Clase Auxiliar $N^{\circ}1$ / Algebra Lineal / 07 Agosto 2008

Profesora: María Leonor Varas (Sección 5) Auxiliares: Sebastián Astroza & Diego Morán

P1 a) Demuestre que si A, B y $(A + B^{-1})$ son matrices invertibles, entonces $(A^{-1} + B)$ también es invertible y su inversa es $A(A + B^{-1})^{-1}B^{-1}$.

b) Sea la matriz de n filas y m columnas triangular superior a coeficientes reales siguiente:

$$C = \begin{bmatrix} 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 0 & \dots & 0 \\ \vdots & & \ddots & & & \vdots \\ & & \ddots & & & \vdots \\ & & \ddots & 1 & 1 & 0 \\ 0 & \dots & & 0 & 1 & 1 \\ 0 & \dots & & 0 & 0 & 1 \end{bmatrix}$$

Sea N = C - I. Demuestre que $N^n = 0$.

c) Demuestre que para las matrices C y N definidas en (b) se tiene que C es invertible y su inversa es $C^{-1} = I - N + N^2 - N^3 + \ldots + (-1)^{n-1}N^{n-1}$.

P2 Sea $M \in M_{m \times n}(\mathbb{R})$ una matriz tal que la matriz $(M^{\top}M) \in M_{m \times n}(\mathbb{R})$ es invertible. Definamos la matriz $P \in M_{m \times m}(\mathbb{R})$ como:

$$P = I_m - M(M^{\top}M)^{-1}M^{\top}$$

donde I_m es la matriz identidad de orden m.

a) Pruebe que $P^2 = P$. Muestre que PM = 0, donde $0 \in M_{m \times n}(\mathbb{R})$ es la matriz nula.

b) Pruebe que la matriz $(M^{\top}M)$ es simétrica y muestre que la matriz P es también secreta.

c) Pruebe que P no es invertible.

P3 Resuelva el siguiente sistema de ecuaciones:

 $\boxed{\mathbf{P4}} \text{ Sea } J \in M_{n,n}(\mathbb{R}) \text{ tal que } J = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix} \text{ y } e = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}.$

a) Pruebe que Je = ne y $J^2 = nJ$.

b) Sea $\alpha \neq 1/n$. Calcule β tal que $(I - \alpha J)^{-1} = I + \beta J$.

c) Sea $\alpha = 1/n$, verifique que $(I - \alpha J)e = 0$ y concluya que $I - \alpha J$ no es invertible.

Cosas sobre Matrices que podrían ser útiles...

■ Una Matriz es un rectángulo con numeritos.

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, \quad a_{ij} \in K \quad \forall i = 1, \dots, m \quad \forall j = 1, \dots, n$$

- Se denota también $A = (a_{ij})$ y se dice que $A \in M_{m,n}(K)$.
- También se puede escribir:

$$A = (A_{\bullet 1} A_{\bullet 2} \dots A_{\bullet n}) \qquad A = \begin{pmatrix} A_{1 \bullet} \\ A_{2 \bullet} \\ \vdots \\ A_{m \bullet} \end{pmatrix}$$

- Las Matrices se suman como usted se imagina.
- La multiplicación de Matrices es un poco más complicada. Si $A \in M_{m,r}(K)$ y $B \in M_{r,n}(K)$, se tiene que $C = AB \in M_{m,n}(K)$ es la matriz tal que:

$$c_{ij} = \sum_{k=1}^{r} a_{ik} b_{kj} \quad \forall i = 1, \dots, m \quad \forall j = 1, \dots, n$$

• Forma práctica de verlo (hacer dibujito también):

$$AB = (A(B_{\bullet 1})A(B_{\bullet 2})...A(B_{\bullet n})) \qquad AB = \begin{pmatrix} (A_{1\bullet})B \\ (A_{2\bullet})B \\ \vdots \\ (A_{m\bullet})B \end{pmatrix}$$

- Tenga Cuidado! En general $AB \neq BA$ (de hecho si $\exists AB$ no implica que $\exists BA$).
- $(M_{nn}(K), +, \bullet)$ es un anillo con unidad.
- Hay divisores del cero.
- No necesariamente existe A^{-1} .
- Si A y B son invertibles **no** implica que A + B es invertible.