for a continuous map f to be open, i.e. to map open subsets of its domain onto
open sets, a property which does not follow from continuity alone as you will
convince yourself by simple examples. The result is the domain-invariance theorem
for maps f which are locally one-to-one, i.e. such that to every x in the domain
of f there exists a neighbourhood U (x) such that f|y, is one-to-one.

Theorem 4.3. Let 2 < R" be open and f: 2 — R” continuous and locally one-to-
one. Then f is an open map.

Proof. It is sufficient to show that to x, € Q there exists a ball B,(x,) such
that f(B,(x,)) contains a ball with centre f(xq). Passing to 2 — x, and
F(x) =f(x + x0) — f (x0) for x € 2 — x,, if necessary, we see that we may assume
Xo =0 and f(0) = 0. Let us choose r > 0 such that f|5, is one-to-one and
consider

h(t,x)=f<1 —li—tx> _f<~1—tl—tx> for t€[0,1], xe B,(0).

Evidently, 4 is continuous in (¢, x), #(0, -) = f and h(1, x) = f 3 x) — f(— 3 x)
is odd. If A(z, x) = O for some (¢, x) € [0, 1] x 0B,(0), then x/(1 + t) = — xt/(1 + )
since f is one-to-one, i.e. x = 0, a contradiction. Therefore,

d(f, B,(0), y) = d(h(1, -), B,(0), 0) + O

for every y in some ball B,(0) and this implies B,(0) < f(B,(0)). [

Theorem 4.3 may be used, for example, to prove surjectivity results for contin-
uous maps f: R"— IR". Suppose, for example, that f is locally one-to-one and
|f(x)] — oo as |x| — oo. Then we have f(IR") = IR". Indeed, f (IR") is open by
Theorem 4.3, but also closed since f (x,) — y implies that (x,) is bounded, hence
x, — xo without loss of generality, and therefore y = f(x,). Thus, f(R") = R”
since IR” is connected.

Now, you would no doubt like to do something by yourself. Here are some

Exercises

1. Let P=C"- C be a homogenous polynomial of degree m, ie. P(z) = > a, z* with

e[ =m

n
z* = z§'... zi", a; nonnegative integers and |a| = 3 «;. Such a polynomial is said to be elliptic
i=1

n?

if P(x) = 01in R™"\{0}. Show that mis even if P is elliptic and n > 2. Hint: Suppose m is odd; apply
Theorem 4.1 to

fxy,x,) =(ReP{x;,x,,0,...,0),ImP(x;,x,,0,...,0)
and consider

F(xy, x5) = (Re P(xy,%,,60,...,0,Im P(x;,x,,0,...,0)
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for a sufficiently small & %= 0. Such polynomials play an important role in the study of differential
operators . b, 667 . E?T" via Fourier transform. Notice that m may be odd if n = 2; consider,
a|<m 1 n

for example, P(z,,z,) =z, +iz,, which corresponds to the Cauchy-Riemann operator

0 . O
a—xl-l—léx—z.

2. If fi{xeR" |x|=r}— R™ with m < n is continuous and odd then f has a zero.

3. ‘The sandwich problem” Given n measurable bounded sets 4,, ..., 4, in R", there exists a
hyperplane which cuts their volumes into equal halves (n = 3: 4, = bread, A4, = ham,
A, = cheese, the hyperplane =a long knife). Hint: For xe€dB,(0)=R""!, et
H. ={yeR""': (y,x)=x,,,} and H = {yeR"*':(y,x) > x,.,}. Then f:90B,(0) —> R" de-
fined by f;(x) = ,(4; n H]) is continuous.

4. Let f:R"— IR" be continuously differentiable, J,(x) # 0 in IR” and | f (x)| = o0 as |x| — 0.
Then f(IR") = R". In a later chapter, you will prove that f is in fact a homeomorphism. -

§ 5. The Product Formula

In this section we present a useful formula that relates the degree of a composed
map gf to those of g and f. By means of this formula it is easy to prove Jordan’s
curve theorem, as you will see.

5.1 Preliminaries. Let Q — IR" be open bounded and fe C(Q). By (d5) we
know that d( f, £2, y) is the same integer for every y in a connected component K
of R™\ 1 (0£). It will therefore be convenient to denote this integer by d( f, 2, K).
Since f (0Q) is compact, we have one unbounded component K, of R™ f (0Q) if
n > 1, and two such components if n = 1, in which case K, will denote the union
of these two. In the sequel, K, will play no role since it contains points y ¢ f (Q2)
and therefore d(f, 2, K,) = 0.

5.2 The Product Formula. We shall write gf for the composition of g and f,
ie. (gf) (x) = g(f (x)). Then we have

Theorem 5.1. Let Q «— R” be open and bounded, fe C(Q), g e C(R" and K; the
bounded connected components of R™ f(0Q). Suppose that y ¢ (gf) (0Q). Then

where only finitely many terms are different from zero.

Proof. 1. Let f(Q) = B,(0). Since M = B,(0) ~» g~ '(y) is compact and
M <= R™ f(0R2) = U K;, there are finitely many i, say i = 1,..., p, such that

p i
\J K; and K,+;, =K,,n B,+,(0) cover M. Then d(f,2,K,,;)=0, and
i=1

d(g,K;,y)=0 for j = p + 2 since K; =B,(0) and g~ '(y) n K; = 0 for these j.
Therefore, the summation in (1) is finite.
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2. Formula (1) 1s easy to check in the regular case. Therefore let us start with
feCl(Q), ge C'(R") and y ¢ gf(S,,). We have (gf)(x) =g (f(x)) f'(x) and
therefore

digf.2.y)= > sgnJ,e(x) =3 sgnJ,(f(x)) sgnJ;(x)

xe(@f)~ 1)

= 2 sgnJy(z)sgnJ(x)= X SgnJg(Z)[ > Sgan(X)]
xef ™ Hz) zeg~ t(y) xef~ (=)
zeg~ 1(y) ze f(R)

= 2 sgnJ,(2)d(f, 2, z).

ze f(2)
gz)=y

In the last sum we may replace ‘z € f (22)’ by ‘z € B,(0)\ f (022)’ since d(f,£2,z) = 0
for z ¢ f (€2), and since the K; are disjoint, we obtain

zeK; zekK;
zeg~*(y)

Wr2y =% ¥ sgnJg(z)duQ,z)=_§1d(f,:z,1<,->[ s sgnJg(z)]
zeg~ iy

= Z d(f; Qa K:) d(ga Ki: y)

By definition of the degree, it is clear that (1) is also true if y € gf (S, /).

3. Now, let us consider the general case fe C({2) and g € C(IR"). Since the
components may change when we pass to Cl-approximations, we shall write
down all details. It will be convenient to rearrange the right-hand side of (1) as
follows. Let

S,=1{zeB,. (O\f(®Q):d(£,Q2,2)=m} and N, ={ieN:d(f,Q2,K)=m}.

Since S,, = |J K;, we have by (d3)

ie Ny,

2d(f,2,K)d(g,K;,y) =2 m[ 2 d(g, K;, Y)] = % m - d(g, Sy, ¥).-

ie Ny,
Thus, we have to show

(2) d(g/.2,y) =2 m-d(g, Sy, ).

Since 38S,, < 1 (0Q), we find g, € C*(IR") such that

(3) d(gof.R2,y)=4d(gf,R2,y) and d(go,S,,y) =4d(g,S,,y) forall m,

and we may assume that My = B,,;(0) n g5 *(y) is not empty; otherwise (2) is
trivially O = 0 by (3). Since M,, is compact and y ¢ g, f (0£2), we have

oMy, f(02) =inf{|x —z|: x e My,zef(082)} > 0.
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Now, we choose f, € C! () such that -

| f—folo = max [ f(x) —fold)| < oMoy, f(BRQ) and f,(Q) < B,,,(0)
and define
S ={zeB, .1 O\ fo(0R): d(f,,2,2) = m}.

Then we have the essential equality S,, n M, = S,, n M,, since z € M, implies
a(z, f(082)) 2 ¢(Mo, 1 (082)) > | f — folo and therefore d(fo,£2, z) = d(f, L2, z) by
(d5).

Evidently S,, n M, = S,, n M, implies that both sets are contained in S,, © S,
and therefore

(4) d(g07Sm= y) Zd(QO>Smm§ma y):d(goagm: y):

by (d 7). Thus, the second step, (3) and (4) yield
d(go fo,2,y) =X m-dgo, Sn> ) = X m - d(g, Sm» ¥)»

and by the first part of (3)rit remains to be shown that d(g, f,, €2, y) = d(go [, 2, ¥)-
But this follows from (d 3) with h(t, -) = go(f + t(fo — f)), since y € h([0, 1] x 02)
would imply f(x) + t(fo(x) — f (x)) € M, for some (¢, x) € [0, 1] x 0€2, but

|z —f(x) = t(fo(x) = f (D] 2 e(Mo, f(82) — | f— folo>0
forall ze M,. [

5.3 Jordan’s Separation Theorem. You will remember the famous ‘obvious
but hard to prove’ curve theorem of C. Jordan, which says that a simple closed
curve C in the plane divides the plane into two regions G; and G, such that
C = 0G, = 8G, and G, = R?\G, . Since such a curve is homeomorphic to the
unit circle 8B;(0), and since B,(0) and IR*\B,(0) are the components of
IR2\0B, (0), the curve theorem may also be formulated as follows: if C = R? is
homeomorphic to 0B, (0) then R?\ C has precisely two components. This version
can be extended to IR” i.e. we have

Theorem 5.2. Let 2, < R” and Q, < R" be compact sets which are homeo-
morphic to each other. Then R"\Q, and R"\2, have the same number of connected
components.

Proof. Let h: 2, — Q, be a homeomorphism onto 2,; & a continuous exten-

sion of h to IR"; k! a continuous extension to R" of h™1:Q,>Q,; K, the
bounded components of R"\£2; and L; those of R"\(2,. Notice that 0 K; < £, and
OL; < Q,. Now, let us fix j and let G, denote the components of R"\h(3K). Since

U Li = R"\Q, =« R\r(BK)) = | G,,
i q

we see that to every i there exists a g such that L; = G,; remember that compo-
nents are maximal connected sets. In particular, L , < G . Consider any y € K.
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Then (d 6) and Theorem 5.1 imply that

1=dh ‘hK;,y)=YdhK,; G)dh G, v).
q

If N,={i:L,cG,}, then d(h",G,y) =3 d(h ",L,y) by (d2) and
- - ieNg

d(h, K;, Gy) = d(h, K;, L;) for every ie N,, by the definition of d(-,-, K) for a

component K. Therefore

(5) 1= Z Z d(rla Kja Ll) d(hf\—/la Lia J’) = Z d(zs Kja Ll) d(h’:/ls Lia Kj)a

g ieNg

since y € K; @ R"™\h™1(2,) « R"\h~1(0L;). We may repeat the same argument
with fixed L; instead of K; to obtain

(6) 1=>d(hK;,Lyd(h ',L;,K,) forevery i.
j
If there are only m components L;, then (5) and summation over i in (6) yields

m=31=3% 3% dh K, L)d(h L, K) =31,
J

i=1 ji=1

1e. there are only m components K; too, and conversely. Therefore R"\2, and
R™\Q2, either have the same finite number of components or they both have
countably many. [J

You will find some simple consequences in the following

Exercises

1. Let fe C(R" be such that f maps 0B,(0) onto itself, for some r > 0. Then d(f™, B,(0), 0)
= [d(f, B,(0), 0)I".

2. If 2 =« R" is open bounded and fe C(Q) is one-to-one, then d(f, €2, y) € {1, — 1} for every
y€ef (). Hint: f is a homeomorphism onto f (©2); let y, = f (x,), K; the component of R™\ f (0£2)
that contains y, and f/\‘/1 an extension of f~!; notice that d( f/yl, K, x,) = 0 implies
f(@) N K;=0fori=+j.

§ 6. Concluding Remarks

This last section on finite-dimensional degree theory is a mixture of various
extensions of earlier results and of clarifying final remarks.

6.1 Degree on Unbounded Sets. So far we have always assumed that the open
sets 2 < IR”in the second argument of d are bounded, so that f ~*! (y) is a compact
subset of 2 whenever fe C(2) and y ¢ f (092). Now, suppose that 2 < IR" is open
but possibly unbounded. Then f ~* (y) will still be compact if f does not grow too
fast. More precisely, let us assume that fe C(Q), sgp |x — f(x)] < 0 and
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y & £ (0Q). Then f ~*(y) is compact and d(f, 2 N Q,, y) is the same integer for all
open bounded Q, = f ~*(y), by (d7). Therefore, we have the following extension
of Definition 2.3.

Definition 6.1. For 2 < R" open, let C(Q) be the set of all fe C(Q) such that
sup |x — f(x)] < co. Let M = {(£,£2, y): 2 < R" open, fe C(Q2) and y ¢ f (0Q)}.
Q .

Then we define d: M — Z by d(f, 2, y) = d(f, 2 n £, y), where Q, is any open
bounded set that contains f ' (y).

Obviously, d has all properties of d and coincides with d on triplets
(f, 22, y) € M with bounded Q. For example, the homotopy invariance (d 3) says
that d(h(t, -), @, y(t)) is constant on [0, 1]if :[0,1] x @ - R" and y: [0, 1] —> R”
are continuous, sup {|x — h(t, x)|: (t, x) € [0, 1] x 2} < oo and y(t) ¢ h(z, 02) on
[0, 1]. This extension of d is needed if one wants to extend degree theory to maps
between spaces where all open sets + @ are unbounded — e.g. proper locally
convex spaces, as you will see in a later chapter.

6.2 Degree in Finite-Dimensional Topological Vector Spaces. We always used
the natural base {e', ..., ¢"} of R", where ¢} = J;;. It is immediately seen that we
obtain the same degree function if we consider a different base, say {&%, ..., é"},
since there is a matrix 4 with det A =0 such that ¥ = Ax, & = AQ and
g(X) = Af(A~1%) for % € 2 are the representations of x, £ and f with respect to
the new base, and

J,(®) =detd-J (A" R)detA ' = J (A1)

in the differentiable case.

Now, let X be an n-dimensional real topological vector space, i.e. a real vector
space X of dim X = n with a topology 7 such that addition and multiplication by
scalars are continuous. In the references given in §10.2 you will find that X
is homeomorphic to ]R" indeed, choose a base {x',...,x"} for X and show

that h: Z o (x) x'— Z ®;(x) €' is a homeomorphism. Now, let 2 < X be open

bounded F Q-X contmuous and y ¢ F(0Q2). Then d( f, h(2), h(y)) is defined for
f=hFh™!, and if we choose another base {x?, %"} and the corresponding £,
thenh = A h with det 4 % 0, and therefore we get the same integer as before. Thus,
it is natural to introduce

Definition 6.2. Let X be a real n-dimensional topological vector space and
M = {(F, 2, y): 2 < X open bounded, F:2 — X continuous and y € X\ F(0£2)}.
Then we define d: M — Z by d(F,Q, y) = d(hFh™!, h(Q), h(y)), where h: X - R"
is the linear homeomorphism defined by h(x") = &', with {x!, ..., x"} a base for X
and {e', ..., e"} the natural base of R".

Finally, suppose that we have two real n-dimensional topological vector
spaces X and Y, Q < X open bounded, F: Q2 — Y continuous and y € Y\ F(3Q).
We consider bases {x’, ..., x"} for X and {y', ..., y"} for Y and the corresponding

homeomorphisms X —— R”<— Y. Then d( f, h(€2), i(y)) is defined for f= hFh~1.
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Therefore we may deﬁr}e d(F,Q, y)as d(hFh™*, h(Q). h(y)). However, if we change
the bases, then h = Ah, h = Bh* and B~ 'fA is the new f. Therefore

d(B™'fA, h(Q), h*(y)) = sgn (det 4 - det B) d(f, h(R), h(¥)),

i.e. our last definition depends on the choice of the bases. In this situation the
widely used terminology is as follows. Say that two bases for X have the same
orientation if 4, defined by Ax' = X fori = 1, ..., n, has det 4 > 0. Evidently, this
gives you an equivalence relation with exactly two equivalence classes. Call X
‘oriented’ if you have chosen which class is admissible for you, so that you ignore
the other one. Then the degree of continuous maps between oriented spaces X and
Y of the same dimension is defined, since you only have det 4 > 0 and det B > 0
above.

6.3 A Relation Between the Degrees for Spaces of Different Dimension. Sup-
pose that Q = IR"is open bounded, that f: Q — IR™ with m < n is continuous and
that ye R™ f(0Q). Let g =id — f. Then g(x) =y for some xe£2 implies
x = f(x) + y e R™ ie. all solutions of g(x) = y are already in 2 n IR™ and there-
fore it is to be expected that d(id — f, £2, y) can be computed by means of the
m-dimensional degree of (id — f)|s=g=- This is in fact easy to prove, i.e. we have

Theorem 6.1. Let X, be a real topological vector space of dim X, =n, X,, a
subspace with dim X,, = m < n, 2 < X, open bounded, f: Q2 — X,, continuous and
y € X,,\g(0£2), where g = 1d — f. Then d(g, 2, y) = d(glgrx,, 2 N X, ¥).

Proof. By §6.2 we may assume that X, =R"and X,, = R"= {xeR": x,,,
= ... = x, = 0}, and since the reduction to the regular case presents no difficul-
ties, let us assume that fe C'(Q) and y ¢ g(S,). Suppose that g(x) = y for some
xe nR" letyg,, = glo~w", Ix the k x kidentity matrix and (0) the (n — m) x m
zero matrix. Then we have J, (x) = det(I,, — (9; f;(x))).and

J,(x) = det [I_'E_T_(_a_f_{[i_(fc_)z_i____ _(_a_f_fi_(’fp]_

Developing with respect to the last n — m rows, we obtain J,(x) = J, (x) and
therefore d(g,,, 2 " R™, y) =d(g,2,y). O '

We shall need this observation as early as the next chapter.

6.4 Hopf’s Theorem and Generalizations of Borsuk’s Theorem. You have seen
that homotopic maps have the same degree. H. Hopf has shown that the converse
is also true for spheres, that is

Theorem 6.2. Let 2 = B,(0) = R" with n = 2. Suppose that fe C(Q) and
ge C(Q) are such that d(f,£,0)=d(g,2,0). Then there is a continuous
h:[0,1] x € - R" such that 0 ¢ h([0, 1] x 82) and h(0, ) = f, h(1,-) = g.



30 Chapter 1. Topological Degree in Finite Dimensions

This result can be extended to Jordan regions, i.e. regions Q such that R"\Q2
is connected; see e.g. § 5 of Krasnoselskii and Zabreiko [1]. An analytic proof of
Theorem 6.2 may be found e.g. in § 3.6 of Guillemin and Pollack [1] and Zeidler
[1]; for another proof see § 7.7 of Dugundji and Granas [1].

Let us also remark that Borsuk’s Theorem 4.1 and Theorem 4.2 have been
generalized with respect to the assumptions concerning antipodal points. For
example, let S = 0B;(0) = R" and f: S — S continuous such that f(x) £ f (— x).
Then Theorem 4.1 implies that d( £, B; (0), 0)is odd for every continuous extension
f of f to B, (0), as you see by means of f(x) —tf(— x) on [0, 1] x B, (0). If you

denote by ¢(x, y) = arccos < > x; yi) € [0, =] the spherical distance of x, y € S,
i=1

then you may rewrite the condition ‘f (x) #+ f ( — x) on S’ as °f (x) =+ f (y) whenever
e(x, y)=m" ‘

H. Hopf conjectured that d( f, B, (0), 0) & Oif, given « € (0, 7], f* S — S satisfies
f(x) = f(y) whenever g(x, y) = «. This conjecture has been proved recently by
Wille [3]. Similarly, it has been shown in Wille [1] that Theorem 4.2 remains
true for 0B,(0) if you replace the assumption on the A4; by the condition that,
given « € (0, 2r], the 4; do not contain pairs x, y such that [x — y| = «. Related
generalizations of these results are also contained in §§ 8, 9 of Krasnoselskii and
Zabreiko [1].

6.5 The Index of an Isolated Solution. Suppose that fe C(B,(xy)), y = f (xo)
and y =# f(x) in B,(x0)\{Xo}. Then we know that d(f, B,(x,), y) is the same integer
for all g € (0, r]. This number is called the index of x, and is denoted by j( f, x4, ).

Obviously, j(f, xo, y) = sgnJ,(x) if fe C'(B,(x0)) and J,(xo) + 0. Let us
note, for example, the following special case of the product formula, which
you can verify without difficulty: If fe C(Q), ge C(R", yd gf(02) and
g~ '(y) = {z',..., 2%} then

dgf 2 ) = 3 d(£.2.2)(9. 7 ).

In the next section you will see that the index of a zero may be regarded as the
natural extension of the multiplicity of a zero.

6.6 Degree and Winding Number. At the beginning of this chapter we used the
winding number of plane curves as a motivation for (d 1)—(d 3) and we claimed
that it is a special case of the degree. The precise relation between these two
concepts is the following one.

A continuous closed oriented curve y: [0, 1] — € may be regarded as a contin-
uous image of the oriented unit circle S = 0B,(0) = C, since h:s —»e*"* is a
homeomorphism from (0,1) onto S\{1}, and therefore f, defined by f(z)
=y(h~(z)) for z += 1 and f(1) = y(1), is continuous on S. If a ¢ y = f(S) then
d(f, B,(0), a) is the same integer for all continuous extensions of f to B, (0), by
(d 6). We claim that

(1) d(f, B1(0), a) = w(f(S), a).




§ 6. Concluding Remarks 31

By the definitions of d and w it is sufficient to prove (1) in case fe C*(B,(0))
and a ¢ f(S;). Let f "'(a) = {z;,..., z,}. Then we have to show

1 dz

b
2 = J(z).
2) 277:if"(fS)z-—a ;El sgn Jr (i)

Let 6 > 0 be so small that the U, = B;(z,) are disjoint, sgn J.(z) = sgn J,(z,) on
U, = B1(0) and f|g is a homeomorphism. Let S, = 0U,. Then f(S,) is a closed
Jordan curve such that the point a lies in its interior region, f (S,) has the same
orientation as S, if J.(z;) > 0 and the opposite orientation if J;(z,) < 0. To see this,
let Si: ¢ (t) — z, = (d cost, 0 sint) for t € [0, 27] and let w(t) = f(@(¢)). Then

W@ —a) x () —a) =[Jr(zd + 016D (@(t) — zi) X (9(1) —z) as -0,

where _—
uxv=((),0,det[ ! 2]>€]R3 for u,veR?.

_ P
Now, let G = B; (0)\ | ) U,.Then|f(z) — a| = ain G for some « > 0 and since
k=1

f 1s uniformly continuous on G, we can divide G into rectangles R such that

AT S T
™
YARIPEN =
/ ' ' \
\ AA
\ /
/
\e /4
~ 1 .
Fig. 6.1

sup | f(z) — f(2)] is less than o on each R; see Fig. 6.1, where we have also indi-
cated the orientation. Since the image f(Iz) of the boundary Iz = 0(R n G) does
not wind around a, we have w(f(/z), a) = 0 and summation over all R yields

d p d
{ z +> z =0, thatis | dz =i { dZ;

f2z2—a ¥=1s5G6:)z—a f6 z2—a k=158 z—a

but f(S;) winds exactly once around a and since the orientation of f (S,) is deter-
dz

mined by sgnJ,(z;), we have |

= 2nisgnJy(z,), and therefore (2). [
flsw 2 — 4



32 Chapter 1. Topological Degree in Finite Dimensions

Now, the relation between index and multiplicity of a zero of an analytic
function becomes evident. Suppose that f is analytic in B,(z,) = €, f(zo) = 0 and
f(z) += 01in B,(zo)\{z,}, and let p be the multiplicity of z,. Then we have forg <r
and ¢(z) = z, + ¢z, by the product formula,

J(f 20, 0) = d(f, B,(20), 0) = d(f ¢, B1(0), 0) = w(f¢(S), 0)
= w(f(0B,(20)),0) = p.

6.7 Index of Gradient Maps. Suppose that ¢: R”" — R is continuously differ-
entiable. Recall that f= grad ¢, i.e. f; =0,¢p fori=1,...,n, is said to be a gra-
dient map and ¢ is said to be a potential of f, and you may have seen that such
maps play a prominent role in various disciplines, e.g. physics.

Now, suppose that grad ¢(x) = 0 for all sufficiently large x € R". Then
ind ¢ = d(grad ¢, B,(0), 0) is the same integer for all sufficiently large r > 0 and is
called the index of ¢.

In the simplest case, ¢(x) = (x, b) = > x;b; with b = 0, we have grad ¢ = b
i=1

and therefore ind ¢ = 0. In the quadratic case, ¢(x) = (4 x, x) with A symmetric
and det A <+ 0, we have grad ¢(x) = A x and therefore ind ¢ = sgndet 4. As aless
obvious result, let us prove

Theorem 6.3. Let ¢: R" — IR! be continuously differentiable, grad ¢(x) + 0 for
x| = @ and ¢(x) > o0 as |x| — . Then ind ¢ = 1.

Proof. We may assume ¢@e C*(R"), if necessary replacing ¢ by ¢.(x)
= [ 9(&) 0.(¢ — x) d¢ with mollifiers g, as in the proof to Proposition 1.2 and
]Ril

¢ > 0 small. Hence f = grad ¢ € C'(IR") and the initial value problems

3) u=—f(w, u@=xeR"

have unique local solutions u(t) = u(t;x). Now, w(t) = @(u(t)) satisfies
w' () = — | fu(@)|* £0, hence ¢(u(t)) £ ¢(x) on the interval where u(-; x) ex-
ists. Therefore u remains bounded since ¢(y) —> c© as |y| — . Consequently,
u' = — f(u) remains bounded, and therefore u can be extended to a unique solu-

tion u(-; x) of (3) on [0, o).
Without loss of generality we also have ¢(x) = O since addition of a constant
does not change f. Now let M, =max ¢(x), choose r > g so large that
B,(0)

o(x) = M, + 1 for|x|=randlet M, — max @(x). You have already seen that
3B, (0)

@) o(u(t; 0) = 9 (x) — j f uls; ) ds  for ¢ 0.

Thus, the solutions starting at x € 0B, (0) satisfy ¢(u(t; x)) < o(x) < M, in [0, ).
In fact, we get much more. Sincer > gand f(y) £0in|y| = ¢,leta = min {| f (y)|:
|yl = ¢ and ¢(y) = M,}. Then (4) and |x| = r imply

0= pu(t;x) < p(x) —a*t =M, —o*t aslongas |u(t; x)| Z ¢.
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Thus, |u(ty; x)| < o for some 1y = 1o(x) < w = a~*M,, hence ¢(u(ty; x)) < M,
and therefore ¢(u(t;x)) < M, for all t = t,. This means that the Poincaré P,
satisfies P,(0B,(0)) = B,(0), since

p(B,x) S M, SM; +1=Z p(x) for |x|=r.

Now, we are done since ind ¢ = d(f, B,(0),0) = d(id — P,, B,(0), 0) by Exer-
cise 3.6 and d(id — B,, B,(0),0) = 1 by (d3) with h(t,x) =x —tP,x. [

Results of this type have been applied to obtain existence of periodic solutions,
bounded solutions, etc. of ordinary differential equations; see e.g. Amann [§],
Krasnoselskii [3], Mawhin [1]. Related ideas will play an essential role in § 27.

6.8 Final Remarks. This chapter is an improved version of Chap. 2 in Deim-
ling [8]. In § 1 we profited by Amann and Weiss [1]. You have become familiar with
one of the basic concepts in the study of nonlinear equations and you have seen
that the topological degree may be useful to solve nontrivial existence problems,
especially in situations where one doesn’t expect that the problem has a unique
solution. Uniqueness will be studied later on by other means. You will have
noticed that in nearly every case we exploited the fact that bounded subsets of R”
are relatively compact. This is not the case in most of the interesting infinite
dimensional spaces and therefore large portions of the following chapters centre
around the problem of finding powerful substitutes motivated by ‘concrete’ prob-
lems. Before you leave finite dimensions you should perhaps convince yourself
that you are ready to enter infinite dimensions. The final exercises may help you
to clarify this point.

Exercises

1. LetQ < IR"be open bounded and fe C(Q). Suppose there exists an x,, € Q2 such that f satisfies
the following boundary condition: ‘If f(x) — x, = A(x — x,) for some x € 0Q then A = 1.’

Then f has a fixed point. This is the most general fixed point theorem for continuous f on
open sets. Two special cases are:

() 0e and |x — f(x)]* = | f(x)]* — |x|* on 32 or equivalently (for the Euclidean norm) 0 € Q
and (f(x), x) < |x|* on 0Q; N
(i) 0eQ, 49 < Q for Ae(0, 1) and f(3Q) = &.

2. Let [a, b] = R" such that g; < b, for i = 1, ..., n; f: [a, b/] = R" continuous,

Sy X1, Xy g5 e X)) 2 0and fi(xy, o, Xi_ 1, by Xjh 15 - x) S 0fori=1,...,n

Then f has a zero. Hint: Find a suitable x, in Exercise 1.
3. Let Q = R” open bounded, fe C(Q), f(2) < Q and f(x) = x on 0L2. Then f(Q) =
4. Let Q = IR" open bounded and 0, fe C(Q) and (f(x), x) = 0 on 08R2. Then f has a zero.

5. Let Q = R” open bounded, 0 € 2 and Q star-shaped with respect to 0, 1.e. y € Q implies t y e @
for ¢ € [0, 1]. Suppose also that %2 is simple, i.e. y € 0Q implies t y e Q for t € [0, 1). Then fe C(Q)
and f(92) < £ imply that f has a fixed point. It is still an open problem whether this result
remains true if 02 is not simple.

6. Let 2, cR™ and 2, < R" be open bounded, f: 2, - R™ and g:Q, - R" continuous,
yeR™ f(0Q,) and z e R"\g(0L2,). Then

d((f: g)’ Qm X Qn: (y: Z)) = d(f’ Qm, y) d(gy Qna Z)'
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7. Let p:IR*— R! be continuously differentiable, grad ¢(x) % 0 for all | x| = ¢. Then (i) ind ¢ is
odd if ¢ is even. (i) ind ¢ = (— 1)"if ¢(Xx) - — 0 as |x| — co0. Hint: Product formula for 4 with
Ax = — x. (i) ind ¢ = 1 if p is homogenous of degree a > 0, i.e. ¢(tx) = t* p(x) for t > 0, and
@(x) > 0 for x = 0.

8. Consider 4’ = f(t, u), where fe C*(R x R") and f is w-periodic in . Suppose that (grad ¢(x),
f(t,x)) = 0 for all t€[0,®] and |x| = ¢, where ¢:R"— R is continuously differentiable and
@(x) » — oo as |x| - c0. Then ' = f(t, u) has an w-periodic solution.

9. Let Q < € be open bounded, fe C(Q) and f analytic in 2, a ¢ f(0€2). Then d(f,Q2,a) = 0. If
€2 is connected and f(z) == a in Q, then d( f, £, a) is the number of solutions of f(z) = a. Hint:
Remember the Cauchy-Riemann differential equations for the real and the imaginary part of f.

10. The following problem arises in a model for generation of sound near an infinite compliant
wall; see Mohring and Rahman [1]. For ze Q = {ze C:Imz = 0}, let

f@=i0*@) gz k) ec + [’ (2) = kP2, w@) =z—kiuy, k=(k,k)eR?
where g is analytic in 2 and such that

lim [g(z,k)z™%|< o0, Img(z,k)%£0 for z+0 and x-Img(x, k) > 0 on R\{0},

|2 = oo

c 1s the constant speed of sound and u,, ¢ are constants. The square root has to be chosen such
that its imaginary part is negative in Q. Does f have a zero in £2? You might be able to show
that there is a zero if u2 k% 0g(0, k) > [(1 — My)*k? + k2]*/* with M, = uy/c. Hint: A tedious
calculation shows that the choice of the square root implies x Re[w?(x) — ¢* |k}*]}/? < 0 on R.
Consider this fact as given. Notice that sup {| f(z) — z|: z € @} < c0. Choose ¢ as the homotopy
parameter. If ¢ is large, notice that f can have zeros for small w(z) only, and consider
w® = k| [e g(uoky, k)] 1.

11. Let Q < R” be open bounded. For n = 1 we have
{d(£,2,)): feCQ),y¢f(0Q)} =Z

iff @ has infinitely many components. However, d(-, Q,‘ ) may be surjective even if 2 is connected
but n = 2.



