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Abstract

A transport model that considers pore diffusion, external film resistance, finite kinetic rate and column dispersed flow, was used to
mathematically describe a frontal affinity chromatography system. The corresponding differential equations system was solved in a simple
and accurate form by using the numerical method of lines (MOL). The solution was compared with experimental data from literature and the
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nalytic Thomas solution. The frontal affinity chromatography of lysozyme to Cibacron Blue Sepharose CL-6B was used as a model system.
good fit to the experimental data was made with the simulated runs of the transport model using the MOL solution. This approach was used

o perform a parametric analysis of the experimental frontal affinity system. The influence of process and physical parameters on the frontal
ffinity chromatography process was investigated. The MOL solution of the transport model results in an unique and simple way to predict
rontal affinity performance as well a better understanding of the fundamental mechanisms responsible for the separation.

2004 Elsevier B.V. All rights reserved.
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. Introduction

Affinity chromatography is now an industrial standard
ethod used to economically purify high value proteins such

s enzymes, monoclonal antibodies, hormones, vaccines, cy-
okines and clotting factors, present at very low concentra-
ions in complex biological fluids such as liquid culture media
nd sera [1–4].

The conventional format for affinity separations is a
acked column of porous adsorbent operating in frontal mode
also known as fixed-bed affinity adsorption). Four steps are
nvolved in this operation mode: (1) adsorption, (2) washing,
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(3) elution and, (4) re-equilibration or regeneration. After the
adsorption step, non-adsorbed material is washed off with the
adsorption buffer, and then adsorbed solutes are eluted. Re-
covery is usually effected by changing the pH, ionic strength,
or chemical composition of the buffer. To reuse the column a
regeneration process must be conducted [5]. The key perfor-
mance criteria for frontal affinity processes are breakthrough-
curve sharpness and residence time at the adsorption stage.

The scale-up and optimization of affinity chromato-
graphic operations is of major industrial importance [6–8].
The development of mathematical models to describe affinity
chromatographic processes, and the use of these models in
computer programs to predict column performance is an en-
gineering approach that can help to successfully attain these
bioprocess engineering tasks [9]. An important requirement
of this methodology is a thorough understanding of the funda-
mental mechanisms underlying such separations in order to
develop realistic models based on basic physical and chemi-
cal principles or rate theories. The equations obtained through
this approach generally involve non-linear partial differential
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Nomenclature

a specific area/volume of the adsorbent particle
(m−1)

c0 initial protein concentration (mol/m3)
c protein concentration in the bulk liquid

(mol/m3)
ci protein concentration in the fluid of the pores

(mol/m3)
C dimensionless protein concentration in the

liquid
CD column diameter
dp adsorbent particle diameter (m)
DAB protein diffusivity in free liquid (m2/s)
DE = εiDi effective intraparticle protein diffusivity

(m2/s)
Di intraparticle protein diffusivity (free molecular

diffusivity/pore tortuosity) (m2/s)
DL column axial dispersion coefficient of the pro-

tein (m2/s)
F flow-rate (m3/s)
k1 adsorption rate constant (m3/(mol s))
k2 desorption rate constant (s−1)
kf external film mass transfer coefficient (m/s)
Kd equilibrium desorption constant, k2/k1
L column length (m)
P protein molecule
PS protein-active site complex
qi protein concentration in the adsorbed phase of

the adsorbent particles (mol/m3)
qm maximum equilibrium concentration, mol/m3

of solid volume of adsorbent
qms maximum equilibrium concentration, mol/m3

of settled volume of adsorbent
r radial distance in the adsorbent particle (m)
rm radius of adsorbent particle (m)
R dimensionless radius
S active site
t time (s)
T dimensionless residence time in the column,

υt/L

υ interstitial column velocity (flow-rate/bed
porosity-column area) (m/s)

X dimensionless protein concentration in the
liquid

z axial distance in the column (m)
Z dimensionless axial distance in the column

Greek letters
ε bed porosity
εi adsorbent particle porosity
µ solution viscosity (g/m s)
ρ solution density (g/m3)
τ dimensionless time, DEt/r

2
m

φ dimensionless protein concentration in the ad-
sorbed phase

Υ dimensionless separation factor
Γ dimensionless effluent volume

equations (PDE) that are not amenable to analytical solutions.
Computer programs need to be developed to solve these
models.

Analytical solutions have been obtained through the rate-
limited breakthrough approach which considered that only
one rate limiting step, i.e. either rate of interaction or rate
of diffusion (pore or film) is controlling the overall adsorp-
tion mechanism. The non-dispersive flow model is used in
the analysis. Chase [10] used the Thomas solution, which in-
volves Langmuir reaction kinetics as the rate-limiting step,
to predict the performance of affinity separations. Hall et
al. [11] have solved the non-dispersive model under the as-
sumption of irreversibility, very fast reaction (equilibrium)
and constant-pattern approach. These results were used by
Arnold et al. [1] in the analysis of affinity separations. The
applicability of these models is limited in the understanding
and accurate prediction of the performance of the chromato-
graphic process.

Hortsmann and Chase [12] used a two resistances model
with an infinitely fast reaction and non-dispersed flow within
the column, in modelling studies of the affinity adsorption
of immunoglobulin G to protein A immobilized to agarose
matrices. Numerical solution of the governing differential
equations was carried out by a finite difference method using
second order approximations in the space derivatives. The
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olution fitted well to the experimental data in almost all the
xperimental range. However, the method is impracticable
or the solution of transport models that include dispersed
ow and finite reaction rates.

Arve and Liapis [13] considered that the adsorption of a
olute from the bulk solution on the surface of the adsorbent
nvolves three discrete steps which contribute resistance to
he mass transfer: film diffusion, pore diffusion and reaction
inetics. This approach along with a column dispersed-flow
odel was used by Berninger et al. [14] to present a gen-

ralized model to predict the performance of complex chro-
atography systems. The model was solved using the method

f orthogonal collocation on finite elements.
Kempe et al. [6] used the three resistances model with col-

mn dispersed-flow for the simulation of affinity adsorption
f lysozyme to Cibacron Blue Sepharose CL-6B. The math-
matical model was solved applying the method of orthog-
nal collocation and an implicit numerical integrator based
n Gear′s method. Very good overlap was obtained with the
xperimental data, except at the end of the breakthrough
urve. This discrepancy increased as the experimental col-
mn length increased.
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The method of orthogonal collocation requires more
analytical work than the finite difference approach, and the
analytical work is rather specific for the problem at hand. Fur-
thermore, since the method generally uses linear polynomials
it might be expected that a relatively large number of grid
points has to be used to achieve accuracy in the PDE solution
comparable to a higher order finite difference method.

There are two main strategies for the solution of adsorp-
tion PDEs: global methods and methods of lines. Both time
and spatial derivatives are discretized in the so called global
methods. The numerical method of lines (MOL) is a mod-
ular and flexible approach to programming partial differen-
tial equations solutions. The solution of the partial differen-
tial equations is performed in two steps: the boundary value
derivatives are approximated by a discretization technique;
then the remaining initial value problem is handled with an
appropriate integrator. MOL has become the most widely
used solution technique for large-scale time-dependent par-
tial differential equations [15–18]. Although there are sev-
eral software packages that use this methodology to solve
two-dimensional problems, they are not usually easy to ap-
ply to adsorption equations, since adsorption is not described
by truly two-dimensional models, but rather by two-region
models [19].

In this work, a transport model that considers a dispersed
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lute is lost in the effluent, and (3) the processing time. This
is precisely the performance information needed to optimize
separation processing [1]. A mathematical model which can
be used to accurately predict this dynamic behavior provides
a practical way to obviate many experiments in the design
and scale-up of a frontal affinity process.

2.1. Physical model

Many frontal affinity chromatography systems of indus-
trial interest involve single-component adsorption. For this
reason, in this study the frontal affinity model is based on the
isothermal sorption of a single solute during flow through a
porous fixed-bed of diffusive adsorbent particles with an av-
erage radius, rm, and a porosity, εi, on which the ligand is
immobilized. In this analysis, the feed protein concentration
is, c0, the protein solution in the system has a transient con-
centration, c(z, t), with a constant interstitial flow-velocity, υ,
through the column, with height, L, and a void-bed porosity,
ε. The protein concentrations in the adsorbent fluid and solid
phases are, ci and qi, respectively.

To achieve a mathematical description of a frontal affinity-
chromatographic process, two major phenomena must be in-
cluded: matrix hydrodynamics must be assessed, as well as
the nature of the binding process itself. In this study, a trans-
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ow in the column and three consecutive transport rate re-
istances to ideal equilibrium separation: external film resis-
ance, particle internal diffusion and finite kinetic rate, is used
or the simulation of the adsorption step of a frontal affinity
hromatography process. Such models provide a general re-
listic description of almost all practical systems [20]. The
ork was oriented to show that an accurate solution of the

ransport model can be obtained using a simple numerical
olution.

The solution of the model was obtained using the numeri-
al method of lines. The solution was compared with experi-
ental data from the literature of the adsorption of lysozyme

o Cibacron Blue Sepharose CL-6B and the Thomas ana-
ytic solution of the lumped parameter column model [21].
he MOL solution of the transport model was used to per-

orm a parametric analysis of the experimental system. The
nfluence of process and physical parameters on the affinity
rocess was investigated.

. Frontal affinity chromatography model

During column operation in frontal mode the sample is
ed continuously into the column. For a short time the solute
n the feed is taken up almost completely, but after a while,
olute breakthrough occurs and the effluent concentration in-
reases with time. Much of the information needed to eval-
ate column performance is contained in these typical plots
f effluent concentration versus time or breakthrough curves
BTC). These curves can be used to determine: (1) how much
f the column capacity has been utilized, (2) how much so-
ort model that considers a dispersed flow in the column
nd three consecutive transport rate resistances to ideal equi-
ibrium separation is used for the simulation of the frontal
ffinity chromatography system.

The Fickian convective dispersion in the column is charac-
erized by the axial dispersion coefficient, DL. The transport
f protein is considered to involve the interfacial transport of
rotein to the outer surface of the adsorbent particles from
he bulk liquid through the adsorbent surrounding stagnant
lm characterized by the coefficient, kf , the diffusion in the
ore fluid described by an effective diffusion coefficient, DE,
nd the adsorption step of the protein with active sites on the
urface of the adsorbent. The intrinsic adsorption rate can
e described by different kinetic models. In this study, an
dsorption-desorption model of the Langmuir type is used.

.2. Transport model

Due to the nonlinear equilibrium that characterizes affin-
ty chromatography, adsorption behavior is best described
y rate theories. This engineering approach to modelling in-
olves the use of conservation equations, equilibrium laws
t interfaces, kinetic laws of transport and adsorption and,
nitial and boundary conditions.

To describe the concentration change of protein with time
t the column exit, the following equation can be derived by
solute mass balance in the fluid phase,

∂c

∂t
− DL

∂2c

∂z2
+ υ

∂c

∂z
= − 3

rm

(1 − ε)

ε
kf (c − ci)|r=rm (1)
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The equation to describe the change of concentration of
solute in the fluid of the adsorbent pores can be obtained by
a solute mass balance in the particle,

εi
∂ci

∂t
+ (1 − εi)

∂qi

∂t
= DE

(
∂2ci

∂r2
+ 2

r

∂ci

∂r

)
(2)

To describe the complex interactions between solute and
affinity adsorbent, simplified models are often used [1,10,12].
In general, a second-order reversible adsorption reaction is
considered, where the solute is assumed to interact with the
adsorbent by a monovalent interaction and characteristic con-
stant binding energy:

P + S � PS

where P is the protein in solution, S is the ligand adsorption
site and PS is the protein–ligand complex.

The rate of adsorption for this type of interaction is usually
represented as

∂qi

∂t
= k1ci (qm − qi) − k2qi (3)

where k1 and k2 are the adsorption and desorption rate con-

The frontal affinity model can be expressed in a
dimensionless form using the following dimensionless
variables:

C = c

c0
R = r

rm
T = υt

L
τ = DEt

r2
m

; φi = qi

qm
;

Pe = υL

DL
; Z = z

L
(11)

The corresponding dimensionless mass balance equations
are:

∂C

∂T
− 1

Pe

∂2C

∂Z2
+ ∂C

∂Z
= − 3

rm

(1 − ε)L

ευ
kf (C − Ci)|R=1

(12)

∂Ci

∂τ
+ (1 − εi) r2

mqmk1

εiDEc0
[c0Ci (1 − φi) − Kdφi]

= 1

εi

(
∂2Ci

∂R2
+ 2

R

∂Ci

∂R

)
(13)

the dimensionless adsorption rate,

∂φi

∂τ
= r2

mk1

DE
[c0Ci (1 − φi) − Kdφi] (14)
stant, respectively. At equilibrium Eq. (3) gives the form of
the Langmuir isotherm with equilibrium desorption constant
Kd = k2/k1 and maximum adsorption capacity qm.

At the beginning of the operation there is no protein
present in the system, therefore

at t = 0, c = 0, 0 ≤ z ≤ L (4)

at t = 0, ci = 0, 0 ≤ r ≤ rm (5)

at t = 0, qi = 0, 0 ≤ r ≤ rm (6)

The Danckwerts boundary conditions [22] are used to ac-
count for dispersion at the entrance of the column and com-
plete mixing with only convection flow at the end of the col-
umn, and given by, respectively

at z = 0, ευc|z=0 − εDL
∂c

∂z

∣∣∣∣
z=0

= ευc0, t > 0 (7)

at z = L,
∂c

∂z

∣∣∣∣
z=L

= 0, t > 0 (8)

Due to particle symmetry,

at r = 0,
∂ci

∂r

∣∣∣∣
r=0

= 0, t > 0 (9)

At the mouth of the particle pore,

at r = rm, kf (c − ci)|r=rm = DE
∂ci

∂r

∣∣∣∣
r=rm

, t > 0 (10)
and the dimensionless initial and boundary conditions,

at T = 0, C = 0, 0 ≤ Z ≤ 1 (15)

at T = 0, Ci = 0, 0 ≤ R ≤ 1 (16)

at T = 0, φi = 0, 0 ≤ R ≤ 1 (17)

atZ = 0,
∂C

∂Z

∣∣∣∣
Z=0

= Lυ

DL

(
C|Z=0 − 1

)
, T > 0 (18)

atZ = 1,
∂C

∂Z

∣∣∣∣
Z=1

= 0, T > 0 (19)

atR = 0,
∂Ci

∂R

∣∣∣∣
R=0

= 0, T > 0 (20)

atR = 1,
∂Ci

∂R

∣∣∣∣
R=1

= kfrm

DE
(C − Ci)|R=1 , T > 0 (21)

2.3. Numerical solution of the transport model

In this study, the model given by Eqs. (12)–(21) was solved
using the numerical method of lines (Fig. 1). The DSS2D dif-
ferential system simulator was used as the main program. It
calls subroutines INITAL and PRINT to set and print the
system initial conditions, respectively. Then subroutine IN-
TEG is called to cover one print interval of the solution. IN-
TEG in turn calls subroutine INT15 [which implements the
Runge–Kutta Fehlberg 45 (RKF45) formulas] to compute the
solution over the print interval. INT15 will, in general, call
subroutine DERV many times during the calculation of the
solution by numerical integration.



R.M. Montesinos et al. / Separation and Purification Technology 42 (2005) 75–84 79

The system of ordinary differential equations which ap-
proximates the PDEs are programmed in subroutine DERV.
This subroutine calls subroutine DSS034M to calculate the
two-dimensional spatial derivatives ∂Ci/∂R and ∂2Ci/∂R

2;
DSS034M in turn calls the one-dimensional subroutines
DSS004 and DSS044. To calculate the one-dimensional spa-
tial derivatives ∂C/∂Z and ∂2C/∂Z2, DERV calls directly
subroutines DSS004 and DSS044, which compute first and
second derivatives, respectively, using five-point, fourth-
order finite difference approximations [17].

To conduct the simulation studies, NR = 10 and NZ =
100 discretization points were used in the radial and axial
dimensions, respectively. A grid analysis was used to com-
pare the breakthrough curve sharpness using a different num-
ber of discretization points. Almost no effect was observed
with an increase in the number of discretization points in the

radial (NR = 20; NZ = 100) or in the axial (NR = 10 and
NZ = 150) direction. These comparisons produced a mean
square error of MSE = 1.63 × 10−9 and 4.38 × 10−6, re-
spectively. A significant increase in curve dispersion was

2.4. Lumped parameter model

The most general relation that has been developed to de-
scribe breakthrough behavior involves Langmuir reaction ki-
netics as the rate-limiting step and non-dispersive convective
flow through the column. It is known as the Thomas model
[21]. Without mass-transfer effects on column performance,
the overall rate of adsorption is only limited by the intrin-
sic adsorption kinetics. Another interpretation is that under
mass-transfer limitations all effects of internal and external
diffusion within and outside the beads as well as any dis-
persion in the column are lumped together with the kinet-
ics. This approach is useful when mass-transfer resistance by
pore-diffusion is relatively small. In this particular case, the
analytical solution of the non-dispersive model is expressed
as follows:

X = J (N/Υ,NΓ )

J(N/Υ,NΓ ) + [
1 − J(N,NΓ/Υ )

]
exp

[
(1 − 1/Υ )(N − NΓ )

] (22)

where

X = c

c0
(23)

Γ
εKdΥ (T − 1)

Υ

T

N

a

J

w
o
(
p
d

3

C
p
o
a

w
t

a

=
(1 − ε)qm

(24)

= 1 + c0

Kd
(25)

= υt

L
(26)

= (1 − ε)qmk1L

ευ
(27)

nd J is a two-parameter function of α and β, given by:

(α, β) = 1 − e−β

∫ α

0
e−ξIo(2

√
βξ) dξ (28)

here I0 refers to the zero-order modified Bessel function
f the first kind [23]. The analytical solution of Eqs. (22)–
28) (or Thomas model) was evaluated numerically for com-
arison with the numerical MOL solution and experimental
ata.

. Input data for the study

The adsorption of lysozyme to Cibacron Blue Sepharose
L-6B was chosen as the model system. The values of the
arameters utilized to conduct the simulation studies were
btained from the studies of Chase [10] and Kempe et al. [6]
nd are presented in Table 1.

To properly conduct this simulation, the experimental data
ere displaced one column residence time, because the time
in Chase’s paper is measured from the time at which non-
dsorbing species exit the column. In this work, t is measured
observed with a decrease in the number of discretization
points in the radial (NR = 5 and NZ = 100) or in the axial
(NR = 10 and NZ = 50) direction. In these comparisons, the
values of the mean square error where MSE = 6.30 × 10−5

and 0.179, respectively.
All the codes were incorporated in a Fortran 90 program

that was run in a Compaq Alpha Server ES40 DEC660 with
four CPU of 833 MHz. The computational time to obtain the
complete breakthrough curve was 70 min.

Fig. 1. Numerical method of lines solution scheme of the frontal affinity
transport model.
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Table 1
Base case data used in simulation studies of frontal affinity adsorption of lysozyme to Cibacron Blue Sepharose CL-6B (Chase [10] and Kempe et al. [6])

Variable Value

Inlet protein concentration c0 = 7.14 × 10−3 mol/m3

Flow-rate F = 1.67 × 10−8 m3/s

Column length L = 0.014, 0.027, 0.041, 0.104 m

Column diameter CD = 0.01 m

Bed porosity ε = 0.39

Bead porosity εi = 0.75

Bead radius rm = 5 × 10−5 m

Axial dispersion DL = 5.75 × 10−8 m2/s

Film mass-transfer rate kf = 6.9 × 10−6 m/s

Solution viscosity µ = 0.95 g/m.s

Solution density ρ = 1.0 × 106 g/m3

Lysozyme diffusivity in free liquid DAB = 1.06 × 10−10 m2/s

Effective diffusion coefficient DE = 5.3 × 10−11 m2/s

Adsorption rate constant (Transport model) k1 = 1.144 m3/(mol s)

Adsorption rate constant (Thomas model) k1 = 0.286 m3/(mol s)

Equilibrium desorption constant Kd = 1.748 × 10−3 mol/m3

Maximum adsorption capacity qms = 1.0 mol/m3

Maximum adsorption capacity of solid gel qm = 5.246 mol/m3

starting from the time at which the feed is introduced to the
front of the bed. This last definition is commonly used in
chromatography analysis because this time measurement is
independent of the size of the non-adsorbing species, which is
less ambiguous. The maximum adsorption capacity was cal-
culated with respect to bed porosity, ε, and available volume
to the protein as qm = 0.8 × qms/[(1 − ε)(1 − εi)].

In the analysis of the influence of bead diameter on the
affinity process the mass-transfer coefficient was estimated
using the Foo and Rice correlation [24],

Sh = 2 + 1.45Re
1/2
p Sc1/3 (29)

where

Sh = kfdp

DAB
, Sc = µ

ρDAB
, Rep = dp (ευ) ρ

µ
(30)

Also, as stated by Kempe et al. [6] the value of the Peclet
number was set to 1 and the axial dispersion coefficient was
calculated with the following expression:

Pe = υdp

DL
(31)

4. Results and discussion

The solution to the transport model for frontal affinity
chromatography of lysozyme to Cibacron Blue Sepharose
CL-6B was obtained using the MOL. This solution was com-
pared with the experimental data and with the analytical so-
lution of the lumped parameter model. Four column lengths
were considered: 0.014, 0.027, 0.041 and 0.104 m. The re-
sults are shown in Fig. 2.

Taking into account the four column lengths, the aver-
age of the residual sum of squares between model calcu-
lations and experimental data were 0.0192 ± 0.0089 and
0.1185 ± 0.0051 for the MOL and the Thomas solution, re-
spectively. A much better fit to the experimental data was
obtained using MOL solution with the base parameter val-
ues. In these computations, the kinetic parameter value was
set to k1 = 1.144 m3/mol s, since in the transport model this
is not a lumped parameter. The simulation runs with the
Thomas model using the value for the lumped parameter
k1 = 0.286 m3/mol s fitted fairly well to the experimental
data.

In order to study how the transport model solution is able
to account for variations in operating characteristics with
system parameters, a parametric analysis was performed
by overlaying frontal affinity curves from several computer
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Fig. 2. Transport and lumped kinetic parameter models compared with frontal affinity chromatography experimental data (Chase [10]). Operating conditions
according to Table 1. (◦) Experimental data. (—) Numerical method of lines solution of the transport model. (· · ·) Lumped parameter model. The column
lengths used were (a) 0.014 m (b) 0.027 m, (c) 0.041 m and (d) 0.104 m.

simulations, in which one parameter was changed while the
others were kept constant at the basic set of values in Table
1 and using a column length of L = 0.014 m. The effect of
inlet protein concentration and bead diameter is reported.

Upstream perturbations can initiate changes in process
inlet concentrations that are important for study. The inlet
protein concentration was changed using ±20 and ±40%
variations of the c0 = 7.14 × 10−3 mol/m3 base value. The
corresponding curves are shown in Fig. 3. An increased in-
let concentration gives an early and sharper breakthrough
curve. As the inlet concentration increases, the driving-force

nity b
ol/m

for the transport process is also augmented. This results in a
faster saturation of the adsorbent beads. When the beads be-
came saturated more rapidly, they will extract protein from
the mobile phase for a shorter time, resulting in a sharper
breakthrough curve. Hence, on this basis, it is more efficient
to apply solute at high concentration. The utilization of the
maximum capacity of the bed is greater at higher solute con-
centration as these conditions favor a greater extent of ad-
sorption at equilibrium. As reported by Chase [10], when
the dimensionless exit concentration of the column is plotted
against the adsorbent applied to the column, an effect is only
reakthrough behavior. Operating conditions according to Table 1 with the
3, (d) −20 and (e) −40%.
Fig. 3. Influence of the inlet protein concentration to the column on the affi
column length of L = 0.014 m: (a) +40%, (b) +20%, (c) c0 = 7.14 × 10−3 m
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Fig. 4. Influence of the bead diameter on affinity breakthrough behavior. Operating conditions according to Table 1 with the column length of L = 0.014 m:
(a) −80%, (b) −40%, (c) dp = 100 �m, (d) +40% and, (e) +80%.

noticed on the shape and position of the breakthrough curve
when the inlet concentration, c0, is comparable or smaller
than the desorption equilibrium constant, Kd. The shape and
position of the breakthrough curve becomes constant when
c0 >> Kd.

The process parameter of most interest is the bead diam-
eter. The bead diameter was changed using ±40 and ±80%
variations of the dp = 100 �m base value. The corresponding

Fig. 5. Variation of the dimensionless protein concentration in the bulk liquid

curves are shown in Fig. 4. A sharper breakthrough curve and
consequently a greater operation capacity is obtained as the
bead diameter decreases. It can also be noted from the figure
that this effect is less dramatic as the bead size decreases.
As particle diameter decreases the initial adsorption rate in-
creases markedly, since the diffusion time is decreased due to
the shorter diffusion path. At the same time the area/volume
ratio for a single particle (3/rm) increases, giving an increased
, c/c0, with the dimensionless column length, Z, and the real time, t.
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Fig. 6. Variation of the average dimensionless protein concentration in the adsorbent pore liquid, ci/c0, with the dimensionless column length, Z, and the real
time, t.

mass transfer area between the surrounding liquid phase and
the bead. Both factors contribute to the increase in total ad-
sorption rate.

The MOL solution of the transport model was also used to
describe in more detailed form the affinity chromatography
process, e.g. detailing the protein dimensionless concentra-
tion profiles in the bulk liquid at the column end, c/c0; in the

orbed

adsorbent pore liquid (average), ci/c0; and in the adsorbed
phase (average), qi/qm; as function of the dimensionless col-
umn length, Z, and the real time, t, (Figs. 5–7). The concen-
tration profiles in Fig. 5 are very symmetric suggesting the
importance of both liquid film and pore diffusion mass trans-
fer resistances in the adsorption process. The total column
equilibration occurs in about 150 min. The high slope of the
phase, qi/qm, with the dimensionless column length, Z, and the real time, t.
Fig. 7. Variation of the average dimensionless protein concentration in the ads
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curves in the 0.5 region indicates the additional contribution
of the dispersion to curve spreading. The film mass transfer
resistance and dispersion effect can also be observed in Fig. 6.
At the column entrance, the average protein concentration in
the adsorbent pore liquid reached the column inlet concen-
tration in about 40 min. Consequently, when comparing the
Figs. 5 and 6 profiles, an obvious positive concentration gra-
dient is always present along the adsorption process except at
the end when breakthrough occurs. The protein concentration
profile in the adsorbed phase shown in Fig. 7, reach a maxi-
mum value of 0.8 which is the concentration in the adsorbent
in equilibrium with the column inlet protein concentration,
in accordance with a Langmuir isotherm. Analogously, when
comparing the Figs. 6 and 7 profiles, a positive concentration
gradient is also present.

5. Conclusions

The performance of frontal affinity chromatography of
lysozyme to Cibacron Blue Sepharose CL-6B Sepharose was
successfully described with a three-resistances and column
dispersed flow model. Programming the model solution
was relatively simple using MOL. The parametric analysis
conducted helps to show the influence of both operation
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México under grant No. U39963Z and by the Programa
de Mejoramiento del Profesorado de la Secretarı́a de
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