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1. Introduction

New Keynesian Business Cycle models have received widespread attention in

the macroeconomics of the last two decades, both as a tool for business cycle ac-

counting, but also as a laboratory that underlies monetary policy discussions. At the

heart of these models lies the assumption that individuals goods prices are sticky. In

theory nominal price stickiness is typically motivated by menu costs: physical costs

of changing price tags, reprinting catalogues, menus and other costs of communicat-

ing price changes to consumers. In practice, however, most of these models do not

explicitly model the source of nominal price stickiness, but rather postulate that the

timing of price changes is exogenous. Although their micro-foundations are not com-

plete1, these, so-called time-dependent, models continue to be widely studied, partly

because of their computational simplicity, and partly because of the conjecture that

they are a good reduced-form approximation to models in which price stickiness arises

endogenously, from physical adjustment costs2.

Whether this conjecture is indeed true is still an open question. The predictions

of models in which price stickiness arises endogenously, due to menu costs, range from

stark monetary neutrality3 to cases in which the economy is virtually indistinguishable

from time-dependent setups4. Golosov and Lucas (2003) study the properties of a

model with firm-level disturbances capable to match the fact that the average size of

price changes is large in the US economy: 10% on average, much larger than what

can be explained by aggregate shocks alone. They find that the model produces very

little output volatility from monetary shocks. Klenow and Kryvtsov (2004) reach

1See Bonomo and Carvalho (2004) and the references therein for models of endogenous time-
dependent pricing.

2Seminal contributions include Barro (1972) and Sheshinski and Weiss (1977, 1983).
3Caplin and Spulber (1987), Caballero and Engel (1993), Golosov and Lucas (2004), Gertler and

Leahy (2005).
4Klenow and Kryvtsov (2004), another version of the model in Gertler and Leahy (2005). See

also Burstein (2003), Dotsey, King and Wolman (1999), Danziger (1999), Caplin and Leahy (1991)
for studies that explore the consequences of fixed costs of resetting prices.
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an opposite conclusion. They document that there is little evidence of across-firm

synchronization in the US price data, contrary to what standard menu cost models

predict. A model with time-varying costs of price adjustment that can replicate this

feature of the data behaves identically to a time-dependent sticky price model and

produces large output variability from monetary disturbances.

This paper revisits the question of whether menu costs of price adjustment can,

in fact, generate a monetary transmission mechanism. I start by documenting several

salient micro-economic features that characterize firm pricing behavior using a set of

scanner price data collected in grocery stores. In addition to the large frequency and

magnitude of price changes, documented by Klenow and Kryvtsov (2004), I document

three additional features of the data. First, a large number of non-zero price changes

are small in absolute value. Second, the distribution of price changes, conditional

on adjustment, exhibits excess kurtosis. Finally, prices of goods sold by a particular

retailer, especially those in narrow product categories, tend to adjust simultaneously.

The first two facts seem, at a first glance, inconsistent with menu-cost models.

Firms that face fixed costs of adjustment only reprice when the losses from not doing

so are large, and thus tend to do so by a large amount. As Lach and Tsiddon (2005)

argue, however, extensions of the menu-cost model to a multi-product setting in

which firms face interactions in the costs of price adjustment of various goods5 can

explain the large number of small price changes. Consider the extreme example of a

restaurant whose prices are quoted on a single menu. If a single item on the menu

is subject to a idyosincratic disturbance and needs repricing, the restaurant might

find it optimal to pay the fixed cost and reprint the menu. Conditional on having

payed this fixed cost, changing any other price on the menu is costless: the restaurant

will then reprice all its other items, even for products that need small price changes.

Indeed, the within-store synchronization observed in the data is indeed consistent

5See also Sheshinski and Weiss (1992).
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with the presence of cost complementarities in the technology of price adjustment.

I next formulate, calibrate and quantitatively study the properties of a model

in which a two-product firm faces a fixed cost of changing its entire menu of prices,

but, conditional on paying this cost, zero marginal cost of resetting any given price on

the menu. I calibrate the distribution of idiosyncratic marginal cost shocks, the size

of the fixed costs of price adjustment, as well as the persistence of the marginal cost

processes, by requiring the model to accord with the features of the data enumerated

above. I find that the model, because of its ability to replicate this additional set of

micro-economic facts, can generate aggregate fluctuations of the same magnitude as

in time-dependent economies.

To understand the intuition behind this result, recall that the reason standard

menu-cost models with large idiosyncratic uncertainty generate smaller real effects

from monetary disturbances than their time-dependent counterparts is the fact that

the identity of adjusters in models with menu costs varies endogenously in response

to aggregate disturbances. Most firms that adjust in times of, say, a monetary ex-

pansion, are firms whose incentive to increase prices arising from the aggregate shock

is reinforced by an idiosyncratic disturbance that triggers a desired price change in

the same direction. The money shock thus affects the aggregate price level through

two channels: by increasing the desired price change of the adjusting firms, but also

by changing the mix of adjusters towards firms whose idyosincratic shocks call for

larger price increases. This latter selection effect, is absent, by assumption, in time-

dependent models, and ensures that the aggregate price level is more responsive to

nominal shocks. Its strenght depends however on the mass of firms in the economy

whose desired price changes lie in the neighborhood of the adjustment thresholds, a

property of the economy that depends on higher-order moments of the distribution

idiosyncratic disturbances in the economy.

I find that matching the excess kurtosis of price changes and the large number
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of small price changes observed in the data requires that the distribution of idyosin-

cratic disturbances be highly leptokurtic. This feature of the calibration, as well as

the fact that the adjustment hazard is positive even for goods whose desired price

changes are close to zero, because of the cost complementarity in the price adjustment

technology, reduces the role of self-selection and therefore the responsiveness of the

aggregate price level to monetary shocks.

I proceed as follows. Section 2 discusses the data used in the empirical work,

and documents its salient features. Section 3 discusses the model economy. Section 4

quantitatively evaluates its performance. Section 5 concludes. Appendices discuss the

non-linear solution techniques used to solve the functional equations that characterize

the equilibrium of the model economy and several aspects of the data in more detail.

2. Data

I conduct inference using two sources of publicly available sets of scanner price

data, maintained by the Kilts Center for Marketing at the University of Chicago

Graduate School of Business6. The first dataset was assembled by AC Nielsen and

consists of daily observations on the purchasing practices of a panel of households in

Sioux Falls (South Dakota) and Springfield (Missouri). I use this household level data

to construct a panel of weekly price series spanning more than two years (January

1985 to March 1987), 31 stores and 115 products in six different product categories

(ketchup, tuna, margarine, peanut butter, sugar and toilet tissue)7.

The second source of data is a by-product of a randomized pricing experiment

conducted by the Dominick’s Finer Foods retail chain in cooperation with the Chicago

GSB. Nine years (1989 to 1997) of weekly store level data on the prices of more than

4500 products for 86 stores in the Chicago area are available. The products available in

6The data is available online at http://gsbwww.uchicago.edu/kilts/research/index.shtml
7The actual number of observations is larger in the original dataset, but I discard stores/goods

with a large number of missing observations. The criteria for inclusion in the sample are discussed
in the appendix.
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this database range from non-perishable foodstuffs (frozen and canned food, cookies,

crackers, juices, sodas, beer), to various household supplies (detergents, softeners,

bathroom tissue), as well as pharmaceutical and hygienic products.

I discuss, in a data appendix, several aspects regarding the construction of

price series. In particular, I time-aggregate weekly data into monthly observations in

order to calculate statistics that can be used to evaluate the performance of a model

economy in which the length of the period is a month. For Dominick’s data, which

sets prices on a chain-wide basis, I construct a chain-wide price using the price of

the store that has the least number of missing observations for a particular good.

Following Golosov and Lucas (2003), I filter out temporary price cuts (sales) that

last less than four weeks. I could alternatively incorporate into the model some of the

frictions that have been proposed to explain this pattern of retail price variation8, but

this would increase the model’s complexity considerably, without producing additional

insights. In particular, as I document below, none of the empirical facts I am about to

document are an artifact of my decision to purge the data of sales and time-aggregate

the data.

A. The Size and Frequency of Price Changes

Figure 1 presents histograms of the distribution of price changes, log
(

pt

pt−1

)
,

conditional on adjustment, for the two sets of data, pooled across all goods/stores/months

in each sample9. I truncate these distributions, by eliminating the top and bottom 1%

of observations, in order to ensure that results are not driven by outliers. Superim-

posed on each histogram is the density of a normal distribution with the same mean

and variance as that of the distribution of price changes. Table 1 reports moments

of these distributions, again computed using the truncated sample of observations.

8Informational frictions on consumer’s side of the market (Varian 1980), demand uncertainty
(Lazear 1986), or thick-market explanations (Warren and Barsky, 1995), to name a few.

9These histograms and the statistics reported below are unweighted. Weighting goods by average
(across time) sales shares within a store produces very similar results.
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Several facts emerge in the data.

Fact 1: A large number of price changes are small in absolute value.

Consistent with the evidence presented by Klenow and Kryvtsov (2004), the

average size of price changes is large10: stores in the AC Nielsen data adjust prices by

10.4% on average, while those in Dominick’s sample do so by 7.7%. Notice however,

in Figure 1, that a large number of price changes are close to zero. I define, in the

data and in the model of the next section, a “small” price change as any price change

whose magnitude is less than one-half of the mean of the absolute value of price

changes in the data. Roughly 30% of price changes in both datasets are below this

cutoff (5.2% and 3.8%, respectively).

Fact 2: The distribution of price changes exhibits excess kurtosis.

Notice, in Figure 1, that the number of price changes in the vicinity of zero

is greater than that predicted by a normal distribution, while the tails are somewhat

fatter. As Table 1 indicates, the kurtosis of price changes is 3.5 and 5.4, respectively,

larger than that of a Gaussian distribution11.

None of these features of the data are an artifact of my decision to focus on

regular price changes. The kurtosis of all (including temporary price cuts) monthly

price changes (again excluding the top and bottom 1% of observations) is 4.6 and

3.9 in the AC Nielsen and Dominicks data, respectively. Moreover, 34% and 40% of

price changes are less than half the mean of the absolute value of price changes in the

sample12.

Fact 3: Prices in narrow product categories within a store tend to adjust si-

10The excessive volatility of individual goods’ prices has also been documented for countries other
than the US. See Dhyne et. al (2005) for a survey of findings from studies of European micro-price
data.

11Kurtosis is defined as the ratio of the fourth central moment to the square of the variance. The
kurtosis of the normal according to the convention I employ is then equal to 3.

12The average size of a price change is 14.3% and 13.3% in the AC Nielsen and Dominick’s data
respectively if I include price changes arising due to temporary price cuts.
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multaneously.

I establish that prices within a store adjust in tandem using a reduced-form

discrete-choice specification in which I model each product’s price adjustment decision

as a function of variables that proxy for marginal cost disturbances, as well as variables

that capture the price adjustment decisions of other products sold by a store. To be

clear, no attempt is made to identify causality or the source of synchronization here:

the exercise below is simply a statistical description of the extent to which price

changes within a store are synchronized.

Assume that the good’s optimal price is p∗it = γcit + uit, where cit collects

all observable components of a good’s marginal cost. Assuming that the firm sets

pit = p∗it every time it adjusts, and that it adjusts whenever pit − p∗it /∈ [sit, Sit], the

firm’s price adjustment decision is

xit =


1, if γ∆cit + ∆uit > Sit

0, if sit 6 γ∆cit + ∆uit 6 Sit

−1, otherwise

where, say, γ∆cit = γcit − γciτ is the growth rate of the product’s marginal cost

since the previous price adjustment13, and the sign of xit denotes the direction of the

price change, if any. I assume that ∆uit ∼ N(0, 1) as the model’s scale and location

are unidentified. I use the wholesale price of a particular product (Dominick’s) or

the average price of a store’s competitors (AC Nielsen where wholesale price data is

unavailable) as a proxy for the marginal cost of selling a good, in addition to the

hourly wage rate in the retail sector and the energy and food CPIs to proxy for

economy-wide disturbances to a product’s desired price.

13Cecchetti (1986) employs a similar (one-sided) model in order to study the price adjustment of
magazine prices.
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To quantify the extent to which price changes within a store are synchro-

nized, I parameterize the upper and lower thresholds as linear functions of three mea-

sures of within-store synchronization: (i) the fraction of all remaining goods within a

store whose prices change in a given month; (ii) the proportion of price changes in

a particular good-category (data on 29 product categories, ranging from analgesics

to toothpastes is available for Dominick’s and 6 categories for AC Nielsen ); (iii) the

proportion of prices of goods produced by the manufacturer of the product in ques-

tion that experience a price change14, as well as (iv) the proportion of prices of this

particular product that are changed in all remaining stores15. All these measures of

synchronization are computed based on the adjustment decision of all goods other

than i in a given group, and I exclude those observations for which any of these

statistics are calculated based on fewer than five observations in a given period.

These measures of within-store synchronization make intuitive sense. Levy,

Dutta, Bergen and Venable (1998) use store-level data for five supermarket chains

and report the steps undertaken during a price change process. They report that the

bulk (60%) of the labor effort used to adjust prices is spent on price tag changes and

verification, of which most time (50-60%) goes into finding specific items on shelves.

One would thus expect that economies of scope in changing prices are larger for

products located in adjacent shelves/aisles. An ideal measure of relevant within-store

synchronization would then be the fraction of prices adjusted in a given aisle. In the

absence of such data, I use the fraction of price changes within a category group,

or produced by a given manufacturer, as these items are usually placed in adjacent

locations within the store.

In addition, I allow both the scale and location of the adjustment thresholds

14Identified based on the first 5 digits of the upc code. I include this variable only for Dominick’s
data, as too few goods per manufacturer are available in case of the AC Nielsen data.

15Only available in the AC Nielsen data, as Dominick’s sets prices on a chain-wide basis. See the
Appendix for details.
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to differ across months and product-categories, in order to control for heterogeneity

across goods/time-periods. I do so by allowing fixed product-category and month

effects in the two threshold equations16.

As Table 2 illustrates, the probability that a particular product experiences

a price change does indeed depend on the fraction of other prices within that store

that experience adjustment, especially those in particular product category. In case

of Dominick’s data, an increase in the fraction of remaining prices that change in a

given product category from 0 to 1 increases the probability that a given product will

experience a price cut by 5% and that of a price increase by 29%, thereby increasing

the probability of a price change by 34%. Synchronization is even stronger for goods

in a given manufacturer category. An increase in the fraction of price changes of

the remaining goods produced by a given manufacturer from 0 to 1 increases the

probability that the good in question will also adjust by 55%. The correlation between

the price adjustment decisions of various goods is even larger in case of the AC Nielsen

data: an increase in the fraction of remaining prices that experience adjustment in a

given product category increases the probability that a particular good will adjust as

well by 96%.

Table 3 presents an additional set of facts that will be used in order to cali-

brate the model. It has been widely documented17 that prices in retail stores adjust

frequently. The two datasets I employ here are no exception. Despite the fact that I

overestimate the duration of price spells by aggregating weekly data to monthly and

eliminating a large number of temporary price cuts, the average price spell lasts 4

months in the AC Nielsen data and 5.2 months in the case of Dominick’s prices18.

Let p̂t be the price (in logs) of a good in period t, expressed in deviations

16Note that the incidental parameters problem does not arise here as the number of observations
within a group is large: 6000 on average.

17Kackmeister (2005), Dutta, Bergen and Levy (2002).
18Average duration falls to 2.7 months and 2.4 months, respectively, if one takes into account price

changes associated with temporary price cuts.
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from a time trend. If marginal cost shocks are transitory, one would expect two

observations of the firm’s price, p̂t, sufficiently distant in time, to lie close to each

other. In contrast, if shocks are highly persistent, the firm’s price wonders away from

the mean, and differs considerably from the price the firm has set in the past. Let

Dk =

1
N (Gk)

T∑
t∈Gk

|p̂t − p̂t−k|

1
N (Ga)

T∑
t∈Ga

|p̂t − p̂t−1|

be the mean absolute difference in a good’s (detrended) price in periods that are k-

months apart, relative to the average absolute value of non-zero price changes, where

Gk is the set of time-periods for which prices were recorded in t and t − k, Ga the

set of periods in which the product has experienced a non-zero price change, and

N the number of elements of a given set. Note the similarity of these statistics,

which I call deviance ratios, to the variance ratios popularized by Cochrane (1988)

in non-parametric tests of non-stationarity. These deviance ratios are larger, the

more persistently p̂t moves in a given direction, and although they have no structural

interpretation, they can be used, in conjuction with the model to be presented below,

to infer the persistence of marginal cost shocks. The last rows of Table 3 present

the average values of this statistic in the data, at 12- and 24-month horizons. These

ratios are close to 1, suggesting that shocks are not too persistent19.

An alternative measure of persistence is the probability that the next price

change will have the same sign as the current one. As Table 3 reports, these prob-

abilities20 are low (32% and 41%, respectively), suggesting that shocks that trigger

19Given the short span of AC Nielsen’s price series, deviance ratios are only reported for 12-month
horizons in this data.

20Calculated as an equally weighted average of the probabilities of two consecutive posi-
tive/negative price changes. Equal weights (as opposed to weights based on the long-run proba-
bility of a price increase/decrease) are used in order to account for the upward trend in prices in
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price changes are transitory and price changes tend to be reversed. Although useful

in providing information about the persistence of idiosyncratic shocks, this alterna-

tive statistic will only be used as an “over-identifying” check on the model, as it is

sensitive to the definition of sales employed to purge data of temporary price cuts.

B. Ex-ante heterogeneity?

As shown by Caballero and Engel (1993), Caplin and Spulber’s (1987) neutral-

ity result survives in a world with heterogeneity in menu costs, demand elasticities,

etc. across firms, heterogeneity which can, in principle, give rise to the fat tails and

large number of small price changes depicted in Figure 1. I ask whether ex-ante

heterogeneity is indeed responsible for the features of the data documented above by

using variance decompositions in which I gauge the importance of month, product21,

and store-specific effects in explaining the variability of the magnitude and frequency

of price changes reported above. Specifically, I estimate

ys
it = c+ di + ds + dt + es

it,

where di, ds, dt are good, store, and month-specific effects and ys
it is the size of

price changes, |∆ log (pist) |, or the duration of price spells that end in a given period.

As Table 4 indicates, month or store-specific heterogeneity accounts for less than 10%

of the variation of the frequency and size of price changes in the data. Good-specific

effects are somewhat more volatile, but nevertheless responsible for less than 16% of

the variation in the sample.

Figure 2 depicts the higher-order moments discussed above, the kurtosis, and

number of price changes in the vicinity of zero for 29 narrow product categories in

Dominick’s data. Use of long-run weights results in a probability of two consecutive price changes
in the same direction equal to 46% in Dominick’s data, but this number overstates the persistence
of the price series as 65% of price changes in Dominick’s data are positive.

21The number of non-zero price changes for a given product is small in Dominick’s data in which
I have collapsed the prices of the different stores into a single, chain-wide price. I therefore estimate
product-category×manufacturer, as opposed to individual good effects for this dataset.
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the Dominick’s sample. Although substantial differences in the size of price changes

across these product categories are evident in the data, all of these products are

characterized by a substantial number of small price changes and excess kurtosis,

suggesting once again that systematic differences in the size of price changes across

goods are not the driving force behind the distributional features documented above.

C. Relationship with other evidence

I have documented three features of the distribution of price changes in grocery

stores that will prove important in the calibration of the model economy of the next

section: (i) a large number of price changes are small, and (ii) the distribution of price

changes is leptokurtic, and (iii) prices within a store tend to adjust in tandem. None

of these features of the data I study are unique to grocery stores.

Klenow and Kryvtsov (2004) report that 40% of price changes are less than

5% in absolute value in their dataset of BLS-collected price data covering all goods

and services used in the construction of the CPI, a dataset in which prices change

by 9.5% on average. Kashyap (1995) uses a dataset of prices for products sold in

retail catalogues and also documents that many price changes are small: 44% of

price changes in his dataset are less than 5% in absolute value. The kurtosis of

price changes, conditional on adjustment, is 15.7 in the data and falls to 6.2 if one

excludes the top and bottom 1% of observations22. Kackmeister (2005) presents a

histogram of the distribution of price changes in a dataset of prices in retail stores:

one-third of price changes are less than 10% in absolute value in an environment where

the average magnitude of price changes is 20%. Finally, Lach and Tsiddon (1996)

provide evidence that stores synchronize price adjustments of various products using

a dataset of prices collected in Israel23. They find that the variability (across stores)

of the fraction of products whose prices change in a given period is larger than what

22These numbers are based on my own calculations using the data published in Kashyap (1995).
23See also Fisher and Konieczny (2000).
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would be expected if price adjustment decisions were independent across goods.

D. Discussion

The large number of small price changes documented above is inconsistent with

the predictions of simple menu-cost models. Several extensions to the standard model

have been suggested in order to render it consistent with the data. One might assume

time-varying adjustment costs24. Alternatively, as Kashyap (1995) has suggested, one

might allow fluctuations in the degree of market power possessed by firms, arising

from variation in consumer search costs over time25. In this paper I will explore

an alternative route, one that can simultaneously explain both the large number of

small price changes observed in the data, but also the within-store synchronization of

price changes. As Lach and Tsiddon (2005) have argued, an extension of the state-

dependent model to a multi-product environment in which firms face large average

costs of adjusting a menu of prices, but a small marginal cost of changing any given

price on the menu, can also generate a large number of small price changes. Cost

complementarities in price adjustment are not crucial for this paper’s key results, as

will be made clear below. I nevertheless assume them in the model of the next section

because they provide a simple and tractable parametric extension of the menu-cost

model capable of replicating the salient features of the micro-price data documented

above.

3. The Model

A. Model Economy

Throughout, let st denote the event realized at time t, st = {s0, s1, ..., st} the

history of events up to this period and π(st) the probability of a particular history as

of time 0. The economy is populated by a continuum of consumers and a continuum

of monopolistically competitive firms, both of mass 1. Consumers are identical, while

24See Caballero and Engel (1999) and Dotsey, King and Wolman (1999).
25See also Benabou (1992).
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firms (indexed by z) differ according to their productivity level. Each firm sells two

products, indexed by i = 1, 2. I first discuss the problem of the representative

consumer, that of the firm, and then define an equilibrium for this economy.

Consumers

Consumers’ preferences are defined over leisure and a continuum of imperfectly

substitutable goods. The consumer sells part of her time endowment to the labor

market and invests her wealth in one-period shares in firms. In equilibrium, identical

consumers own equal shares of all the economy’s firms. The representative consumer’s

problem is to choose, given prices, how to allocate her income across the different

goods available for consumption and how much to work:

max
{c1(z;st),c2(z;st)},n(st),b

∞∑
t=0

βt∑
st

π(st)U(c(st), n(st)),

subject to

1∫
0

[p1(z, st)c1(z, st) + p2(z, st)c2(z, st)] dz = w(st)n(st) + Π(st),

where

c(st) =

(
1∫
0

(
1
2
c1(z, st)

θ−1
θ + 1

2
c2(z, st)

θ−1
θ

)
dz

) θ
θ−1

is an aggregator over the different varieties of goods that the household consumers,

n(st) is the supply of labor, w(st) the nominal wage rate, Π(st) the profits the con-

sumer receives from her ownership of firms, p1(z, st) and p2(z, st) are the prices of

each good and θ is the elasticity of substitution across goods. Notice that I have

assumed that the elasticity of substitution across goods sold by a single firm is equal

to the elasticity of substitution across goods sold by different firms.

Firms

Firms produce output using a technology linear in labor:

yi(z, st) = ai(z, st)li(z, st), i = 1, 2,
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where the firm’s technology, ai(z, st), evolves according to

log ai(z, st) = ρa log ai(z, st−1) + εi(z, st), i = 1, 2,

and ε(z, st) ∈ [εmin, εmax] is a random variable, uncorrelated across firms, goods and

time-periods26. Firms operate along their consumers’ demand schedules, derived as

solutions to the consumer’s problem discussed above:

ci(z, st) =
(

pi(z,st)
P (st)

)−θ

c(st),

where P (st) is the price index in this economy, defined as a consumption-weighted

average of the prices in this economy:

P (st) =

(
1∫
0

[
1
2
p1

t (z, s
t)1−θ + 1

2
p2

t (z, s
t)1−θ

]
dz

) 1
1−θ

.

I assume that firms face fixed menu costs of resetting prices. Any time at least one

(or both) of the two prices change, the firm must hire ξ additional units of labor. Let

q(st) = βt Uc(c(st),n(st))
Uc(c(s0),n(s0))

, where Uc is the marginal utility of consumption, denote the

t-period stochastic discount factor. The firm’s problem is to maximize

∞∑
t=0

∑
st

π(st)q(st)Π(z, st),

where

26Clearly, the assumption that firms sell two goods each, that elasticities of substitution are
identical across and within firms and that cost shocks across the two goods are uncorrelated are
easily falsifiable and the quantitative exercise here is merely illustrative of the forces at work in
a menu-cost model. Increasing the number of goods within a firm will render the model closer
to a model with constant adjustment hazards a la Calvo as each good becomes atomistic, and
the probability that a particular good’s price adjusts is independent of its desired price change.
Conversely, as the correlation of shocks across goods increases to unity, or as products sold by
the same firm become more substitutable, the model behaves similarly to a single-product model.
The calibrated parameter values (especially the distribution of idyosincratic shocks) that allow the
model to match the distributional features of the data documented in the previous sections are
therefore sensitive to these assumptions I make and can only be interpreted in the context of this
particular parametrization of the model. The aggregate properties of the model depend however on
the distribution of price changes conditional on adjustment, not that of underlying shocks, as will
be shown below, and this statistic is calibrated to match the properties of the micro-data.
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Π(z, st) =
∑

i=1,2

(
pi(z,st)
P (st)

)−θ (
pi(z,st)
P (st)

− w(st)
ai(z,st)P (st)

)
c(st)−

−ξ w(st)
P (st)

Ip1(z,st) 6=p1(z,st−1) or p2(z,st) 6=p2(z,st−1),

and I is an indicator function. The last term of this expression is the increase in the

firm’s wage bill if it decides to adjust any of its two prices.

B. Equilibrium

I introduce money by assuming that nominal spending must be equal to the

money stock27:

1∫
0

∑
i=1,2

pi(z, st)ci(z, st)dz = M(st)

The money supply growth rate µ(st) = M(st)
M(st−1)

evolves over time according to an

AR(1) process:

log µ(st) = ρµ log µ(st−1) + η(st),

where η is an iid N(0, σ2
η) disturbance. The equilibrium is a collection of prices

and allocations: pi(z, st), w(st), P (st), ci(z, st), c(st), n(st), li (z, st) , yi(z, st) such that,

taking prices as given, consumer and firm allocations, as well as firm prices solve the

consumer and firm problems, respectively, and the labor, goods, and money markets

clear.

C. Computing the Equilibrium

I normalize all nominal variables by the money stock in the economy, e.g.,

P̃ (st) = P (st)
M(st)

, in order to render the state-space of this problem bounded. Let

p̃i
−1(z, s

t) = p̃i(z,st−1)
M(st)

∈ P be a firm’s (normalized) last period’s price andA =[ εmin

1−ρ
, εmax

1−ρ
]

the support of the distribution of technology levels in the economy. The aggregate

state of this economy is an infinite-dimensional object, consisting of the growth rate of

27See Rotemberg (1987) for a transaction technology that gives rise to this particular specification
of money demand.
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money: µ(st), but also of the endogenously varying joint distribution of last period’s

firm prices and technology levels. Let φ: P2×A2 → [0, 1] denote this distribution and

Γ it’s law of motion: φ′ = Γ(g,φ). Finally, let a = (a1, a2) be a vector of a firm’s

technology levels and p−1=
(
p̃1
−1, p̃

2
−1

)
collect the firm’s last period’s nominal prices.

Let V a(a;µ,φ) and V n(p−1, a;µ,φ) denote a firm’s value of adjusting and

not adjusting its nominal prices, as a function of its last period’s prices and current

technology, as well as the aggregate state of the economy. These two functions satisfy

the following system of functional equations:

V a(a;µ,φ) = max
p

(∑
i=1,2

(
p̃i

P̃
− w̃

aiP̃

)(
p̃i

P̃

)−θ

c− ξ
w̃

P̃
+ β

∫
Uc′
Uc

V (p′−1, a
′;µ′,φ′)dF (ε1, ε2, η)

)

V n(p−1, a;µ,φ) =
∑
i=1,2

(
p̃i
−1

P̃
− w̃

aiP̃

)(
p̃i
−1

P̃

)−θ

c+ β

∫
Uc′
Uc

V (p′−1, a
′;µ′,φ′)dF (ε1, ε2, η),

where V = max(V a, V n) is the firm’s value function and p is a vector of nominal prices

the firm chooses every time it adjusts. The laws of motion for the state variables are:

φ′ = Γ(µ,φ), αi′ = aiρa exp (εi) , µ′ = µρµ exp(η)

p̃i′
−1 =


p̃i

µ
if adjust

p̃i
−1

µ
otherwise

The unknowns in this problem are the following functions: V a(), V n(), c(), w̃(), P̃ (),Γ().

To solve this system of functional equations, I (i) allow aggregate variables to depend

only on a finite number of the moments of φ, as opposed to the entire distribu-

tion, following a suggestion by Krusell and Smith (1997); (ii) replace the unknown

functions with a linear combination of orthogonal polynomials; and (iii) solve for

the unknown coefficients on these polynomials by requiring that the system of six

functional equations (the Bellman equations, as well as the equilibrium conditions)

be exactly satisfied at a finite number of nodes along the state-space. A technical
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appendix discusses the solution method in more detail.

4. Quantitative Results

A. Calibration and Parametrization

I parameterize the utility function as

U(c, n) = log(c)− ψn.

This specification follows Hansen (1985) by assuming indivisible labor decisions im-

plemented with lotteries. I set the length of the period to one month, and therefore

choose a discount factor β = .997. I choose ψ to ensure that in the absence of aggre-

gate shocks households supply 1/3 of their time to the labor markets. To calibrate the

process characterizing the growth rate of the money supply, I estimate an AR(1) pro-

cess for the growth rate of M1 for the US economy for 1985-1997, the years for which

the micro-price data used to calibrate the model is available. I choose θ = 3, a num-

ber in the range of estimates of demand elasticities available in the retail industry28.

Table 6 summarizes the choice of parameter values I assign the model.

The rest of the parameters are calibrated: ξ – the size of the fixed costs incurred

by the firm when it changes its menu of prices, ρa – the parameter that governs the

persistence of marginal cost shocks, as well as the distribution of technology shocks.

I choose these parameters in order to match the salient properties of the micro-price

data discussed in Section 2. I target an average duration of price spells of 4.5 months,

an average value for the two datasets; an average size of price changes of 9%; a

standard deviation of price changes of 12%; and a kurtosis of 4.5. I also require that

the model generates 30% ‘small’ (less than one-half of the mean) price changes, as

well as a 24-month ‘deviance ratio’ of 1.02. Additional “over-identifying” checks will

be used to gauge the persistence of marginal cost shocks in the data. Table 5 reports

the choice of moments used to calibrate the model economy.

28Nevo (2001), Barsky et. al. (2000), Chevalier, Kashyap and Rossi (2003)
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To calibrate the distribution of idiosyncratic technology shocks, I assume that

shocks εt are drawn from the following parametric family of distributions:

εt =

 −btεmax, with p = 1
2

btε
max, with 1− p = 1

2

where bt is a random variable drawn from a Beta distribution with parameters α1 and

α2. The distribution of technology shocks is thus symmetric around zero, and flexible

enough to enable the model to reproduce the distributional features of the data.

B. Results

Benchmark Model

I solve for the unknown parameters: ρa, ξ, α1, α2, ε
max, by minimizing the sum

of squared log-deviations of the model-generated moments from the six targets in

Table 5. The last rows of Table 6 (the column labeled Benchmark model) reports the

calibrated parameter values.

Marginal cost shocks are fairly transitory: ρa = 0.5. Firms pay a menu cost

equal to 1.2% of their steady-state labor bill (0.8% of revenue) every time they undergo

a new price change, a number close to that reported by Levy et. al. (1997) in a

study of the price adjustment costs of five large supermarkets. The distribution of

technology shocks is highly leptokurtic, with a kurtosis in excess of 20 and a variance

of 2.7×10−3 (α1 = 0.05, α2 = 1.30, εmax = 0.4).

Before proceeding to analyze the model’s performance, I briefly discuss the

consequences of the assumption that the firm faces a fixed cost of changing an entire

menu of prices, as opposed to a given price on the menu. Figure 3 plots a firm’s

adjustment region, in the (p̃1
−1, p̃

2
−1) space (prices are expressed as log-deviations

from the optimum) for several values of the firm’s productivity parameter. Because

of the cost-complementarity in price adjustment, a firm’s adjust decision depends on

the deviation of its two prices from their respective optima. Small price changes will
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therefore arise in equilibrium whenever at least one of the firm’s two prices are hit by

a sufficiently large shocks. The figure also performs a comparative statics exercise.

I illustrate in this figure the size of the inaction regions for different values of the

productivity level of the firm. Similar to what Golosov and Lucas (2003) find, firms

are more willing to adjust their prices in periods when their technology is higher.

I next evaluate the model’s performance quantitatively. Note, in Table 5, that

the model is successful at matching the salient properties of the microeconomic data

documented in Section 2, with all model-based moments close to their targets. In

particular, the kurtosis of the distribution of price changes is 4.3, and 33% of price

changes are less than 4.4% in absolute value (1
2

the mean of absolute value of non-

zero price changes). The model also does well in matching other, ‘over-identifying’

restrictions used to infer the accuracy of the estimate of technology shock persistence.

The 12-month deviance ratio is equal to 0.88, a value equal to the average of that in

the two datasets of scanner prices. The fraction of two consecutive price changes in

the same direction is greater, however, in the model (0.52), than in the data (0.37),

suggesting that I over-estimate the persistence of shocks, but this statistic is sensitive

to the definition of ‘sales’ employed.

Given the model’s ability to match microeconomic features of the data, I next

turn to its aggregate implications. Table 7 (Benchmark, SDP column) reports the

volatility and persistence of HP-filtered output in simulations of the model. For

comparison, I also report results from a Calvo-type time-dependent model, identical in

all respects to the original model, in which firms adjust with constant probability λ, a

parameter chosen to match the duration of price spells in the data. The multi-product,

menu-cost setup generates business cycle fluctuations from monetary disturbances

almost as large as those in the time-dependent model: the standard deviation of

output is equal to 0.61% (0.75% in the Calvo setup). Business cycles are equally

persistent in the two models: the autocorrelation of output is equal to 0.94.
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Standard State-Dependent Pricing Model (Golosov-Lucas (2003))

I next compare the results above to those one obtains in a standard menu

cost economy with single-product firms. I abstain from the multi-product features

discussed earlier and assume that single-product firms face fixed costs of adjusting

their prices. I assume, in addition, that the firm’s technology shocks, εt, are drawn

from a Gaussian distribution with mean 0 and variance σ2. Three parameters must

be calibrated in this model: ξ, ρ, σ2. I set ρ equal to 0.5, as in the benchmark model29.

The other two parameters are jointly chosen so that the frequency of price changes,

and the mean absolute value of non-zero price changes are equal to those in the data.

As the third column (Golosov-Lucas ’03) of Table 5 indicates, the standard

menu cost model fails to accord with the micro-price data along two dimensions: it

generates no price changes that are less than 4.5% in absolute value and produces

a kurtosis of price changes much smaller than that in the data (1.3). I plot, in

Figure 4, the distribution of price changes, conditional on adjustment, implied by the

standard model, as well as the multi-product model calibrated above. In contrast

to the multi-product model, which produces a unimodal, leptokurtic distribution of

price changes, similar to that observed in the data, the standard model generates a

bi-modal distribution, with no price changes close to zero.

The standard model also generates output fluctuations that are 5 times less

volatile than those in a time-dependent model (the standard deviation of HP-filtered

output is only 0.15%, compared to 0.73% in a Calvo model). Business cycles are also

less persistent (an autocorrelation of only 0.75). These results accord with those of

Golosov and Lucas (2003), Caplin and Spulber (1987), and Gertler and Leahy (2005),

who find that standard state-dependent models generate, despite nominal rigidities at

the firm level, small (if any) business cycle fluctuations from monetary disturbances.

29The results we are about to report are insensitive to how persistent technology shocks are.
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C. Leptokurtic Shocks or Multi-Product Firms?

I next isolate the role of the two departures from the standard menu-cost model

I have introduced and evaluate the contribution of each in generating the difference

in results. I first solve a model with economies of scale in the technology of price

adjustment in which idiosyncratic shocks are drawn from a Gaussian distribution.

The only parameter I calibrate is the size of the menu cost, chosen to ensure the same

frequency of price changes as in the Benchmark model. The rest of the parameters are

set equal to their calibrated values in the Benchmark model. Notice in the 4-th column

of Table 5 that the model fails to match the kurtosis of the distribution of price changes

in the data, although it does generate a number of small price changes (21%)30. A

departure from the assumption of Gaussian shocks is therefore crucial in reproducing

the kurtosis of the distribution of technology shocks in the data, at least in this

version of the model in which the cost of price adjustment is only spread across two

products a firm sells. Table 7 presents this model’s aggregate implications: although

the volatility of output increases relative to that in models with no interactions in

the costs of price adjustment (0.26% vs. 0.15%), business cycle fluctuations are

substantially reduced relative to those in a Calvo setup.

I also solve the problem of a single-product firm in which technology shocks are

drawn from the distribution assumed in the Benchmark model. Leptokurtic shocks

are capable, on their own, to reproduce the kurtosis of price changes in the data.

They fail to generate however a large number of small price changes: only 11% of

price changes are now less than 4.5% in absolute value. As Table 7 indicates, lep-

tokurtic shocks increase the volatility of output from 0.15% in the Standard model to

0.46%, a significant improvement, albeit smaller than in the Benchmark model. Both

interactions in the costs of price adjustment, as well as leptokurtic shocks are thus a

30I define, here and in the next calibration, a small price change as a price change whose absolute
value is less than 4.5%, the average magnitude of price changes in the Benchmark model.
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necessary ingredient of a model capable of reproducing the microeconomic evidence

and generating sizable business cycle fluctuations.

D. Discussion

To understand why the two departures I have made from Golosov-Lucas (2003)

increase the model’s ability to generate real effects from money shocks, consider the

impulse responses of the aggregate price level, P , and consumption, C to a 1% shock

to the growth rate of the money supply in Figure 5. Notice that the aggregate price

level, P, is much more responsive in the Golosov-Lucas setup than it is in a world with

economies of scale in price adjustement and leptokurtic marginal cost disturbances.

This in turn, given the M = PC constraint I impose, implies that consumption is

more responsive in the setup I consider.

The response of the aggregate price level, π = log P
P−1

, is, to a first-order

approximation, the product of two terms: the fraction of adjusters, times the mean

price change conditional on a price change:

π ≈ 1

2

∑
i=1,2

∫
πi(z)dz = mean

i,z

(
πi(z)|πi(z) 6= 0

)
× Fr

(
πi(z) 6= 0

)

where πi
z = log(piz/piz,−1) is the price change experienced by good i sold by firm z.

Klenow and Kryvtsov (2005) perform this decomposition for the BLS price data and

find that most movement in US inflation is associated with fluctuations in the mean

price change, conditional on adjustment, as opposed to variation in the fraction of

adjusting firms, which is fairly stable over time. Both versions of the menu-cost model

I consider are consistent with this feature of the data. As Figure 6 illustrates, the

fraction of firms that adjust increases from 22% to 25% on impact in the Benchmark

setup and to 24% in the Golosov-Lucas parametrization of the model. In contrast,

the mean price change of an adjusting firm is much more responsive to nominal dis-
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turbances. Adjusting firms increase their prices on average by 2.5% in the setup I

consider, and by 3.5% in the standard menu-cost model considered by Golosov and

Lucas (2003). The dampened response of the aggregate price level in the Bench-

mark model is thus due the fact the adjusting firms, although as numerous as in the

Golosov-Lucas parametrization, respond, on average, less aggresively to the aggregate

disturbance.

To see why this is the case, let f(x) be the distribution of desired price changes

of firms in the economy: x = log
(

p∗

p−1

)
, absent a money shock in the current period,

and h(x) be the fraction of firms of type x that find it optimal to adjust, i.e., the

hazard. x captures both the contemporaneous productivity disturbance, but also

the cumulative history of aggregate and idiosyncratic shocks since the previous price

adjustment. Assume, for simplicity, that a money shock has a one-for-one effect on

the firm’s desired price (more on this below). A firm’s desired price change, given the

money shock, is therefore x̃ = x+ ∆m, where ∆m is the monetary disturbance. The

change in the price level in this economy is

π =

∫
x

dxf(x)h(x)x

in the absence of the monetary disturbance, and

π′ =

∫
x

dxf(x)h(x+ ∆m) (x+ ∆m)

if the economy is hit by an aggregate (money) shock of size ∆m. The effect a monetary
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disturbance has on the inflation rate in this economy is thus, rearranging31:

∆p =

∫
x

dxf(x) (h(x+ ∆m)− h(x))x+ ∆m

∫
x

dxf(x)h(x+ ∆m)

The second term in this expression is simply the intensive channel through which the

money shock affects the price level: the fraction of adjusting firms times the size of the

monetary disturbance. This term is present in state-dependent and time-dependent

models alike and captures the fact that all adjusting firms will respond to the increase

in the size of the money stock.

The first term is unique to models with menu costs and captures the selection

effect. With menu costs, firms optimally choose the timing of their price changes and

are more likely to adjust if the money stock reinforces the desire to change prices

triggered by idiosyncratic disturbances, captured by x. Firms for which x is positive

and desire (prior to the money shock) to increase prices, are more likely to pay the

menu cost and adjust if the current money shock is positive and reinforces the impetus

to adjust. In contrast, firms for which x < 0 are less willing to adjust in times of

an expansionary monetary disturbance, as the monetary expansion erodes the firm’s

real price and offsets the initial incetive to lower the nominal price. Hence, in a menu

cost model, the distribution of desired price changes (prior to the aggregate shock),

conditional on adjustment, shifts to the right in times of a monetary expansion,

thereby increasing the responsiveness of the aggregate price level to monetary shocks.

Figure 7 illustrates the ergodic density of desired price changes, pooled across

all goods and firms in the economy,32 in the Benchmark and Golosov and Lucas setups,

31I am indebted to Ariel Burstein, Christian Hellwig and Ivan Werning, as well as to a paper
by Caballero and Engel (2006) for pointing out to me the transparency of discussing the intuition
behind these results in terms of hazard functions and the density of desired price changes in the
increasing hazard region. Derivations similar to the ones above have appeared in the two discussions
mentioned above, as well as in Caballero and Engel (2006).

32Computed as a kernel density esimate of the distribution of desired price changes (demeaned by
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as well as the adjustment hazards for ∆m = 0 and ∆m = 2.5%. Note first, that the

distribution of desired price changes is much more leptokurtic in our Benchmark

setup (kurtosis = 13.5) than in the Golosov-Lucas setup (kurtosis = 2.9). Second,

notice the difference in hazards in the two setups. In both cases, heterogeneity in

productivity across firms and (in the Benchmark setup) in the desired price change of

the other good produced by a given firm, smooth out what would otherwise be {0,1}

step functions. In the Benchmark setup the hazard is non-negative for all values

of x because of the cost complementarities in price adjustment, as opposed to the

Golosov-Lucas model in which no firms change prices by a small amount. Finally,

notice that a positive money shocks shifts the adjusment hazard to the left. Firms

for which x is negative are less likely to pay their menu costs, while those for which

x is positive are more willing to reprice.

The equation above illustrates that the strength of the selection effect is larger,

the larger is the mass of firms f(x), weighted by their desired price changes, x, in

those regions of the parameter space in which the money shock triggers changes in

the adjustment hazard: [h(x+ ∆m)− h(x)] . Because f(x) declines faster for values

of x away from zero for distributions with greater kurtosis, f(x) is lower in the adjust-

ment region (the region where h(x+ ∆m)− h(x) is non-negative) in the Benchmark

setup than in the Golosov-Lucas setup. The selection effect is thus weaker, thus ex-

plaining why firms, in the impulse responses computed above, adjust, on average, less

aggressively to a money shock than they do in the Golosov-Lucas parametrization33.

Moreover, the cost complementarities assumed in the model smooth out the hazard

(it rises slower away from zero), and decrease the strength of the self-selection effect

even more.

substracting time-specific means) in a simulation of the model.
33Gertler and Leahy (2005) illustrate a similar point using a menu-cost model in which technology

shocks affect, in a given period, only a fraction of firms in the economy: the slope of the Phillips
curve that their model generates depends on the fraction of firms that are subject to technology
disturbances in a given period, or in our language, the kurtosis of technology shocks in the economy.
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Figure 8 plots the ergodic distribution of all desired price changes, f(x) (prior

to the realization of the money shock) in the two setups considered here, as well as

the distribution of price changes, conditional on adjustment, before: f(x)h(x), (first

row) and after a money shock ∆m = 2.5% : f(x)h(x + ∆m)(second row). Notice

that in the absence of the money shock the distribution of desired price changes,

conditional on adjustment, is approximately symmetric around zero in both setups.

Consider next what happens when the economy is hit by an aggregate money shock. In

the Golosov and Lucas setup, where the mass of firms near their adjustment thresholds

is large, the selection effect is strong and most firms that do change their prices are

firms that need large price increases. Even though few firms adjust, the ones that

do are exactly those that need large price increases and as result the aggregate price

level is close to flexible. In contrast, although the distribution of desired price changes

does shift to the right in the Benchmark setup I consider, the selection effect is much

weaker and firm-level price stickiness translates into a more sluggish aggregate price

level.

Note finally that the strength of the selection effect is linked to the distribu-

tion of non-zero price changes that the model generates. A bi-modal distribution of

non-zero price changes, f(x)h(x), with a large mass away from zero and no large price

changes arises exactly because f(x) is large in the region of increasing hazard. The

Benchmark model considered above reduces the mass of adjusters in the increasing

hazard region by allowing f(x) to fall more rapidly away from zero than a Gaus-

sian. Allowing for cost complementarities across a larger number of firms would, by

smoothing out the hazard and rendering it flatter, necessitate a less leptokurtic dis-

tribution to match the micro-data and to reduce the strength of the selection effect.

In contrast, increasing the substitutability of goods produced by a given firm etc.

would make the hazard rise more rapidly: an even more leptokurtic distribution of

idiosyncratic shock would be required to match the distribution of price changes in
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the micro-data.

Counterfactual experiments

I next quantify the role of self-selection and synchronization in explaining the

aggregate properties of the menu-cost economy. I do so by using two counterfactual

experiments, reported in the last rows of Table 7. In the first experiment, I use policy

rules optimal in the Benchmark model but assume a constant adjustment hazard.

This counterfactual, by holding constant the fraction and identity of the adjusting

firms, allows me to gauge the combined role of firm synchronization and self-selection

in reducing output variability in menu cost models.

Note in Table 7 that the standard deviation of output in this counterfactual

is 2.1 times larger than in the original Benchmark model with multi-product firms.

In contrast, shutting down synchronization and self-selection in the standard single-

product model generates output fluctuates that are 9 times larger than originally.

Clearly, synchronization/self-selection has a much stronger effect in the standard

menu-costs models than in a model with multi-product firms and disturbances suffi-

ciently leptokurtic to match the distribution of price changes observed in the data.

I next solve a second counterfactual, in order to pinpoint the exact source of

the monetary neutrality in the single-product, Gaussian shocks menu-cost model. I

maintain the assumption of a constant hazard and the original policy rules, but allow

the fraction of adjusters to vary as in the original simulations of the menu-cost models.

Output fluctuations in this second counterfactual are almost as large as in the first

one, suggesting that fluctuations in the fraction of adjusting firms in the model play

only a limited role, and most of the responsiveness of the aggregate price-level is due

to selection.

Note finally that self-selection, although muted in the Benchmark setup I con-

sider, still plays an important role and reduces the volatility of output in half. Why

then, does the state-dependent model produce business cycle fluctuations that are of
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similar magnitude as those in the Calvo model where this effect is entirely absent?

If shocks to the growth rate of the money supply are, as in the data, persistent,

a current monetary expansion increases the conditional expectation of the growth rate

of the money stock in future periods. Forward-looking firms take into account these

forecasts and over-adjust by responding stronger to the nominal shock than they

would in a flexible-price world. The willingness of firms to “front-load” expected

future increases in the money supply depends however on the size of the frictions

that give rise to nominal price stickiness in the first place.

Figure 9 plots the price functions, conditional on adjustment, in the Calvo and

menu-cost models, expressed as log-deviations of the optimal price from the one that

firms would set in a flexible price world in which prices would respond one-for-one to

the monetary disturbance. Clearly, Calvo firms front-load current prices much more

aggressively in response to future expected increases in the money supply than state-

dependent firms do: a 3% increase in the money growth rate triggers a price increase

by Calvo firms that is almost 5% larger than what is optimal in a flexible price world.

In contrast, the state-dependent firm’s price increases by only 1%.

To understand why state-dependent firms refuse to front-load prices, even

though they expect future increases in the growth rate of the money supply, consider

Figure 10 in which I plot the two types of firms’ values of adjustment and inaction, as a

function of one of the two goods’ past prices. Note that a state-dependent firm’s value

of inaction is much less sensitive to deviations of the past price from the optimum

than is the value of inaction of a Calvo firm. If a state-dependent firm finds itself

with a suboptimal price in a given period, it can always exercise its option to adjust.

Its losses are therefore bounded by the size of the menu cost. In contrast, a time-

dependent firm pays a hefty price every time its nominal price is suboptimal: because

it has to wait for an exogenously fixed number of periods before it gets to reset its

price, it will incur much larger losses from a suboptimal price relative to what a state-
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dependent firm would. A time-dependent firm’s incentive to offset future deviations

of its price from the optimum is therefore larger than that of a state-dependent firm

and it adjusts more aggressively in response to persistent shocks to the growth rate

of the money supply34.

5. Conclusion

This paper has shown that standard single-product state-dependent pricing

models are inconsistent with two facts regarding the behavior of individual good’s

prices: the large number of small price changes and excess kurtosis of price changes

in the data. The large number of small price changes can be reconciled with state-

dependent models if multi-product firms face interactions in the costs of adjusting

prices: I find indeed substantial evidence that prices of products in narrow product

categories within grocery stores adjust in tandem.

I then study the general equilibrium properties of a multi-product menu-cost

economy calibrated to accord with this micro-economic evidence, and find that the

model can, in fact, generate business cycle fluctuations from nominal disturbances

that are almost as large as in Calvo-style time-dependent models. A key feature

of the calibration, the leptokurtic distribution of idiosyncratic disturbances, implies,

together with the assumption of economies of scale in the price adjustment technology,

that the selection effect that plays an important role in standard menu cost economies

is much weaker in this setup. This, as well as the fact that state-dependent pricing

firms are less willing to front-load prices in response to expected future changes in

the stock of the money supply, ensures that firm-level nominal price stickiness does

translate into sluggish response of the aggregate price level to nominal shocks.

34Dotsey, King and Wolman (1999) point out this difference in the optimal price functions of time-
and state-dependent firms, but find it quantitatively small in their baseline parametrization with no
serial correlation in the growth rate of the money supply and time-varying costs of price adjustment.
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6. Data Appendix
A. Construction of Price Series
AC Nielsen

I use the household-level data to construct weekly price series according to the

following algorithm. For each store/good in the sample, I calculate the number (if

any) of units sold at a particular price during the course of the week. If the store sells

the product at a single price during the week, I assign this value to the weekly price

series. If more than one price is available, the weekly price is the price at which the

store sold the largest number of units. In case of a tie in the number of units sold at

a particular price, the weekly price is the highest price at which the store sells in a

given week35.

Given that I use scanner price data, price observations for a particular store/good

is only available when a customer purchases the product in a particular week. The

original prices series are therefore frequently interrupted by gaps. I ignore the gaps if

these last for four weeks or less, and use the latest available price before the gap to fill

in the price series. Because I study the frequency and size of price changes, I require

an uninterrupted prices series. If gaps larger than four weeks are present in the data,

I keep only the longest spell of uninterrupted price observations, and discard the rest.

I discard stores/goods with less than 100 weeks of continuous price observations.

Dominick’s

The Kilts Center for Marketing makes available weekly price quotes for 86

of Dominick’s stores. As noted above, this dataset is a by-product of a series of

randomized pricing experiments conducted by Dominick’s from 1992 to 1993. I only

work with the prices of those stores/product categories that were part of control

groups in order to avoid treating price changes arising due to experiments as regular

35Intuitively, if the number of units sold at two prices is equal, the highest price is likely to have
been in effect for a longer time-period as consumers are more likely to buy at the lowest price.
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price changes36.

Dominick’s stores are divided into three groups: high, low and medium-price

stores, depending on the extent of local competition. Prices within, but also across

groups, are strongly correlated, as Dominick’s sets prices on a chain-wide basis37.

Given that gaps in prices are a common occurrence for this dataset, I collapse store-

wide prices into a single, chain-wide price, in order to reduce the number of missing

observations. I work with medium-price stores only, as these account for the largest

share of Dominick’s stores. From this set of observations, I let the chain-wide price

be the price of the store that has the largest number of observations38. For each gap

present in this series, I fill in the gaps with the price of another store in the chain,

whose pricing most closely resembles the price of the original store, provided that

data for this store is available during this period, and the two store’s prices coincide

in the periods immediately before and after the gap39. My metric of the similarity of

two stores’ price policies is the number of periods in which the two stores set identical

prices for a given product. On average 1% of price series are imputed using another

store’s price. The prices of the stores used to fill in missing data coincide with the

price of the original store in an average of 96% of time periods for which data on both

stores is available. Once again I discard from the sample those goods for which less

than 100 uninterrupted weekly observations are available.

B. Time-Aggregation and Treatment of Sales

Retail prices are characterized by a large number of temporary price mark-

downs (sales). Kackmeister (2005) reports that 40% of price changes arise due to sales

in a dataset of forty-eight products sold in retail stores during 1997-1999. Hosken and

36Hoch, Dreze and Purk (1994) discuss Dominick’s experiment in detail.
37See Peltzman (2000) for a discussion of Dominick’s pricing practices.
38Prior to this step, I eliminate gaps smaller than 4 weeks following the algorithm used for the

AC Nielsen data.
39This last constraint is dictated by our unwillingness to confound changes in stores with changes

in the price of a particular store.
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Reiffen (2004) find that 60% of the price decreases in their sample of twenty products

sold in 30 locations during 1988-1997 are followed by a price increase in the following

month. Several hypothesis have been advanced to explain this pattern of retail price

variation, stressing informational frictions on consumer’s side of the market (Varian

1980), demand uncertainty (Lazear 1986), or thick-market explanations (Warren and

Barsky, 1995), to name a few. Instead of incorporating one (or more) of these ex-

planations into the model economy, I follow Golosov and Lucas (2003) and filter out

temporary price sales from the price series. This decision leads me to overestimate

the importance of nominal rigidities, as I artificially increase the duration of price

spells I ask the model to match, but my goal is to compare the performance of two

competing sticky price models, rather than compare the models’ performance to the

data.

Although I eventually time-aggregate the weekly data into monthly observa-

tions, I first filter out sales using the original weekly data40. I eliminate sales accord-

ing to the following algorithm41. For any price decrease, I check whether this price

change is reversed in one of the four weeks following the original price cut. This defi-

nition eliminates both V-shaped price changes (price decreases immediately followed

by price increases), but also gradual price decreases, provided these are eventually

followed by a price increase after at most four weeks following the first price cut. If a

sale is deemed to have taken place, I replace the “sales” price with the price in effect

in the period immediately before the sale. Figure A1 (left panel) illustrates how the

algorithm works. The thin line in the figure is the original price series, while the thick

line is the “regular” price. Note for example that the first “sale” was implemented

gradually, with the original price decrease followed by no price change in the first

40The alternative choice (of time-aggregating the data first and then eliminating sales) can produce
spurious price changes if stores periodically put their prices on sale, at regular intervals.

41Dominick’s dataset includes a “sales” variable that we could in principle use to eliminate tem-
porary markdowns from our price series. This variable is however coded inconsistently and leaves
out many temporary price cuts. I therefore choose to eliminate sales manually.

36



week of the “sale”, an additional price decrease in the second week, and finally a

price increase four weeks after the original sale. The drawback of this definition is

that it does not eliminate all temporary markdowns in case a price cut is gradually

reversed. For example, the final price cut illustrated in the figure was followed by

two consecutive price increases, and I have artificially introduced a new “sale” using

the algorithm discussed above. To address this problem I repeat the algorithm above

an additional three times, in order to eliminate sales that have been gradually imple-

mented. The right panel of Figure 1 illustrates the resulting series of “regular prices”

following the last iteration. Note that a single “regular” price change remains after all

gradual price reversals are taken into account. Although this remaining price decrease

is also reversed, it does not constitute a sale according to our definition because it

lasts more than four weeks.

Note a final issue that will play an important role in our discussion of the

size and frequency of price changes. By eliminating temporary price cuts, I have

introduced an artificial small price change in the regular price series. Any time

temporary price reductions are not completely reversed, or followed by price changes

larger than the original price cut, setting the regular price equal to the price prior to

the sale will artificially introduce a number of small price changes that are otherwise

absent in the actual price data. Given that a key statistic in the micro-price data I use

to calibrate the menu costs model is the fraction of small price changes in the data,

I ignore artificially generated price changes arising due to the filtering of sales and

only work with those changes in the regular price that have actually been observed

in the original data.

Finally, given that most quantitative studies of sticky price models calibrates

them to the monthly or quarterly frequency, I assume a period of one month in the

model presented in text. I therefore time-aggregate weekly observations into monthly

data, by constructing the monthly series using price data collected in the first week
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of the month.

7. Technical Appendix

The typical approach used in solving state-dependent pricing or inventory mod-

els is the simulation technique suggested by Krusell and Smith (1997) and applied by

Willis (2002) and Khan and Thomas (2004) to models with non-convexities. I depart

slightly from the standard method and use a solution technique free of simulations, one

that draws heavily on collocation, a residual-based functional approximation method

discussed at length in Miranda and Fackler (2002). A simulation-free solution tech-

nique used to solve models with heterogeneous agents was originally suggested by

DenHaan (1997) in the context of an uninsurable idiosyncratic risks model.

Recall that the firm’s problem is to maximize

E0

∑∞
t=0 β

t Uc(ct,nt)
Uc(c0,n0)

Πt(p̃t, )

where (for simplicity, I discuss the problem of a single-product firm)

Πt(p̃t) =
(

p̃t

P̃t

)−θ (
p̃t

P̃t
− w̃t

φtP̃t

)
ct − ξ w̃t

P̃t
I
(
p̃t 6= p̃t−1

gt

)
.

In equilibrium, w̃t is constant at the steady-state level because of the prefer-

ence structure assumed, and P̃tct = 1.The unknown aggregate functions are c(g,µ),

aggregate consumption as a function of the growth rate of the money supply, g and

µ, the joint distribution of last period’s firm prices and current technology, as well as

Γ, the law of motion of µ.

Letting Ξ = {g,µ} denote the aggregate state of the world, one can rewrite

the firm’s problem recursively as:

V adj(p̃−1, φ; Ξ) = max
p̃
Uc

(
Π(p̃)− ξ

w̃

P̃

)
+ βEV (p̃, φ′; Ξ′) (V1)

38



V nadj(p̃−1, φ; Ξ) = UcΠ (p̃−1) + βEV

(
p̃−1

g
, φ′; Ξ′

)
, (V2)

where V = max
{
V adj, V nadj

}
is the firm’s value, V adj and V nadj is the value of

adjustment and not adjustment, respectively and Π(p̃) =
(

p̃

P̃

)−θ (
p̃

P̃
− w̃

φP̃

)
c. µ

evolves according to µ′ = Γ(g,µ). The unknowns in this problem are V adj(), V nadj(),

as well as c() and Γ(). Following Krusell and Smith (1997), I approximate µ with

one moment. In particular, I have found that µ̂t =
∫
p̃t−1(z)φt(z)dz yields a large

degree of accuracy. In the multi-product case µ is the joint distribution of the two

past nominal prices of the firm. I approximate this distribution once again with its

first moment: µ̂t = 1
2

∫ ∑2
i=1 p̃

i
t−1(z)φ

i
t(z)dz

Given initial guesses for c() and Γ(), I solve the functional equations in (V1-V2)

using collocation. Specifically, I approximate each of the two value functions using

a linear combination of N Chebyshev polynomials. To solve for the 2N unknown

coefficients, I require that (V1) and (V2) hold at 2N nodes in the state space. This

condition yields 2N equations I use to solve for the unknown coefficients. I solve the

firm’s maximization problem in (V1) using a Newton-type routine and evaluate the

expectations on the RHS of the Bellman equation by discretizing the distribution of

shocks and integrating using Gaussian quadrature.

To solve for the aggregate functions c() and Γ(), I replace them with a linear

combination of Chebyshev polynomials and solve for an equilibrium at each node

used to discretize the state-space. For each aggregate node (gi, µ̂i), I solve the firm’s

problem and recompute aggregate variables ci and µ̂′i. To calculate these objects, I

need to integrate individual firms’ decision rules. Given that I only use one moment

of the joint distribution of idiosyncratic states, I assume away all variability in p−1φ

(and also that a firm’s past prices are independent of each other). I discretize the

cross-sectional distribution of φ and calculate, for each mass point in this distribution,

the associated p−1 consistent with the assumption that p−1φ is degenerate at µ̂i and
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the law of motion for φt. For each node {pj, φj}, I solve firm decision rules and

integrate using Gaussian quadrature. Given aggregate quantities ci and µi, I retrieve

a new set of coefficients that characterize aggregate functions. For example, letting c

be an M × 1 vector of aggregate consumption that satisfy the equilibrium conditions

at each node used to discretize the aggregate state-space, Φ be a M ×K matrix of K

Chebyshev polynomials evaluated at the M nodes, I find the K unknown coefficients

γc by solving Φγc = C. This set of coefficients for all aggregate variables is used to

re-solve the firm’s problem, obtain a set of new aggregate variables at each node and

calculate a new set of γ = [γc, γΓ], etc.

To evaluate the accuracy of this solution method, I plot, in Figure A2, a

time-series of aggregate consumption predicted by the approximant ĉ(µ,Γ) for a sim-

ulation of stochastic forcing processes, as well as the actual aggregate consumption

calculated by integrating firm decision rules. I do so for the Benchmark model, the

state-dependent setup. Note that the two series are close to each other: the variability

of the actual consumption series explained by the approximant is 94%, suggesting that

the additional, higher-order moments that we assume away explain little of the fluc-

tuations of aggregate variables in simulations of the model economy (or comove with

those state variables I do keep track of). Aggregate functions are even more accurate

than the ones illustrated in the figure in the Calvo and single-product state-dependent

models. Moreover, given that the model lacks strong strategic complementarities, firm

decision rules are little affected by the mistakes I make in predicting aggregate vari-

ables. Indeed, a simulation of the model that assumes that aggregate variables are

time-invariant (an assumption made by Golosov and Lucas (2003) generates results

virtually undistinguishable from those obtained using the algorithm discussed above.

In Figure A2 I ask how accurate are the solutions to the firm’s problem. I plot

the left and right-hand side of the Bellman equation in V2, holding constant all other

state-variables but p̃−1, at a large number of nodes (larger than that used to pin down
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the coefficient on the basis functions). Note that the two value functions (predicted

and actual), are close to each other. The difference in the two (the residuals) are,

as the right panel of Figure A3 indicates, small in absolute value (less than 5×10−3)

and oscillate around zero.
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