Pauta P1 Control 3 MA33A

Parte 1

Nos podríamos haber inspirado en la fórmula del valor inicial (o método del lado izquerdo o la fórmula de Newton Cotes de un punto), puesto que tenemos que:

y' = f(y), si integramos entre t y $t + \Delta t$ por teorema fundamental del cálculo tenemos que:

$$y(t + \Delta t) - y(t) = \int_{t}^{t + \Delta t} f(y(s))ds \approx \Delta t f(y(t))$$

Obs: Es fundamental que tengan claro que la variable de integración es t y no y. La fórmula del valor inicial es la siguiente:

$$\int_{a}^{b} f(x)dx \approx f(a)(b-a)$$

Parte 2

Para empezar recordemos la definicón de estabilidad:

Si $u_{k+1} = u_k + \Delta t \phi(u_k, t_k)$ es un método numérico para resolver EDO diremos que el método es estable si:

Dados $\vec{y_0}, \vec{z_0} \in \mathbb{R}^N$ y $\vec{\epsilon_0}, \dots, \vec{\epsilon_{n-1}} \in \mathbb{R}^N$ (perturbaciónes de cada iteración) y

$$y_{k+1} = y_k + \Delta t \phi(y_k, t_k)$$

$$z_{k+1} = z_k + \Delta t \phi(z_k, t_k) + \Delta t \vec{\epsilon_k}$$

Se define $\epsilon = \max_{k=0,\dots,n} ||\vec{\epsilon_k}||$ (perturbación máxima)

Se tiene que

$$||z_k - y_k|| \le C(||z_0 - y_0|| + \epsilon)$$

con C una constante.

En nuestro caso:

$$y_{n+1} = y_n + \Delta t f(y_n, t_n)$$

$$z_{n+1} = z_n + \Delta t f(z_n, t_n) + \Delta t \epsilon_n$$

Debemos demostrar que existe C tal que (aquí estamos en dimensión 1):

$$|z_n - y_n| \le C(|z_0 - y_0| + \epsilon)$$

Una hipótesis necesaria es que f sea lipchitz en el primer argumento, esto es:

$$\exists K \in \mathbb{R} \text{ tq } |f(x,t) - f(y,t)| \leq K|x-y| \ \forall x,y \in \mathbb{R}$$

Ahora vamos a la demostración:

$$y_{n+1} - z_{n+1} = y_n - z_n + \Delta t (f(y_n, t_n) - f(z_n, t_n)) + \Delta t \epsilon_n \Rightarrow \text{(tomando módulo y triangular)}$$

$$|y_{n+1} - z_{n+1}| = |y_n - z_n + \Delta t(f(y_n, t_n) - f(z_n, t_n)) + \Delta t \epsilon_n| \le |y_n - z_n| + \Delta t|f(y_n, t_n) - f(z_n, t_n)| + \Delta t|\epsilon_n|$$

Por hipótesis (Lipschitz) y $|\epsilon_n| \le \epsilon$ tenemos:

$$|y_{n+1} - z_{n+1}| \le |y_n - z_n| + \Delta t K |y_n - z_n| + \Delta t \epsilon = (1 + K \Delta t) |y_n - z_n| + \Delta t \epsilon$$

Razonando inductivamente:

$$n = 0$$

$$|y_1 - z_1| \le (1 + K\Delta t)|y_0 - z_0| + \Delta t\epsilon$$

n=1

$$|y_2 - z_2| \le (1 + K\Delta t)|y_1 - z_1| + \Delta t\epsilon \le (1 + K\Delta t)[(1 + K\Delta t)|y_0 - z_0| + \Delta t\epsilon] + \Delta t\epsilon$$

$$= (1 + K\Delta t)^{2} |y_{0} - z_{0}| + (1 + (1 + K\Delta t))\Delta t\epsilon$$

n=2

$$|y_3 - z_3| \le (1 + K\Delta t)|y_2 - z_2| + \Delta t\epsilon \le (1 + K\Delta t) \left[(1 + K\Delta t)^2 |y_0 - z_0| + (1 + (1 + K\Delta t))\Delta t\epsilon \right] + \Delta t\epsilon$$

$$= (1 + K\Delta t)^3 |y_0 - z_0| + (1 + (1 + K\Delta t) + (1 + K\Delta t)^2)\Delta t\epsilon$$

• En general

$$|y_n - z_n| \le (1 + K\Delta t)^n |y_0 - z_0| + \Delta t \epsilon \sum_{i=0}^{n-1} (1 + K\Delta t)^i$$

Ahora recordando que $\Delta t = \frac{T}{N}$ con $n = 1, \dots, N$ (N total de iteraciones para alcanzar T),

$$(1 + K\Delta t)^n = \left(1 + \frac{KT}{N}\right)^n \le \left(1 + \frac{KT}{N}\right)^N \le e^{KT} \ (*)$$

Por otro lado:

$$\sum_{i=0}^{n-1} (1 + K\Delta t)^i = \frac{1 - (1 + K\Delta t)^n}{1 - (1 + K\Delta t)} = \frac{1 - (1 + K\Delta t)^n}{-K\Delta t} = \frac{(1 + K\Delta t)^n - 1}{K\Delta t}$$

$$\leq \frac{(1 + K\Delta t)^n}{K\Delta t} \leq \frac{e^{KT}}{K\Delta t} \; (**)$$

Reemplazando (*) y (**) en la fórmula general:

$$|y_n - z_n| \le e^{KT}|y_0 - z_0| + \Delta t \epsilon \frac{e^{KT}}{K\Delta t} = e^{KT} \left[|y_0 - z_0| + \frac{\epsilon}{K} \right]$$

También tenemos que:

$$|y_0 - z_0| + \frac{\epsilon}{K} \le |y_0 - z_0| + \frac{\epsilon}{K} + \epsilon + \frac{|y_0 - z_0|}{K}$$

(éstos 2 términos son positivos y se usan para obtener la constante) \Rightarrow

$$|y_n - z_n| \le e^{KT} \left(1 + \frac{1}{K} \right) (|y_0 - z_0| + \epsilon)$$
, aquí se identifica $C = e^{KT} \left(1 + \frac{1}{K} \right)$

Parte 3

Primero hay que identificar los parámetros: $y_0 = 0, T = 2$ y $f(y,t) = -10y \Rightarrow y_{n+1} = y_n + \Delta t (-10y_n) = (1 - 10\Delta t)y_n$, razonando inductivamente:

$$y_{n+1} = (1 - 10\Delta t)y_n = (1 - 10\Delta t)^2 y_{n-1} = (1 - 10\Delta t)^3 y_{n-2}$$
$$= \dots = (1 - 10\Delta t)^n y_1 = (1 - 10\Delta t)^{n+1} y_0 = (1 - 10\Delta t)^{n+1}$$

De este modo $y(n\Delta t)\approx y_n=(1-10\Delta t)^n$, veamos ahora la parte de la convergencia: Si

$$T = 2 \Rightarrow \Delta t = \frac{2}{N} \Rightarrow y_n = \left(1 - \frac{10 \cdot 2}{N}\right)^n = \left(1 - \frac{20}{N}\right)^n$$

 y_N corresponde a la aproximación de y(2),

$$y_N = \left(1 - \frac{20}{N}\right)^N \longrightarrow e^{-20} \text{ si } N \longrightarrow \infty$$

Parte 4

La solución real viene dada por e^{-10t} y la solución numérica viene dada por $y(n\Delta t)\approx y_n=(1-10\Delta t)^n$, se entiende por comportamiento similar que tenga las mismas caracterísiticas de crecimiento y signo , en este caso decreciente y positiva:

positiva:

$$y_n \ge 0 \Rightarrow 1 - 10\Delta t \ge 0 \Rightarrow \frac{1}{10} \ge \Delta t$$

decreciente:

$$1 - 10\Delta t \le 1 \Rightarrow 0 \le \Delta t$$

Así la condición de crecimiento siempre se tiene (siempre que se tenga la positividad), así que el paso de tiempo Δt debe ser menor que 0,1

Veamos que pasa para Δt grande: Si Δt es mayor que 0, 1 tenemos que $1 - \Delta t \leq 0$, de este modo la solución numérica oscila $(negativo^n)$

- Si $1 10\Delta t < -1 \Rightarrow 2 < 10\Delta t \Rightarrow 0, 2 < \Delta t$, así $1 10\Delta t$ es negativo y en valor absoluto mayor que $1 \Rightarrow (1 10\Delta t)^n$ oscila y diverge.
- Si $0, 1 < \Delta t < 0, 2$ oscila pero es menor que 1 en valor absoluto , así que converge (a cero obviamente)
- Si $\Delta t = 0, 1$ la solución vale 1 en cero y es nula en todas las iteraciones siguientes
- \bullet Si $\Delta t=0,2$ la solución vale 1 y -1iteración por medio, es decir, oscila pero es constante igual a 1 en valor absoluto