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In economics, most of decision making is assumed to be done through some
optimization process. This note presents the basis to solve dynamic optimiza-
tion under certainty in continuous time. It also presents simple derivations of
the basic recipes. There are other frameworks for dynamic optimization, this
is the case of stochastic optimization and/or discrete time problems that will
not be discussed here.

The three methods shown here are the calculus of variations, the maximum
principle, and dynamic programming. Under some conditions, all the methods
yield the same solution and it is possible to interpret their connections.

Good exposition of dynamic optimization are in Dixit (1976) and Intriliga-
tor (1971). Somewhat more advanced is Kamien and Schwartz (1981), which is
also the basis for these notes. For a rigorous mathematical approach you can
see Fleming and Rishel (1975). Dynamic programming methods in discrete
time are developed in Bertsekas (1976), Sargent (1987) and Stokey and Lucas
(1989). Stochastic intertemporal optimization can be found in Fleming and
Rishel (1975).

These notes are written to show the simplest derivation of the basic results,
and they do not pretend to be a rigorous treatment of the topic. Rigor has
been sacrificed in favor of intuition. In particular discussions as existence,
uniqueness and sufficiency have been avoided in order to concentrate on the
basic tools. Readers interested in more details are encouraged to look at the
references for more details.

The general problem to be solved is the following:

[P.1]

max J ≡
∫ T

0
F (x(t), u(t), t)dt (1)
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subject to:

ẋ = G(x(t), u(t), t) (2)

Ψ(x(t), u(t), t) ≥ 0 (3)

x(t = 0) = x0 (4)

x(t = T ) = xT (5)

x(t) is the state variable. It defines the state of the system at time t, and its
motion is given by equation (2). For example, in many problems it represents
the capital stock, public debt, the stock of human capital, and in general stock
variables. In rational expectations models these are the variables that cannot
jump.

The variable u(t) is the control variable. It is piecewise continuous: It is
continuous in [0,T] except at a finite number of points t1, t2, . . . , tm which
belong to the interior of [0,T] and u(t) has right and left-hand finite limits
at each ti, for example: consumption, prices, and in many cases variables
associated with ẋ. The state variable is determined by the choice of the control
variable and the initial conditions. Given a value of x(t), once we decide u(t),
we are determining, through (2), the evolution of x(t), more precisely we
determine x(t+ dt), since u(t) and x(t) determine the change in x.

The presence of control and state variables is what makes a dynamic prob-
lem essentially different from a static problem. We cannot solve the problem
as a sequence of static problems. u(t) can be decided at each instant, but this
decision will affect the state of the system in the future, so it will not only
affect current returns but also future returns (in terms of J).

Equation (3) is a standard constraint, that in what follows it will be omitted.
T can be∞, but we will present everything for finite T , highlighting the main
changes when the optimization is until infinity. We also could consider a
“free terminal conditions problem.” In this case xT and or T are optimally
determined instead of given exogenously.
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1 The calculus of variations

This special case can be applied when there is one state variable and we can
write u(t) as a function of x(t), ẋ(t) and t. That is, we can transform the G(·)
function to:

u(t) = H(x(t), ẋ(t), t)

Without loss of generality we can consider u(t) = ẋ(t), so G(·) = u(t). That
is, the control variable is ẋ(t).

Then [P.1] becomes:

[P.2]

max J ≡
∫ T

0
F (x(t), ẋ(t), t)dt (6)

subject to:

x(t = 0) = x0 (7)

x(t = T ) = xT (8)

Now, we can solve the problem, i.e. we find some differential equation (or
in general a system) that together with the endpoint conditions characterize
the optimal function for x. Call this optimum x(t), we solve the problem by
considering an “admissible variation” of x(t). An admissible variation is a
class of functions (continuously differentiable) such that satisfies the endpoint
conditions (see figure 1).

The function x̃(t) is an admissible variation and then can be written as:

x̃(t) = x(t) + εh(t)

where ε ∈ < and h(t) is a continuously differentiable function that satisfies the
following restriction: h(0) = h(T ) = 0. Then, J(ε) is:

J(ε) ≡
∫ T

0
F (x(t) + εh(t), ẋ(t) + ε(ḣ), t)dt (9)

by assumption J(ε) is maximized at ε = 0, because x(t) is the optimum path
for x(t). Therefore:

dJ(ε = 0)
dε

= 0 (10)
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Figure 1: Admissible Functions

Differentiating (9) we have:1

dJ(ε = 0)
dε

=
∫ T

0

[
Fx(x, ẋ, t)h(t) + Fẋ(x, ẋ, t)ḣ(t)

]
dt = 0 (11)

The problem with equation (11) is that we have h and ḣ in the integral, so
we cannot go further unless we are able to transform this expression. To have
only h in the integral we can solve the second term in the integrand using
integration by parts: ∫

udv = uv −
∫
vdu

Choosing u = Fẋ then du = Ḟẋdt. On the other hand dv = ḣdt, then v = h.
Therefore: ∫ T

0
Fẋḣdt = hFẋ

∣∣∣∣∣
T

0

−
∫ T

0
hḞẋdt (12)

Since h(0) = h(T ) = 0, the first expression at the RHS of (12) is zero, and
consequently (11) becomes:

dJ(ε = 0)
dε

=
∫ T

0

[
Fx − Ḟẋ

]
h(t)dt (13)

1Note that the fact that ε = 0 is embodied in the argument of the function F and its
partial derivatives. Partial derivatives are denoted by subscripts.
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At ε = 0 J is maximized, hence the integral in (13) has to be zero for any
function h(t) that is zero at the endpoints. Therefore the expression in square
brackets has to be zero, which yields the fundamental equation of calculus of
variations, “the Euler equation”:

Fx = Ḟẋ (14)

recall that because “dots” are derivatives with respect to time, hence, the
Euler equation can be written as:

∂F

∂x
=
d[∂F/∂ẋ]

dt

What the method of the calculus of variation intuitively does is to trade off
some x today for having more x tomorrow (admissibility). At the optimum,
the cost of doing this today is equal to the benefits achieved tomorrow. A
good example of this reasoning is in Blanchard and Fischer (1989) pp. 41-43,
when they discuss the optimality of the Ramsey rule. This kind of argument
is easy to apply to discrete time problems, so we can obtain directly the first
order conditions. For a good example you can see Mankiw, Rotemberg and
Summers (1985).

2 Pontriagyn’s Maximum Principle, Optimal Control,

or “Hamiltonians”

We can handle also more general problems, like:

[P.3]

max J ≡
∫ T

0
F (x(t), u(t), t)dt (15)

subject to:

ẋ = G(x(t), u(t), t) (16)

x(t = 0) = x0 (17)

x(t = T ) ≥ xT (18)
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Note that the terminal state is free to take any value greater than xT ,
which in many cases we may think is zero. In contrast with the problem in
the previous section, this simplification will make easy the solution and at the
same time allows us to discuss the role of the transversality conditions. In
the calculus of variation, we can assume also a free terminal state, although
we would need an additional condition. That condition is obtained using a
variation around the optimal xt.2

To solve this problem, let us write the Lagrangian:

L =
∫ t

0
[F (x(t), u(t), t) + λ(t)[G(x(t), u(t), t)− ẋ(t)]] dt

+η0(x0 − x(0)) + ηT (xT − x(T )) (19)

λ(t) is called costate variable and later on we will interpret its meaning, that as
you may guess it is related to some shadow price. η0 and ηT are the lagrange
multipliers associated to constraints (17) and (18).

We are interested in knowing the optimal path for u(t) and x(t). However,
in the Lagrangian we have ẋ(t). Then, in order to have L as a function of only
u(t) and x(t), and not their time derivatives, we can use again integration by
parts. Using u = −λ and dv = ẋdt, we have:∫ T

0
−λ(t)ẋ(t)dt = −λ(t)x(t)

∣∣∣∣∣
T

0

+
∫ T

0
x(t)λ̇(t)dt

Hence the lagrangian becomes:

L =
∫ t

0

[
F (x(t), u(t), t) + λ(t)G(x(t), u(t), t) + λ̇(t)x(t)

]
dt

+λ(0)x0 + λ(T )x(T ) + η0(x0 − x(0)) + ηT (xT − x(T )) (20)

Now we can differentiate the lagrangian with respect to u(t) and x(t) and
equate to zero:

∂L
∂u

= Fu + λGu = 0 (21)

∂L
∂x

= Fx + λGx + λ̇ = 0 (22)

2For details see Kamien and Schwartz (1981), part I, section 9.
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At the extreme values, we have the following necessary conditions:

λ(0) = −η0 and λ(T )) = ηT

Finally, by Kuhn-Tucker’s complementary slackness we have the following
transversality condition (TVC):

λ(T )(x(T )− xT ) = 0

In the particular case that xT is zero, this condition becomes:

λ(T )x(T ) = 0

so for x(T ) > 0, λ(T ) = 0 and for x(T ) = 0, λ(T ) ≥ 0. If x(T) were xT > 0,
the transversality condition would be λ(T ) = 0.

When T goes to infinity, this transversality condition is:3

lim
T→∞

λ(T )x(T ) = 0

Before providing the intuition for the transversality condition, we will first
interpret λ(t). At the optimum, L = J , therefore λ(0) and λ(T ) are:

∂J

∂x0
= λ(0)

∂J

∂xT
= −λ(T )

Then, λ(0) is the marginal value of having one more unit of x at the begin-
ning. λ(T ) is the marginal loss of leaving one more unit of x at the end of the
planning horizon. Thus, they are shadow values. In general, using Bellman’s
principle of optimality (see section 3), λ(t) can be interpreted as the shadow
value of x(t).

The intuition for the TVC is that at T the value of what is left is zero. When
one unit of x at T is valuable in terms of the objective function (λ(T ) > 0),
it is driven to its minimum feasible value, xT . When some x in excess of
xT is left, it is because it has no value (λ(T ) = 0). The importance of the

3The transversality condition in infinite horizon is not always necessary. For further discussion in infinite
horizon, see Benveniste and Scheinkman (1982), Michel (1982) and references therein.
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TVC is that rule out many trajectories that satisfies the system of differential
equations given by (21), (22), and (16). In fact, it is important in finding a
unique optimal path.

Equations (21), (22), the constraint (16) and the TVC describe the system
for λ, x and u. So, you may wonder where is the hamiltonian. The hamiltonian
is a function that makes easy to solve for the optimal conditions, and is defined
as:

H = F (x, u, t) + λ(t)G(x, u, t) (23)

so it consists of the first two terms inside the integral of the lagrangian (19),
that is: “L =

∫
H + something else.” Note that:

∂H
∂u

= Fu + λGu

∂H
∂x

= Fx + λGx

comparing these two expressions with (21) and (22) we can see that the nec-
essary conditions for optimality can be written as:

∂H
∂u

= 0 (24)

∂H
∂x

= −λ̇ (25)

which are of course very easy to remember: the partial derivatives of the
hamiltonian with respect to the control variables are zero, and the partial
derivatives with respect to the state variable are minus the derivative of the
costate variable with respect to time. Finally, you may note that the partial
derivative of H with respect to the costate variable is equal to G(·), which is
the rate of accumulation of x:

∂H
∂λ

= ẋ (26)

so it recovers the constraint. Therefore the final system of differential equations
that characterize the optimal solution is given by (24), (25) and (26), and the
two endpoint conditions.

To analyze in more detail the solution in many applications it is possible
from (24) to obtain u(t) as a function of λ(t) and x(t). Then we can substitute
this expression in (25) and (26). These two equations will conform a system
of two differential equations for x(t) and λ(t). In addition, the endpoints
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conditions: x(t = 0) = x0, and λ(T )(x(T ) − xT ) = 0, will give us description
of the system of differential equations.

With our three equations we can find a relation between u̇ and λ, so instead
of having a system for x and λ (capital and q in investment models), we can
have one for u and x (consumption and capital in Ramsey). Of course, a phase
diagram may help to understand the solution without solving analytically the
system of differential equations.

The connection with calculus of variations is simple: The Euler equation
is a simple representation of (24) and (25) without going through the costate
variable. You may check that using the maximum principle to [P.2] we obtain
the Euler equation.

The maximum principle can be derived using a variation on the optimal
path. However, a variation on the control variable will not imply a straight-
forward variation on the state variable, because they are linked through the
general function G. In contrast, in the calculus of variation u = ẋx. Finally,
the second order necessary conditions for a maximization problem is Huu ≤ 0.

Most intertemporal problems in economics involve discounting, so it may be
useful to define the current value of the costate variable, instead of its present
value. Consider the following version of the function F (·) in [P.3]:

F (x(t), u(t), t) ≡ e−ρtf(x(t), u(t))

We can write the hamiltonian as:

H = [f(x, u) + λ′(t)G(x, u, t)]e−ρt (27)

λ′(t) is called the current value of the costate variable and the expression in
square brackets is called the current value hamiltonian (H′):

λ(t) = λ′(t)e−ρt and H(t) = H′(t)e−ρt

then, the necessary conditions can be made in terms of the current values.
Substituting the current values in the optimal conditions (24) and (25) we
obtain:

∂H′

∂u
= 0 (28)

∂H′

∂x
= λ̇′ + ρλ′ (29)
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and the TVC for the case of xT = 0:

λ′(T )e−ρTx(T ) = 0

When there is discounting, it is very convenient to write the hamiltonian
as in (27), because F (·) is valued at time t. However it is enough to remember
(24) and (25), writing the last condition as ∂H/∂x = d(λ′(t)eρt)/dt, and e−ρt

will cancel out at both sides of the equation.

3 Dynamic Programming

The method of dynamic programming is based on Bellman’s Principle of op-
timality:

“An optimal policy has the property that whatever the initial
state and decisions are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first deci-
sion” (Bellman, 1957).

Let us denote an optimal path of u for the period [0, T ] by u∗(t) and denote
by x∗(t) the evolution for the state variable associated to this optimal policy
and the initial state. Take a period [t1, T ], such that t1 > 0. If the initial
state at t1 is x∗(t1), Bellman’s principle tell us that the optimal policy for this
period will still be u∗(t) for [t1, T ]. Therefore, no matter what has happened
in the pass, given the “right” initial condition, the optimal policy is the same.

Bellman’s principle is not always valid. This is the case of time inconsistency
(e.g. Kydland and Prescott, 1977), where the optimal policy at 0 is no longer
optimal starting at t1 with x∗(t1). However, for our purposes, we will assume
that the principle is valid in our problem.

To derive the solution to the dynamic programming problem define the
optimal value function at time t0 and with initial state x0 :

V (t0, x0) = max
u

∫ T

t0
F (t, x, u)dt
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subject to:
ẋ = G(x, t, u)

we can write:

V (t0, x0) = max
u

∫ t0+∆t

t0
F (t, x, u)dt+

∫ T

t0+∆t
F (t, x, u)dt (30)

the first integral is to a first order Taylor approximation F (x0, t0, u)∆t. By
Bellman’s principle the second integral is V (t0 + ∆t, x0 + ∆x), which to a first
order Taylor approximation is V (x0, t0) + Vt(x0, t0)∆t + Vx(x0, t0)∆x. Using
these two approximations in (30), dividing by ∆t and taking the limit ∆t→ 0,
we have:

−Vt = max[F (t, x, u) + VxG(t, x, u)] (31)

the fundamental partial differential equation (for V (x, t)) of dynamic program-
ming, known as “Bellman equation.” With known forms for F (·) and G(·) we
can maximize the expression at the RHS of (31) and then substitute back the
optimal value of u as function of x and t to have a partial differential equation
for V (x, t).

The relation between dynamic programming and optimal control is found
identifying the hamiltonian as follows:

H = F (x, t, u) + VxG

assuming that λ = Vx . Maximizing (31) with respect to u we obtain:

Fu + VxGu = 0 ⇔ Hu = 0

which shows the equivalence between the condition implicit in the Bellman
equation and condition (24) from the maximum principle.

Because the Bellman equation holds for all x when u is set optimally, we
can differentiate the Bellman equation with respect to x to obtain equation
(25) of the maximum principle:

−Vtx = Fx + VxxG+ VxGx (32)

known as Hamilton-Jacobi equation. Substituting in (32): V̇x = Vxt + VxxG

we finally obtain an equivalent to (25):

V̇x = −(Fx + VxGx) ⇔ Ḣ = λ̇
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This last equation shows also that in fact λ is equal to Vx. Therefore, the
interpretation of the costate variable in the hamiltonian is immediate: the
marginal value of x at time t.

A particular and common problem in dynamic optimization in economics
is the so called “infinite horizon autonomous problem”, which corresponds to:

V (t0, x0) = max
u

∫ ∞
0

f(x, u)e−ρ(t−t0)dt

subject to:
ẋ = g(x, u)

it is called autonomous because its only dependence on time is through dis-
counting. Define:

W (x) = V (x, t)/e−ρt ∀(x, t)

so W (x) is the optimal current value function. To write the Bellman equation
in terms of W (x) we have that:

Vt(x, t) = −ρW (x)e−ρt

Vx(x, t) = W ′(x)e−ρt

and thus (31) becomes:

ρW (x) = max
u

[f(x, u) +W ′(x)g(x, u)] (33)

This equation has a simple interpretation in terms of arbitrage or indiffer-
ence condition at the optimum. Let us consider a discrete time approximation
of (33):

ρW (x)∆t ' max
u

[f(x, u)∆t+ ∆W (x)]

the LHS corresponds to the flow of interest accrued during Dt (annuity value of
the optimal policy in (33)). The RHS is the best that an optimal deviation from
that policy during ∆t can do: to obtain a reward of f during the deviation
period plus a capital gain which is due to the change in the optimal value
caused by the choice of u. At the optimum both alternatives should yield the
same value.

12



References

Bellman, R. (1957), Dynamic Programming, Princeton N.J.: Princeton Uni-
versity Press.

Benveniste, L. and J. Scheinkman (1982), “Duality theory for dynamic opti-
mization models of economics: the continuous time case,” Journal of Eco-
nomic Theory, 27: 1–19.

Bertsekas, D. (1976), Dynamic Programming and Stochastic Control, New
York: Academic Press.

Blanchard, O. and S. Fischer (1989), Lectures on Macroeconomics, Cam-
bridge, Mass.: MIT Press.

Dixit, A. (1976), Optimization in Economic Theory, London: Oxford Univer-
sity Press.

Fleming, W. and R. Rishel (1975), Deterministic and Stochastic Optimal
Control, New York: Springer-Verlag.

Intriligator, M. (1971), Mathematical Optimization and Economic Theory,
Englewood Cliffs, N.J.: Prentice Hall.

Kamien, M. and N. Schwartz (1981), Dynamic Optimization: The Calculus
of Variations and Optimal Control in Economics and Management, Ams-
terdam: North Holland.

Kydland, F. and E. Prescott (1977), “Rules rather that discretion: the incon-
sistency of optimal plans,” Journal of Political Economy, 85: 473–491.

Mankiw, G., J. Rotemberg and L. Summers (1985), “Intertemporal substitu-
tion in macroeconomics,” Quarterly Journal of Economics, 100: 225–253.

Michel, P. (1982), “On the transversality condition in infinite horizon optimal
problems,” Econometrica, 50: 975–986.

Sargent, T. (1987), Dynamic Macroeconomic Theory, Cambridge, Mass.: Har-
vard University Press.

Stokey, N. and R. Lucas, with the collaboration of E. Prescott (1989), Recur-

13



sive Methods for Economic Dynamics, Cambridge, Mass.: Harvard Univer-
sity Press.

14


