Cálculo Numérico MA-33A

Lista de Problemas Integración Numérica

Problema 1 (Numérico). Use la tabla siguiente para encontrar una aproximación de la integral

$$\int_{1,1}^{1,5} e^x dx$$

usando las fórmulas del punto medio, del trapecio y de Simpson.

\boldsymbol{x}	e^x
1.1	3.0042
1.3	3.6693
1.5	4.4817

Compare los errores cometidos con las cotas de error teóricas (ver problemas 2, 3)

Problema 2. Un hábil estudiante postuló que el error en la fórmula de Simpson se escribe de la forma

$$\int_{a}^{b} f(x)dx - S(f) = Mf^{(4)}(\xi)$$

donde la constante M debiera ser independiente de la función integrada.

Encuentre el valor de la constante M imponiendo que la fórmula anterior sea exacta para $f(x) = x^4$.

Problema 3. Siguiendo el razonamiento del problema 2 encuentre una expresión para el error en la fórmula de integración del punto medio. Es decir, postule que

$$\int_{a}^{b} f(x)dx - M(f) = Kf^{(2)}(\xi)$$

y calcule K reemplazando f por un polinomio apropiado.

Problema 4. Para integrar una función usando dos puntos se propone usar la siguiente fórmula:

$$\int_a^b f(x)dx \approx C_1 f(a) + C_2 f(\frac{a+2b}{3}).$$

Calcule las constantes C_1 y C_2 para que la fórmula de cuadratura anterior sea exacta para todos los polinomios de grado menor o igual a 1.

Encuentre cual es el máximo valor de n tal que la fórmula es aun exacta para todos los polinomios de grado menor o igual a n (es decir encuentre la precisión de la fórmula).

Encuentre una cota del error cometido al usar esta fórmula siguiendo la metodología de los problemas 2 y 3 (¿cual será el orden de derivada de f para esta fórmula del error?)

Problema 5. Para integrar una función usando dos puntos se propone la siguiente fórmula:

$$\int_{a}^{b} f(x)dx \approx C_{1}f(\frac{2a+b}{3}) + C_{2}f(\frac{a+2b}{3}).$$

Calcule las constantes C_1 y C_2 para que la fórmula de cuadratura anterior sea exacta para todos los polinomios de grado menor o igual a 1.

Encuentre cual es el máximo valor de n tal que la fórmula es aun exacta para todos los polinomios de grado menor o igual a n (Es decir encuentre la precisión de la fórmula).

Encuentre una cota del error cometido al usar esta fórmula siguiendo la metodologia de los problemas 2 y 3.

Problema 6. Al resolver los ejercicios previos surge la idea de usar una fórmula de integracion de dos puntos, pero con ellos ubicados estratégicamente. Es decir, usando la fórmula de integración siguiente

$$\int_{-1}^{1} f(x)dx \approx C_1 f(-s) + C_2 f(s)$$

se pide:

- (a) Calcule, en funcion de s fijo, las constantes C_1 y C_2 para que la fórmula de cuadratura anterior sea exacta para todos los polinomios de grado menor o igual a 1.
- (b) Encuentre ahora el valor óptimo de s tal que la fórmula deducida en (a) sea también exacta para polinomios de grado dos.
- (c) Encuentre cual es el máximo valor de n tal que la fórmula es aun exacta para todos los polinomios de grado menor o igual a n (Es decir encuentre la precisión de la fórmula).
- (d) Encuentre una cota del error cometido al usar esta fórmula siguiendo la metodologia de los problemas 2 y 3.
- (e) Usando un cambio de variables en la integral encuentre una fórmula de dos puntos para calcular la integral

$$\int_{a}^{b} f(x)dx$$

con la mayor precisión posible.

Problema 7. [Control del año 2000] Para calcular numéricamente la integral $I(f) = \int_0^1 f(x) dx$, se propone la siguiente fórmula de cuadratura:

$$I^*(f) = \frac{1}{8}f(0) + \frac{3}{8}f(\frac{1}{3}) + \frac{3}{8}f(\frac{2}{3}) + \frac{1}{8}f(1)$$

- a.- Calcule su precisión.[Respuesta: precisión=3]
- **b.-** Suponiendo que el error es de la forma

$$I(f) - I^*(f) = K \cdot f^{(n)}(\xi),$$

determine los valores de K y n.[Respuesta: n=4 y K = -1/6480].

Problema 8. Sea $I_R(f)=(b-a)f(a)$ (fórmula del Rectángulo), una fórmula para aproximar numéricamente la integral $I(f)=\int_a^b f(x)dx$.

a.- Demuestre que
$$I(f) - I_R(f) = \frac{(b-a)^2}{2} f'(\xi)$$
, para algún $\xi \in (a,b)$.

b.- Obtenga la expresión del error para la fórmula compuesta correspondiente. Muestre que para n grande, la expresión para el error puede aproximarse por (1/2)h(f(b) - f(a)).

Problema 9. Se desea calcular ln(2) usando técnicas de integración numérica, puesto que $ln(x) = \int_0^x (1/t) dt$. Cuantos subintervalos se requieren para obtener un resultado con 8 decimales correctos si usa trapecios compuesto? Y si usa Simpson compuesto?