Complementos C3 Algebra lineal Parte 1

Profesor: María Leonor Varas

Auxiliares: Sebastián Astroza & Diego Morán

 $|\mathbf{P1}|$ a) Sea $A \in M_{3\times 3}(\mathbb{R})$ no invertible, simétrica tal que

$$Ker(A+I) = \left\langle \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \right\} \right\rangle$$

I) Demuestre que los valores propios de A son 0 y -1.

II) Demuestre que
$$Ker(A) = \left\langle \left\{ \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\} \right\rangle$$

Sol Antes de comenzar con las soluciones recordemos un par de propiedades importantes:

- λ es vp de $A \Leftrightarrow Ker(A \lambda I) \neq \{0\}$.
- 0 es vp de $A \Leftrightarrow A$ es no invertible.

Estas propiedades son casi directas de la definición de valores y vectores propios (estudielas!!!).

I) Por la segunda propiedad recordada, como nos dicen que A es no invertible, concluímos rápidamente que 0 es vp de A.

Ahora escribamos de otra forma el otro dato que nos dan en el enunciado:

$$Ker(A+I) = Ker(A-(-1)I) = \left\langle \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \right\} \right\rangle$$

En otras palabras, $Ker(A-(-1)I) \neq \{0\}$. Así, usando la primera propiedad recordada, podemos decir que -1 es vp de A.

Pregunta: ¿Puede tener A más valores propios?

Recordemos otras propiedades que nos ayudarán en la respuesta.

De la tutoría de la semana 11^1

$$\gamma_A(\lambda) \le \alpha_A(\lambda)$$

У

$$\sum_{\lambda \ vp \ de \ A} \alpha_A(\lambda) = n$$

(Para pensarlo un poco: la última propiedad es válida puesto que el polinomio característico es de grado n).

Apliquemos lo anterior a nuestro caso, n = 3.

Del enunciado, $\gamma_A(-1)$ es 2, pues Ker(A+I) posee 2 vectores l.i. .

Por otro lado, $\gamma_A(0)$ es como mínimo 1, pues siempre debe haber al menos un vector propio asociado a cada valor propio.

Entonces, como

$$\gamma_A(0) + \gamma_A(-1) = 2 + 1 = 3$$

y dado que sabemos que

$$\gamma_A(0) + \gamma_A(-1) \le \sum_{\substack{\lambda \text{ vp de } A}} \gamma_A(\lambda) \le \sum_{\substack{\lambda \text{ vp de } A}} \alpha_A(\lambda) = n = 3$$

vemos que A no puede tener más valores propios, pues de lo contrario

$$\sum_{\lambda \ vp \ de \ A} \alpha_A(\lambda) \ge \sum_{\lambda \ vp \ de \ A} \gamma_A(\lambda) > n = 3$$

Si les parece muy complicado de esa manera, lo que estamos usando se puede resumir en la siguiente frase:

Una matriz $A \in M_{n \times n}(\mathbb{R})$ no puede tener más de n vectores propios.

Así, como A tenía 2 vectores propios asociados a -1 y al menos un vector propio asociado a 0, A no podía tener más valores propios, pues de lo contrario, A tendría más de 3 vectores propios asociados.

Resumiendo, los valores propios de A son exactamente 0 y -1, que es justo lo que nos pedían probar en el enunciado.

 $^{^1\}gamma$ es multiplicidad geométrica y α multiplicidad algebraica. Si no las recuerda estudielas, pues son nociones importantes.

II) Primero, nos tenemos que dar cuenta de que Ker(A) es, nada más y nada menos, que el espacio propio asociado al valor propio 0, pues

$$Ker(A) = Ker(A - 0I)$$

En la parte anterior, vimos que

$$\sum_{\lambda \ vp \ de \ A} \alpha_A(\lambda) = \sum_{\lambda \ vp \ de \ A} \gamma_A(\lambda) = 3$$

Lo que nos dice, necesariamente, que $\gamma_A(\lambda) = \alpha_A(\lambda)$, para todo λ valor propio de A. Es decir, la matriz A es diagonalizable²

Otra forma de concluir que A es diagonalizable es decir que sabemos, de la parte anterior, que A tiene al menos 3 vectores propios y que estamos en \mathbb{R}^3 , por lo tanto esos 3 vectores propios deben ser base (A es diagonalizable \Leftrightarrow Existe una base de \mathbb{R}^n vectores propios de A).

Como conocemos el espacio propio asociado a -1, Ker(A+I), para conocer el resto de la base de vectores propios, sólo nos falta encontrar Ker(A).

Por lo tanto, si lo pensamos un poco, completando Ker(A+I) a una base de \mathbb{R}^3 entonces estamos listos (pues el vector que le agregue necesariamente debe pertenecer a Ker(A)).

Queda propuesto completar la base, ya sea "al ojo" o usando alguno de los métodos visto en en clases.

HINT: encuentre un vector ortogonal a Ker(A+I). Otra forma: agregue los vectores canónicos a Ker(A+I) y de ese conjunto extraiga una base de \mathbb{R}^3 .

Finalmente, luego de completar la base, verifique que se obtiene:

$$Ker(A) = \left\langle \left\{ \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\} \right\rangle$$

O sea, el vector que completa la base es de la forma $a \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $a \in \mathbb{R}$.

 $^{^2}$ Esto ya lo sabíamos, pues el enunciado nos dice que la matriz Aes simétrica, por lo tanto es diagonalizable (simetrica \Rightarrow diagonalizable). Entonces UD podría haber usado directamente esa propiedad, sin necesidad de referirse a los α y γ (multiplicidades).

P2 Sea $v \in \mathbb{R}^n$, $v \neq 0$ y $T : \mathbb{R}^n \to \mathbb{R}^n$ la aplicación lineal tal que $T(x) = \langle v, x \rangle v$.

- a) Pruebe que $Im(T) = \langle \{v\} \rangle$ y que $Ker(T) = \langle \{v\} \rangle^{\perp}$.
- b) Pruebe que dim(Ker(T)) = n 1.
- c) Sea $\{v_1, \ldots, v_{n-1}\}$ una base de $\langle \{v\} \rangle^{\perp}$. Pruebe que v_1, \ldots, v_{n-1} son vectores propios de T asociados al valor propio 0.
- d) Pruebe que T es diagonalizable, i.e., que existe una base de \mathbb{R}^n de vectores propios de T.

a) Como consejo, siempre es bueno probar las igualdades de conjuntos como 2 inclusiones.

Probemos que $Im(T) = \langle \{v\} \rangle$:

Sol

- \subseteq Si $y \in Im(T)$, entonces $\exists x$ tal que y = T(x), o sea, $y = \langle v, x \rangle v$. Como, $\langle v, x \rangle \in IR$ (es un escalar), es directo que $y \in \langle \{v\} \rangle$.
- \subseteq Tomemos ahora un tipo $y\in \langle \{v\}\rangle.$ Por definición, $\exists~a\in I\!\!R$ tal que y=av.

Para ver que $y \in Im(T)$ nos basta encontrar un x que cumpla $\langle v, x \rangle = a$, pues así T(x) = av = y.

Después de cranearnos un poco (o en su defecto golpearse la cabeza contra la pared), nos damos cuenta que basta tomar $x = \frac{av}{\|v\|^2}$, pues calculando

$$\langle v, x \rangle = \left\langle v, \frac{av}{\|v\|^2} \right\rangle = \frac{a}{\|v\|^2} \left\langle v, v \right\rangle = a$$

Por lo tanto, $y \in Im(T)$.

Para probar la otra igualdad usaremos la definición de Ker(T)

$$Ker(T) = \{x \in \mathbb{R}^n : T(x) = 0\} = \{x \in \mathbb{R}^n : \langle v, x \rangle v = 0\} = \{x \in \mathbb{R}^n : \langle v, x \rangle = 0\}$$

La última igualdad, pues sabemos que $v \neq 0$, por lo tanto el escalar que lo multiplica debe ser 0. Entonces

$$Ker(T) = \{x \in \mathbb{R}^n : \langle v, x \rangle = 0\} = \langle \{v\} \rangle^{\perp}$$

b) Esta parte huele a TNI, pues nos preguntan sobre dim(Ker(T)). Enunciemos el TNI aplicado a nuestro caso:

$$dim(\mathbb{R}^n) = dim(Ker(T)) + dim(Im(T))$$

Claramente, de la parte anterior, dim(Im(T)) = 1 y sabemos que $dim(\mathbb{R}^n) = n$, por lo tanto el TNI nos dice que

$$n = dim\left(Ker(T)\right) + 1$$

Luego,

$$dim(Ker(T)) = n - 1$$

- c) Veamos, que un vector w sea vector propio de T asociado a 0 significa que
 - (i) $w \neq 0$
 - $(ii) \ T(w) = 0 \cdot w^3$

Veamos, como los vectores $\{v_1, \ldots, v_{n-1}\}$ son base, entonces son todos no nulos, luego cumplen (i).

Por otro lado, nos dicen que esos vectores son base de $\langle \{v\} \rangle^{\perp} = Ker(T)$, con esto, $\forall i=1,\ldots,n-1$

$$T(v_i) = 0 = 0v_i$$

Es decir se cumple (ii). Luego, efectivamente los vectores $\{v_1, \ldots, v_{n-1}\}$ son vectores propios asociados al valor propio 0.

- d) Primero, sabemos que tenemos n vectores propios (la mínima cantidad de vectores que necesitamos para una base de \mathbb{R}^n):
 - $\{v_1, \ldots, v_{n-1}\}$ asociados al valor propio 0.
 - v es vector propio de T, pues se cumple

$$T(v) = \langle v, v \rangle v = \|v\|^2 v$$

en otras palabras, es vector propio de Tasociado al valor propio $\left\|v\right\|^{2}.^{4}$

³En particular, T(w) = 0, ie, $w \in Ker(T)$.

 $^{^4}$ Como observación, note que el espacio propio asociado es Im(T).

Pregunta: ¿Serán esos n vectores l.i.?

La respuesta es positiva, llamando $v_n = v$, consideremos una combinación lineal de $\{v_1, \ldots, v_n\}$ que valga 0

$$\sum_{i=1}^{n} \alpha_i v_i = 0$$

Queremos concluir que todos los α_i son 0, ie, $\forall i, \alpha_i = 0$.

Si aplicamos producto punto con v_n a ambos lados de la ecuación obtenemos:

$$\left\langle v_n, \sum_{i=1}^n \alpha_i v_i \right\rangle = \left\langle v_n, 0 \right\rangle$$

lo que, aplicando la linealidad del producto punto, es igual a

$$\sum_{i=1}^{n} \alpha_i \left\langle v_n, v_i \right\rangle = 0$$

Pero, como $\{v_1, \ldots, v_{n-1}\} \subseteq \langle \{v_n\} \rangle^{\perp}$ se obtiene

$$\alpha_n \left\| v_n \right\|^2 v = 0$$

como $v_n \neq 0$ se concluye $\alpha_n = 0.$ Así, la combinación lineal nos queda

$$\sum_{i=1}^{n-1} \alpha_i v_i = 0$$

Ahora, como $\{v_1, \ldots, v_{n-1}\}$ es un conjunto l.i. se concluye que el resto de los escalares también es 0.

Conclusión: Los n vectores son l.i., por lo tanto son una base de \mathbb{R}^n de vectores propios de T. Así, T es diagonalizable.

 $^{^5\}mathrm{ESto}$ es un truco muy usado para demostrar l.i, cuando hay ortogonalidad.