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7.1. Motivation

Macroeconomic variables: lumpy: prices, investment, employment,
target/intended Federal Funds Rate
Common strategy in applied macro:

Linear/VAR approximation
Interested in speed of response to shocks
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Summary of Results

When you use VAR approximations to estimate the speed of adjustment
underlying a macroeconomic variable with lumpy micro adjustment:

You obtain upward biased estimate of the speed-of-adjustment/IRF

You infer infinitely fast response to shocks for single variable

The bias tends to zero as the number of units over which you
aggregate tends to infinity, yet convergence is very slow
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7.2. Single Variable

Simple Lumpy Adjustment Model: Calvo

Shock: y∗

Variable of interest: y

ξt i.i.d. Bernoulli(λ)

If ξt = 1 adjust at no cost, if ξt = 0 don’t adjust

E[ξt] = λ.
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Single Variable

When adjust, choose yt that solves:

min
yt

Et[
∑

k≥0

βk(1− λ)k(yt − y∗t+k)2]

Assuming y∗ random walk, leads to:

yt = [1− β(1− λ)]
∑

k≥0

[β(1− λ)]kEt[y
∗
t+k] = c+ y∗t

Hence:
∆yt = ξt(y

∗
t − yt−1). (1)

And therefore:

E[∆yt | y∗t , yt−1] = λ(y∗t − yt−1).
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Impulse Response Functions: Review

The impulse response function of x w.r.t. v is defined as:

IRFx,vk ≡ Et

[
∂xt+k
∂vt

]
; k = 0, 1, 2, ...

For the IRF to be of interest in macroeconomics, we usually require
that v be i.i.d. (innovation)
Sometimes normalize the IRF, various alternatives:

response to shock of size σv instead of one
economic model (e.g., long run neutrality of money), suggests
including a multiplicative constant so that

∑
k IRFk = 1

Half-life of a shock: L s.t.
∑
k≤L IRFk = 1

2

∑
k≥0 IRFk. Meaningful

when IRFk ≥ 0 for all k
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IRF for Linear Relationships: Review

In the case of a linear relationship between x and v:

xt =
∑

k≥0

akvt−k

we have:
IRFx,vk = ak.

and no averaging is needed
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IRF for an AR(1) Process: Review

Assume that:
xt = φxt−1 + vt

with |φ| < 1.
Applying the above relationship again and again, and assuming v has
bounded second moments, so that φkxt−k converges to zero as k
tends to infinity, we obtain:

xt =
∑

k≥0

φkvt−k

It then follows from the previous slide that:

IRFx,vk = φk.

If we want the IRF to add up to one, we have:

IRFx,vk = (1− φ)φk.
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IRF for an AR Process: Review

We have:
xt = φ1xt−1 + · · ·+ φpxt−p + vt

where v is an innovation (i.i.d. orthogonal to past values of x) and,
to ensure stationarity, the roots of the polynomial
1− φ1z− ...− φpzp are all outside the unit circle

To calculate the IRF we could use the moving average
representation (as in the previous slide)

Or we could use that the IRF satisfies a difference equation
analogous to the difference equation that defines x:

IRFk = φ1IRFk−1 + ... + φpIRFk−p.
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Vector Autoregression (VAR): Review

A VAR representation of a stationary stochastic process consists in
approximating the process by an AR(p) process

Even though below we focus on the case where the process being
approximated is one-dimensional, VAR are used mostly in
macroeconomics in the multi-dimensional case
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True Impulse Response Function

Back to the non-linear Calvo model

We have:

IRF∆y,∆y∗

k = Et

[
∂∆yt+k
∂∆y∗t

]

= Prob[ξt = ξt+1 = ... = ξt+k−1 = 0, ξt+k = 1]

= λ(1− λ)k.

Hence:

same IRF as for an AR(1) with ρ = 1− λ
same IRF as corresponding quadratic adjustment model
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Proposition 1: Ultra-Fast Estimate

Assumptions:

ξt: see above

∆y∗ i.i.d.(0, σ2)

Then:

∆y i.i.d.

VAR representation of ∆y (i.e., approximating ∆y by an AR
process) is white noise (i.i.d.)

Infer IRF corresponding to λ = 1, independent of true value of λ

Inferred adjustment: infinitely fast
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Intuition

We have:

∆yt =





∑lt−1
k=0 ∆y∗t−k if adjust in t,

0 otherwise.

where lt denotes the number of periods since the last adjustemtn,
as of time t
Why Cov(∆yt , ∆yt−1) = 0 indep. of the true λ?

if do not adjust in t− 1 or t: ∆yt ×∆yt−1 = 0.
if adjust in t− 1 and t:

Cov(∆yt,∆yt−1) = Cov(∆y∗t ,∆y
∗
t−1 + ∆y∗t−2 + ...) = 0.
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Wold’s Decompositin and VARs

Every stationary (non-deterministic) process X has a (unique)
MA(∞) representation:

Xt =
∑

j≥0

ψjεt−j,

with:∑
ψ2
j <∞, ψ0 = 1

εt uncorrelated (i.e., white noise)
∀t the linear space generated by εs, s ≤ t equal to that generated by
Xs, s ≤ t

IRF w.r.t. ε-shocks: ψ0, ψ1, ..., ψk, ...

The multivariate version of this result is the basis for VARs
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Wold’s Decomposition and Lumpy Adjustment

For a single agent with lumpy adjustment, the Wold decomposition
∆y is a white noise process

Hence: ψk = 0, k ≥ 1 and IRFk = 0, k ≥ 1

Yet we saw that: IRFk ∝ (1− λ)k

What happened to Wold’s Decomposition and to VARs?

Wold provides the IRF to the wrong shock
Wold only considers first and second moments, with lumpy
adjustment higher moments also play a crucial role
Relation of ∆y between economically interesting shocks (which
include the ξ) is highly non-linear
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7.3. Slow Aggregate Convergence

Rotemberg’s Equivalence Result:

Simple lumpy adjustment model with ξi,t’s i.i.d.:

Aggregate over N =∞ agents

Result: ∆y is AR(1) with ρ = 1− λ
Infer the correct theoretical IRF from aggregate (N =∞)

How fast does convergence take place?
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Technical Assumptions

∆y∗i,t ≡ vAt + vIi,t with:

vAt ’s: i.i.d. (µA, σ
2
A),

vIi,t’s: i.i.d. (0, σ2
I ),

ξi,t’s: i.i.d. Bernoulli(λ), λ ∈ (0, 1].
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Notation

Define:

∆yt ≡
∑

i

wi∆yi,t,

Effective N ≡ 1/
∑

i

w2
i .

If the true micro-model is Calvo, does estimating an AR(1)

∆yt = ρ∆yt−1 + εt, (2)

yield a consistent ρ = 1− λ?
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Proposition 2: Aggregate Bias

ρ̂: OLS estimator of ρ in (2).

Technical assumptions hold.

Then:

plimT→∞ρ̂ =
K

1 + K
(1− λ), (3)

with

K ≡
λ

2−λ(N− 1)σ2
A − µ2

A

σ2
A + σ2

I + 2−λ
λ
µ2
A

.
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Intuition
For simplicity: µA = 0.

ρ1 =
Cov(∆yNt ,∆yNt−1)

Var(∆yNt )

=
NCov(∆y1,t,∆y1,t−1) + N(N− 1)Cov(∆y1,t,∆y2,t−1)

NVar(∆y1,t) + N(N− 1)Cov(∆y1,t,∆y2,t)

=
0 + N(N− 1) λ

2−λ (1− λ)σ2
A

N(σ2
A + σ2

I ) + N(N− 1) λ
2−λσ

2
A

.

Hence:
Cov(∆y1,t,∆y1,t−1) Var(∆y1,t)

Micro AR(1): λ
2−λ (1− λ)(σ2

A + σ2
I ) λ

2−λ (σ2
A + σ2

I )

Calvo (µA = 0): 0 σ2
A + σ2

I

Bias vanishes as N goes to infinity.
Convergence slower if:

σI ↑, σA ↓, λ ↓, |µA| ↑ .
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Applications

Employment, prices, investment.
Parameters:

Caballero, Engel, Haltiwanger (1997)
Bils and Klenow (2004)
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Applications

Table: Slow Convergence

Reported: Estimated Half-Life of Shock

Effective number of agents (N)
100 500 1,000 5,000 10,000 ∞
—————————————————————————————–

Employment (quart.) 0.373 0.723 0.912 1.225 1.287 1.357
Prices (mon.) 0.287 0.595 0.861 1.824 2.225 2.901
Investment (annual) 0.179 0.399 0.582 1.516 2.167 4.596
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What is the relevant value of N?

LRD-establishments (1972-88, cont. panel):

Employment: 2,611

Investment: 699

US-Non-Farm-Business (2001):

Employment: 3,683

Investment: 986
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What is the relevant value of N? (Cont.)

Summing up:

Aggregate data:

Employment: maybe significant bias
Prices: maybe significant bias
Investment: large bias for sure

Sectoral data: major bias

Back to tables
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7.4. Bias Corrections

ARMA Correction

Instrumental Variable Correction
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Proposition 3: ARMA Correction

Same assumptions as in Proposition 2.

Add an MA(1) term to the standard partial adjustment equation:

∆yNt = (1− λ)∆yNt−1 + vt − θvt−1.

λ̂N: any consistent estimator of the AR-coefficient.
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Proposition 3: ARMA Correction

Then:

∆yNt follows an ARMA(1,1) with AR parameter 1− λ.

plimT→∞λ̂
N = λ.

MA coefficient, θ: “nuisance” parameter that depends on N, µA, σA
and σI.

limN→∞ θ(N, λ, µA, σA, σI) = 0.
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Implications of Proposition 3

If estimate an AR(p) with large p you get the wrong IRF

Must estimate an ARMA(1,1) and drop MA term before calculating
the IRF

Partial solution when N not too small (coincidental reduction) and
T not too small.
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Proposition 4: IV Correction

Consider the standard linear equation:

∆yt = (1− λ)∆yt−1 + λ∆y∗t ,

The following are valid instruments:

Components of ∆y∗t−1, ∆y∗t−2, ...
∆yt−2,∆yt−3, ...

Not a valid instrument: ∆yt−1
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Sketch of Proof

From (1)

∆yit = ξit(y
∗
it − yi,t−1) = λ(y∗it − yi,t−1) + (ξit − λ)(y∗it − yi,t−1),

and therefore

∆yi,t−1 = λ(y∗i,t−1 − yi,t−2) + (ξi,t−1 − λ)(y∗i,t−1 − yi,t−2).

Subtracting the latter from the former and rearranging:

∆yit = (1− λ)∆yi,t−1 + λ∆y∗it + εt,

with

εit = (ξit − λ)(y∗it − yi,t−1)− (ξi,t−1 − λ)(y∗i,t−1 − yi,t−2).
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Sketch of Proof

A valid instrument needs to be orthogonal to εt.

∆yt does not satisfy this condition because it is correlated with the
second term in the above expression.

By contrast, ∆y∗t−k, k = 1, 2, 3, ... is a valid instrument. To see this
note that these variables are independent from ∆y∗t , ξit and ξi,t−1.

∆yt−2, ∆yt−3, ... are also valid instruments
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Using IV Correction

U.S. Private Sector

Panel with 10 one-digit sectors

1987–2004

Quarterly data

Instruments: unit labor costs, ...

Table: IV Correction for Employment

Reported: Estimated Half-Life of Shock

AR(1) With IV
2.40 4.95

(0.25) (1.22)
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IV Correction and Bils-Klenow Finding

Calvo model predicted:

ρ̂1
∼= 1− λ̂

where ρ1 is obtained regressing πt on πt−1 and λ from micro
adjustment frequency

Using 123 ELIs, Bils-Klenow obtained:

ρ̂1 � 1− λ̂.
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Testing the Calvo Model

Fig. 2.—Predicted vs. actual inflation persistence (Calvo model, 1995–2000, 123 consumption categories)Eduardo Engel (Yale Univ.) Macroeconomía y Costos de Ajuste CEA - U. de Chile. Agosto 2008 36 / 140



IV Correction and Bils-Klenow Finding

Results arrived today!

Instruments: prices from other goods (brothers and sisters, uncles
and aunts), energy price index, producer price index
For every ELI we estimate the adjustment speed λ via three
alternatives:

Micro frequency of price adjustments: λ̂micro

OLS estimate for ρ1: λ̂OLS = 1− ρ̂1,OLS

IV estimate for ρ1: λ̂IV = 1− ρ̂1,IV
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IV Correction and Bils-Klenow Finding

We then estimate the regression:

λ̂i,IV − λ̂i,OLS = β(λ̂i,micro − λ̂i,OLS)

It follows that

λ̂i,IV = βλ̂i,micro + (1− β)λ̂i,OLS

Hence β captures the fraction of the gap that is closed on average
by IV between OLS and the “true” micro estimates
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IV Correction and Bils-Klenow Finding

We obtain β̂ close to zero if we work with all ELIs

We obtain β̂ close to 1 if we work with the subset of ELIs (34/180)
with t-stats for λ̂IV ≥ 1.65

Next slide: plots (λ̂i,IV − λ̂i,OLS) against (λ̂i,micro − λ̂i,OLS) for the
subset of ELIs where the IV-estimates are precise
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IV Correction and Bils-Klenow Finding
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7.5. Extensions

Relaxing random walk assumption:

y∗: AR(1) with autocorrel. φ
Bias is zero if φ = 0
Bias similar to r.walk case if φ > 0.80

Adding smooth adjustment:

Lumpy and smooth micro adjustment:

y∗t
Calvo−→ ỹt

AR(p)−→ yt.

Bias for lumpy component
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7.5. Extensions

Relaxing Poisson/Calvo assumption:

Adjustment-shocks follow any arrival process
Generates rich class of potential theoretical IRF
Rotemberg result generalizes to this case
Similar bias

Aggregate hazard shocks:

λ time-varying
Bias larger
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7.5. Extensions

Increasing hazard (generalized Ss) models:

Same result (and intuition) for N = 1
Bias larger (similar to case with aggregate hazard shocks)

Time-aggregation:

Smoothing via time-aggregation
Same bias for N = 1 and slow convergence
Application: interest rates

Eduardo Engel (Yale Univ.) Macroeconomía y Costos de Ajuste CEA - U. de Chile. Agosto 2008 43 / 140



8. Ss Policies

1 Optimality of Ss policies: a one-sided example
2 Generalized Ss policies
3 Brownian motion: a brief review
4 Ss policies in continuous time
5 Invariant and ergodic distributions
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8.1. Optimality of Ss policies: an example

Fixed adjustment costs are the basis to rationalize lumpy behavior.

Proving that micro-optimal policies are of the Ss type is very
difficult, even if you consider an individual agent in partial
equilibrium. Proving existence and uniqueness is usually
straightforward (thanks to Blackwell’s conditions). Yet proving that
the optimal policy is of the Ss type can be very hard.

In this section we give the flavor of such a proof, by looking at a
simple (one-sided policy) case.

Later we will use (but won’t prove) more general Ss policies.
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A Particular Case

Problem Formulation

A monopolist sets the nominal price of a good in an inflationary
environment.
Notation:
β: Monopolist’s discount factor
xt: Log of real price at t, before deciding whether to adjust.
yt: Log of the real price chosen in t.
K: Cost of adjusting the price (assumed constant).

y takes values in [A, B]: if the real price is below A it is optimal for
the monopolist not to produce, if it is above B there is no demand.
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Optimality of Ss policies: an example

A B y

π(y)

π : [A, B]→ IR denotes the monopolist’s profit as a function of the
log-price. This function is assumed quasiconcave (see the figure above). It
attains its maximum at ŷ (quasiconcavity ensures that ŷ is the only local
maximum).

Eduardo Engel (Yale Univ.) Macroeconomía y Costos de Ajuste CEA - U. de Chile. Agosto 2008 47 / 140



Optimality of Ss policies: an example

Inflationary shocks in period t, before the monopolist decides
whether to adjust, are denoted by zt (in the notation of previous
lectures, they are the ∆ŷ) and assumed i.i.d. with common density
q(z).

We also assume zt ≥ 0. This non-negativity assumption rules out
the possibility of ever wanting to decrease the nominal price.

The crucial assumptions: fixed adjustment cost and non-negative
inflationary shocks.
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Optimality of Ss policies: an example

We adopt the following timing convention (depicted below):

The monopolist begins period t with real log-price yt−1.
The inflationary shock, zt, takes place, lowering the real log-price to
xt.
The monopolist decides whether to adjust or not, resulting in a
nominal log-price yt.
Period t profits are realized.

-
t

z = zt
xt = yt−1− zt

Choose yt π(yt)
xt+1 = yt − zt+1

t + 1

z = zt+1
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Optimality of Ss policies: an example

Denote: v(x) ≡ Present value of profits, net of adjustment costs,
when the current real price is x, discount factor: β.

The Bellman equation for this problem the is:

v(x) = max
{
π(x) + β

∫
v(x − z)q(z) dz

︸ ︷︷ ︸
no adjustment

,

sup
y

[
π(y)− K+ β

∫
v(y − z)q(z) dz

]

︸ ︷︷ ︸
adjust

}
.

(4)
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Existence and Uniqueness of a Solution

Define:

(Tv)(x) = max{π(x) + β

∫
v(x − z)q(z) dz,

supy∈[A,B][π(y)− K+ β

∫
v(y − z)q(z) dz]}.

If |v(x)| ≤ C, then |(Tv)(x)| ≤ max
u
|π(u)|+ βC and hence T

preserves boundedness (i.e., T : B([A, B])→ B([A, B])) and we can
apply Blackwell’s Theorem.

Hence must prove that Monotonicity and Discounting conditions
hold.
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Verifying Blackwell’s Conditions

Monotonicity

We have that:

f ≤ g ⇒
∫
f (x − z)q(z) dz ≤

∫
g(x − z)q(z) dz

⇒ π(x) + β

∫
f (x − z)q(z)dz ≤ π(x) + β

∫
g(x − z)q(z)dz (5)
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Optimality of Ss policies: an example
We also have that:

f ≤ g⇒ π(y)− k+ β

∫
f (y − z)q(z) dz ≤

π(y)− k+ β

∫
g(y − z)q(z) dz

⇒ sup
y∈[A,B]

[
π(y)− K+ β

∫
f (y − z)q(z) dz

]
≤

sup
y∈[A,B]

[
π(y)− K+ β

∫
g(y − z)q(z) dz

]
(6)

Combining (5) and (6) yields:

f ≤ g⇒ Tf ≤ Tg,

thus establishing monotonicity.
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Optimality of Ss policies: an example

Discounting

We have that:

(T[f + a])(x) = max
{
π(x) + β

∫
[f + a](x − z)q(z) dz,

sup
y∈[A,B]

[
π(y)− K+ β

∫
[f + a](y − z)q(z) dz

]}

= max
{
π(x) + βa+ β

∫
f (x − z)q(z) dz,

sup
y∈[A,B]

[
π(y)− K+ βa+ β

∫
f (y − z)q(z) dz

]}

= βa+ (Tf )(x),

The existence and uniqueness of a solution to the Bellman equation now
follows from Blackwell’s Theorem.
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Characterizing the Optimal Policy

The proof of existence and uniqueness was trivial, the challenge is
to prove that, for some constants s and S, the optimal policy is of
the form (see the figure on the next slide):

xt ≤ s⇒ adjust yt to S,

xt > s⇒ yt = xt that is: no adjustment.
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Characterizing the Optimal Policy
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The Auxiliary Value Function

Denote by (Jv)(x) ≡ π(x) + β
∫
v(x − z)q(z)dz the present value of

profits, net of adjustment costs, given a current real log-price of x,
assuming you do not adjust your price in the current period.

The Bellman equation may then be written as:

v(x) = max

{
(Jv)(x), sup

y∈[A,B]
[(Jv)(y)− K]

}
. (7)

Next we show that if v is continuous and bounded function, then so is
the function (Jv).
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The Auxiliary Value Function

If xn → x, then:

|(Jv)(xn)− (Jv)(x)| ≤

|π(xn)− π(x)|+ β

∫
|v(xn − z)− v(x − z)| q(z) dz

Next we let n→∞. We can exchange exchange
∫

and lim because
of Lebesgue’s Dominated Convergence Theorem (here we use that
v is bounded).
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The Auxiliary Value Function

We obtain:

lim
n→∞
|(Jv)(xn)− (Jv)(x)| ≤ lim

n→∞
|π(xn)− π(x)|

+β

∫ B

A
lim
n→∞
|v(xn − z)− v(x − z)| q(z) dz

And since v and π are continuous, we conclude that:

(Jv)(xn)→ (Jv)(x)

and therefore (Jv) is continuous.

Eduardo Engel (Yale Univ.) Macroeconomía y Costos de Ajuste CEA - U. de Chile. Agosto 2008 59 / 140



The Auxiliary Value Function

Since (Jv) is continuous and [A, B] compact, sup
y

(Jv)(y) is attained at

some point in [A, B], denote this point by S.

Then (7) can be written as:

v(x) = max {(Jv)(x), (Jv)(S)− K} .

In what follows we may focus on values of y in [A, S], since, assuming
initially y ≤ S, we have that the value y (and, due to the
monotonicity of shocks, also x) will never exceed S.

Next comes the non-trivial part. If Jv looks as in the figure on the
next page, the optimal rule is not of the Ss type.
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The Auxiliary Value Function

K

A A0 A1 A2 A3 BS y

(Jv)(S)− K

(Jv)(S)

(Jv)(y)

Eduardo Engel (Yale Univ.) Macroeconomía y Costos de Ajuste CEA - U. de Chile. Agosto 2008 61 / 140



The Auxiliary Value Function

Indeed, in the case depicted in the preceding figure, we have that
the optimal policy is:

x ∈ [A, A0] ∪ [A1, A2]⇒ adjust.
x ∈ [A0, A1] ∪ [A2, S]⇒ do not adjust.
x > S⇒ irrelevant.

It follows that to prove that the optimal policy is Ss, we must find
sufficient conditions to rule out situations like the one depicted in
the preceding figure, namely conditions that ensure that (Jv)(y)
crosses the horizontal line at y = (Jv)(S)− K only once for
y ∈ [A, S].
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The Auxiliary Value Function

To do this we show that, denoting by ŷ the largest value attained by
π:

(a) (Jv) is strictly increasing in [A, ŷ].
(b) (Jv) grows strictly less than K in any interval contained in [̂y, S].

In what follows we use the assumption that π is quasiconcave in
[A, B], that is, that it has a unique local (and therefore global)
maximum, ŷ.
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Proof of (a)

We first show that:
w strictly increasing in [A, ŷ]⇒ Tw strictly increasing in [A, ŷ].

Assume w(x) < w(x′), ∀x, x′ with A ≤ x < x′ ≤ ŷ.
Then:

π(x)
π quasiconcave

< π(x′)∫
w(x − z)q(z) dz <

∫
w(x′ − z)q(z) dz,

and it follows that (Tw)(x) < (Tw)(x′) and Tw is is strictly
increasing in [A, ŷ].
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Proof of (a)

Next we apply the “Garbage In–Garbage Out Result”, noting that
the set of non-decreasing (i.e., weakly increasing) functions defined
on [A, ŷ] is closed and includes those which are strictly increasing in
that interval.

It then follows that v is strictly increasing in [A, ŷ]
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Proof of (b)

First note that, since adjusting real prices from x to x′ costs K, we
must have, for all x, x′ ∈ [A, S]:

|v(x)− v(x′)| ≤ K. (8)

Hence, for y, y′ ∈ [̂y, S), with (Jv)(y′) > (Jv)(y):

0 ≤ (Jv)(y′)− (Jv)(y)

≤ (Jv)(S)− (Jv)(y)

= π(S)− π(y) + β

∫
[v(S− z)− v(y − z)] q(z) dz

≤ β

∫
|v(S− z)− v(y − z)| q(z) dz

≤ βK

< K,
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Proof of (b)

where:

Second step: (Jv) attains its maximum at S.

Fourth step: since y and y′ are to the right of the point where π
attains its maximum and π is quasiconcave, we have π(y) > π(S).

Fifth step: from (8).

This concludes our proof. We have shown that (Jv) is of the form
depicted in the figure on the following page. In doing so we have also
shown that s < ŷ < S.
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Proof of (b)
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Comments on the Optimal Policy

At the moment of adjusting its nominal price, the firm’s real price is
above its frictionless optimal price, ŷ: since the firm is forward
looking, it chooses a high real price when adjusting, aware of the
fact that this price will decrease until it adjusts its price again

By the end of a pricing cycle, the firm’s real price is below its
frictionless optimal price ŷ

The length of price cycles varies from one cycle to the next,
depending on realizations of zt
Even if the cost of deviating from the static target price is
symmetric, we will not have S = −s, in fact, in this case S < −s.
Why?

Eduardo Engel (Yale Univ.) Macroeconomía y Costos de Ajuste CEA - U. de Chile. Agosto 2008 69 / 140



General Comments

The first proof of optimality of Ss rules is due to Yale’s Herb Scarf,
in 1959. This result was a major breakthrough. Many bright
mathematical/statistical/operation research minds worked on the
problem during the 1950s. For the history behind the proof, see
Scarf (2002, CFP 1036).

To prove optimality of Ss rules, Scarf introduced the concept of
K−convexity of a function, which is closely related to the final part
(part (b)) of the proof.

The original setting for this problem was inventory theory, the first
applications to pricing were in the late 1970’s, while other macro
variables (durable consumption, employment, investment) had to
wait until the late 1980s/early 1990s.

The proof presented in this lecture is due to Andrew Caplin.
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8.2. Generalized Ss Policies

Ss policies are characterized by:

One or more state-variables: variables that determines whether
you adjust or not. In the example above there is one state-variable,
x, which is the real log-price

An inaction range, I . As long as x ∈ I you do not adjust. In the
example above: I = (s, S].

One or more adjustment triggers: values of x that trigger an
adjustment. In the example above, any value of x ≤ s is a trigger.

One or more adjustment targets: values to which when you reach
an adjustment trigger. In the example above, S is the only
adjustment target

Eduardo Engel (Yale Univ.) Macroeconomía y Costos de Ajuste CEA - U. de Chile. Agosto 2008 71 / 140



State– vs. Time–dependent Rules

Ss policies are called state-dependent policies, since whether you act or
not depends on your state-variable (in the above example, the real price).

By contrast, policies considered in earlier papers within the
Neo-Keynesian tradition (Fischer and Taylor) are time-dependent, since
the moments where you act are separated by a fixed interval of time.

Calvo-type adjustments are clearly not state-dependent. Are they
time-dependent? If we take a broader view of what “time-dependent”
means, they are. For this we define a time-dependent rule as a policy
such that whether you adjust or not in a given period depends only on
the time that has elapsed since the last time you adjusted, not on your
(or the economy’s) particular state-variables
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Generalized Ss Policies

We relax the assumption that the zt are nonnegative

In some cases we also relax the fixed-cost-of-adjustment assumption

Assuming that the static real log-price follows a random walk
simplifies things further, much of what follows can be extended to
the case where this price follows an AR(1)

Formal proofs for many of the “approximate results” that follow
require us to work in continuous time. We briefly discuss later in
this lecture.
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(L,C,U) Policies

We relax the zt ≥ 0 assumption in our benchmark model, that is,
we allow for negative inflationary shocks.

By contrast with the benchmark model, now there are times when
it may be optimal to decrease the nominal price.

The zt shocks continue being i.i.d.

The cost of adjusting the nominal price may be the same for
increases and decreases, or may differ. What matters is that we
have a fixed cost in both cases.
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(L,C,U) Policies

Result

The the optimal policy is two-sided Ss, characterized by three
thresholds: L < C < U:

when the real price reaches the lower trigger L, the nominal price is
increased by C − L and a new price cycle begins, with the real price
at C

when the real price reaches the upper trigger U, the nominal price
is decreased by U− C and a new price cycle begins, with the real
price at C
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(L,C,U) Policies
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(L,C,U) Policies

Inaction range: L < x < U

Target real price: C

Triggers: L and U

Ss policies where the control variable can both increase and
decrease are referred to as two-sided Ss policies, by contrast with
the case considered in our benchmark model, which is a one-sided
Ss policy
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(d,D,U, u) Policies

As in the (L,C,U) case, but now the adjustment cost has a variable
component (as well as the fixed component we considered earlier).

That is, the firm pays K+ + k+∆x for a nominal price increase of ∆x and
pays K− − k−∆x for a nominal price decrease of ∆x. The constants
K+,K−, k+, k− are all strictly positive.
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(d,D,U, u) Policies

Result

The the optimal policy is (approximately) of the (d,D,U, u) type:

When x reaches d, the nominal price is increased so that the real
price reaches D

When x reaches u, the nominal price is decreased so that the real
price reaches U

We have: d < D < U < u.
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(d,D,U, u) Policies

Triggers: d and u

Targets: D and U

Inaction range: d < x < u

Approximation because of discrete time: the more x falls below d,
the smaller the real price you choose after adjusting. This is not an
issue in continuous time.

The first panel on the following slide depicts the generic (d,D,U, u)
policy, the second panel the particular case of a (L,C,U) policy.
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Shape of the Optimal Policy
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Adjustment Hazard Model

Same assumptions as in (L,C,U) case, but now the fixed
adjustment cost in a given period are i.i.d. draws from a known
distribution G(ω), with probability density g(ω)

The optimal policy now depends not only on the firm’s real price
immediately before adjusting, x, but also on the current adjustment
cost draw, ω
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Adjustment Hazard Model

Result

Conditional on ω, the optimal policy is of the (L,C,U) type, with
L = L(ω) and U = U(ω). C does not depend on ω. We also have:
L′(ω) < 0, U′(ω) > 0 and L(ω) < C < U(ω).
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Adjustment Hazard Model

To further describe the optimal policy, it is better to work with the real
price in deviation from C:

u ≡ x − C.
We then denote by Ω(u) the threshold in the realization of ω, for which
the firm is indifferent between adjusting and not adjusting, conditional
on a real price deviation of u. That is:

Ω(u) =




L−1(u), if u < 0,

U−1(u), if u > 0.
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Adjustment Hazard Model
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Adjustment Hazard Model

We can now summarize the optimal policy via a state-dependent
adjustment hazard, Λ(u).

Given a price deviation u, we denote by Λ(u) the probability of adjusting
the price before observing the current draw of the adjustment cost.
Therefore:

Λ(u) ≡ G(Ω(u)).
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Adjustment Hazard Model
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Adjustment Hazard Model

It is straightforward to prove that Λ(u) is decreasing for u < 0 and
increasing for u > 0.
This is referred to as the increasing hazard property: the hazard
increases with the absolute value of the price-deviation u

The standard (L,C,U) policy is obtained when G(ω) has all its mass
at one point

The Calvo model (Λ(u) = λ for all u) is obtained when G(ω) has
mass λ at ω = 0 and mass 1− λ at a very large value of ω
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Adjustment Hazard Model

This is a state-dependent adjustment hazard, to distinguish it from
the usual, time-dependent hazard:

time-dependent: probability of adjusting, conditional on having last
adjusted t periods ago
state-dependent: probability of adjusting given current state (in our
case: real price and current adjustment cost)

In an adjustment hazard model, the size of upward and downward
adjustments can vary over time, which does not happen with the
standard (L,C,U) model

This added realism also is useful when estimating the model

More on adjustment hazards: later in the course.
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Adjustment Hazard and Imperfect Information

So far: assumed the firm observes its real price x at no cost
In recent work, Mike Woodford relaxes this assumption:

the firm is uncertain about its real price, its uncertainty is described
by a probability density h(x) that evolves over time
every period the firm can pay to reduce its uncertainty; the more it
pays, the smaller the variance of the new h(x), yet it cannot
eliminate uncertainty completely

The adjustment cost is always the same, as in the (L,C,U) model

Eduardo Engel (Yale Univ.) Macroeconomía y Costos de Ajuste CEA - U. de Chile. Agosto 2008 90 / 140



Adjustment Hazard and Imperfect Information

Yet imperfect information implies that the optimal policy leads to an
increasing adjustment hazard:

with perfect information, the optimal policy would be a standard
(L,C,U) policy, yet the firm does not know whether its x is in the
inaction range or not

as h(u) moves closer to one of the triggers it pays more to pay for
information that makes this distribution more precise; thus as your
true value of u moves closer to one of the triggers, the chances that
you adjust increase smoothly

this leads to a hazard that increases smoothly with |u|
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8.3. Brownian motion: a brief review

A continuous time process (Xt)t≥0 is a Brownian motion with
parameters (µ, σ2), which we denote BM(µ, σ2), if:

(a) X0 ≡ 0.

(b) Independent increments:

t0 < t1 < . . . < tn ⇒ Xtn − Xtn−1 ,Xtn−1 − Xtn−2 , . . . ,Xt1 − Xt0

are independent.

(c) s < t⇒ Xt − Xs  N(µ(t− s), σ2(t− s)).

(d) Pr{ω : t 7→ Xt(ω) continuous} = 1.

Note: it can be shown that (a), (b) and (c)⇒ (d). Also that (a), (b) and
(d)⇒ (c).
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Brownian motion: a brief review

For a BM:

Pr{ω : t 7→ Xt(ω) is differentiable at no point} = 1.

Martingale Property: s < t⇒ Es[Xt] = Xs.

Comments:

The BM is the continuous time version of a random walk. Its sample
paths are everywhere continuous and nowhere differentiable.

A BM(0,1) is also known as a Wiener process or standard BM.

µ is the drift and σ the instantaneous standard deviation.

X follows a Geometric Brownian Motino if logX follows a Brownian
Motion
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Some Curiosities

If we divide the interval [0, t] into 2n segments of length t/2n, so
that the k-th segment is

[
k− 1

2n
t,
k
2n
t

]
,

we have that the expected value of the sum of lengths of the line
segments that join the points of the BM at the preceding points in
time tends to infinity when n→∞ (see the figure on the next
slide).
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Some Curiosities

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

2.
1

2.
2

2.
3

2.
4

2.
5

2.
6

2.
7

2.
8

2.
9 3

MB(0,2) APROX

Figure: Brownian Motion and Line Segments Joining Realizations at
Equally-spaced points.
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Some Curiosities

Indeed:

2n∑

k=1

E
∣∣∣X k

2n t
− X k−1

2n t

∣∣∣ =
2n∑

k=1

E

∣∣∣∣N
(
µ

2n
t,
σ2

2n
t

)∣∣∣∣

≤
2n∑

k=1

E

∣∣∣∣N
(

0,
σ2

2n
t

)∣∣∣∣

= 2n
C0σ

2n/2

√
t = C0σ

√
t2n/2 n→∞−→∞,

where we used E|N(µ, σ2)| ≤ E|N(0, σ2)|, C0 ≡ E|N(0, 1)| and
E|N(0, τ 2)| = τC0.
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Some Curiosities

By contrast, the expected quadratic variation is bounded:

E(quadratic variation) ≡ E
2n∑

k=1

(
X k

2n t
− X k−1

2n t

)2

=
2n∑

k=1

E

[
N

(
µ

2nt
,
σ2

2n
t

)2
]

≤
2n∑

k=1

E

[
N

(
0,
σ2

2n
t

)2
]

=
2n∑

k=1

σ2

2n
t = 2n

σ2

2n
t = σ2t <∞.

We conclude that a BM moves a great distance, without getting
anywhere because it changes direction often and abruptly.
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Discretizing a BM

We consider ∆t and ∆x such that:

X(0),X(∆t),X(2∆t),X(3∆t), . . .

is a Markov chain that satisfies:

X(t+ ∆t) =




X(t) + ∆x, with probability p,

X(t)−∆x, with probability 1− p.
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Discretizing a BM

We choose p, ∆t and ∆x so as to match the first two moments of
the BM:

E[∆X(t)] = p∆x + (1− p)(−∆x) = (2p− 1)∆x = µ∆t.

E[(∆X(t))2] = (∆x)2

= E
[
N(µ∆t, σ2∆t)2

]
= µ2(∆t)2 + σ2∆t.
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Discretizing a BM

It follows that:

p =
1
2

[
1 +

µ

σ

√
∆t
]
, (9)

∆x = σ
√

∆t

√
1 +

µ2

σ2
∆t ' σ

√
∆t, (10)

where we used the assumption ∆t� 1 in the last step, or more
precisely, µ

2

σ2 ∆t� 1).

Hence, we can fix one of the parameters p, ∆x and ∆t (usually you
fix ∆t), and determine the remaining two via (10) and (9). It can
then be shown that as ∆t→ 0 the discrete process
[X(0),X(∆t),X(2∆t),X(3∆t), . . .] converges, in a precise sense,
to the BM(µ, σ) (Xt)t≥0.
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An Alternative Discretization

We’ll refer to the discretization described above as the traditional
discretization. Here we consider an alternative discretization, which
we will use later to provide heuristic derivations of some results.

We consider a BM(µ , σ2), (Xt)t≥0 and approximate it by a Markov
chain:

X(0),X(∆t),X(2∆t),X(3∆t), . . .

where the X take values {. . . ,−2∆x,−∆x, 0,∆x, 2∆x, . . .} so
that:

X(t+ ∆t) =




X(t) + µ∆t+ σ

√
∆t with prob. 1/2,

X(t) + µ∆t− σ
√

∆t with prob. 1/2,

where µ∆t+ σ
√

∆t and µ∆t− σ
√

∆t are multiples of ∆x.
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An Alternative Discretization

Note that:

E[∆Xt] = µ∆t,

Var[∆Xt] = σ2∆t,

thus matching the first two moments of the BM.
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Why a Brownian Motion?

Often the true underlying process for y∗ is close to a BM.
Optimal policies are often simpler when you work in continuous
time. And the BM is the continuous time version of a random walk.

Look at the proof of optimality of one-sided Ss policies and note
that, in the case of continuous time, the proof is trivial, since zt
cannot jump.
The same holds with the standard discretization of a BM described
above, since the process changes by ±∆X each period.
In both cases, the process cannot ‘skip’ over states
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Why a Brownian Motion?

Small number of state variables:
The BM is one of the simplest continuous time stochastic process. In
particular, often the optimal policy does not depend on the current
realization of the BM-shock (i.e., Ss bands do not vary over time).
Next simplest is Ornstein-Uhlenbeck, continuous-time version of an
AR(1). In this case the optimal policy depends on the latest
realization of the BM (time-varying Ss bands).
Related to the curse of dimensionality:

Important in partial-equilibrium models
Crucial in general-equilibrium models
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8.4. Ss policies in continuous time

A. An Example

B. (More) General Case
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A. Ss policies in continuous time: An Example

Dixit (JPE, 1989)
Firm’s entry and exit decision:

fixed entry and exit costs
output price follows a random walk

Optimal policy: exit and entry triggers
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Hysteresis

Definition: failure of an effect to reverse itself as its underlying
cause is reversed

Important in entry-exit decisions

Example: foreign firms that entered the U.S. market appreciated
(mid 1980s) did not exit when the dollar fell back to its original
value
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Simple Cases

Single discrete project

“Firm” (could be worker, consumer, etc.) has discount rate ρ

Sunk investment: k

No depreciation

Immediate rusting if unused

Avoidable operating cost w per unit of time (fixed)

Output flow of the project is one unit, thus revenue from the
project equals the price P

In all cases the optimal decision rule is described by two triggers:
PH, PL, with PH > PL and such that the investment should be made if
P > PL and it should be abandoned if P falls below PL

Eduardo Engel (Yale Univ.) Macroeconomía y Costos de Ajuste CEA - U. de Chile. Agosto 2008 108 / 140



Simple Case 1

Firm has no investment in place and it believes current P will persist
forever
Then it will make the investment if

P > w + ρk ≡ PH
where the r.h.s. is the annualized cost of making and operating the
investment.
Conversely, firm has such a project in place and the price falls to P1,
where the firm believes it will stay forever
Then the firm abandons the project if

P1 < w ≡ PL
Full cost defines entry trigger PH
Variable cost defines exit trigger PL
Standard Marshalian theory of the long run vs. the short run
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Simple Case 1

Hysteresis:

Initially: PL < P < PH
Then P rose above PH and the investment was made
Then the price fell to its original level, which was insufficient to
induce abandonment

Two problems with above story:

Irrational (myopic) expectations
Quantitatively small effect
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Simple Case 2

The “usual” value P∗ of P is in the range (w,w + ρk)

P has risen to a higher value but is expected to revert to P∗

Due to mean-reversion, a price above w + ρk does not suffice to
induce investment. The trigger PH will be above w + ρk

Similarly, with mean reversion we have that PL < w
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Simple Case 3

Ongoing uncertainty but no mean-reversion

Current price: w + ρk

From here on it will move up or down by h, with equal probabilities

If the firm invests right away and continues active forever, its
expected present value net of investment cost is zero
If it waits one period:

P ↑: invests next period and obtains positive present value
P ↓: does not invest, present value is zero

Expected value of waiting one period: positive: option value feature

In this case: PH > w + ρk

Similarly: PL < w
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The Model

Firm can become active by investing a lump sum k. Then produces a
unit of output at a variable cost w.

It can suspend operations by paying a lump sum exit cost l

It must repay k if it decides to reenter at some future time

Cost of capital = interest rate = ρ

w, k, l, ρ are constant and nonstochastic

Uncertainty: P follows a Geometric Brownian Motion

The firm is risk neutral and maximizes its expected present value
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Price Process

We assume that log P follows a BM(µ, σ2)

This is often written as:

dP
P

= µdt+ σdz

with zt a standard BM(0,1).

Thus log Pt − log P0 is N(µ, σ2)

Thus E[dz] = 0 and E[dz2] = dt
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Solving the firm’s problem

Two state variables: (P, k) where k = 1 if the firm is active and k = 0 if it
is inactive Denote the corresponding value functions by V1(P) and V0(P)

Assume the price is P at time t, the firm is active at t, and the firm does
not become inactive in (t, t+ ∆t). Then, denoting by E[dV] the
expected change in the value of the firm during (t, t+ ∆t) we have:

E[dV1] = 1
2 [V1(Peµ∆t+σ

√
∆t) + V1(Peµ∆t−σ

√
∆t)]− V1(P)

which, via Taylor expansions of 2nd order leads to

E[dV1] = µPV ′1(P)∆t+ 1
2σ

2P2V ′′1 (P)
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Solving the firm’s problem

From the basic finance identity:

ρV(P) = Dividends + Capital Gains

we therefore have:

ρV1(P) = P− w + µPV ′1(P)∆t+ 1
2σ

2P2V ′′1 (P)

and therefore

1
2σ

2P2V ′′1 (P) + µPV ′1(P)− ρV1(P) = w − P.

A similar argument leads to:

1
2σ

2P2V ′′0 (P) + µPV ′0(P)− ρV0(P) = 0.
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Solving the firm’s problem

Thus two pretty standard differential equations, that can be solved
explicitly:

V0(P) = A0P
−α + B0P

β, (11)

V1(P) = A1P
−α + B1P

β +

(
P

ρ− µ −
w
ρ

)
, (12)

with

β =
1− m+

√
(1− m)2 + 4r
2

> 1,

−α =
1− m+

√
(1− m)2 + 4r
2

< 0,

with m = 2µ/σ2 and r = 2ρ/σ2.
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Interpretation

The term in parenthesis on the r.h.s. of (12) is the value obtained if
the project is active forever. Therefore the remaining part of the
solution must be the value of the option to close down optimally.

Similarly, the whole expression for V0(P) must be the valued of
becoming active for an idle firm.
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Endpoint conditions

If P very small, the option value of activating should be small, thus
A0 = 0

Similarly B1 = 0

Hence:

V0(P) = BPβ,

V1(P) = AP−α +

(
P

ρ− µ −
w
ρ

)
,
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Endpoint conditions

Value matching conditions:

V0(PH) = V1(PH)− k,
V1(PL) = V0(PL)− l.

Smooth pasting conditions:

V ′0(PH) = V ′1(PH),

V ′0(PL) = V ′1(PL).

Hence we have four equations for four unknowns: A, B, PH and PL
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Implications

Based on the optimal solution characterized above Dixit shows that:

PH > w + ρk ≡ WH,
PL < w − ρl ≡ WL.

Comparative statics: the figure on the following slide shows that PH/WH
is increasing in σ while PL/WL is decreasing in σ. It also shows that both
are decreasing in µ. Most important, the differences between the
optimal and the Marshalian triggers are large for reasonable parameter
values.
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Comparative Statics
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B. Ss policies in continuous time: General Case

Based on Dixit (1991).
The problem::

A state variable (e.g., price gap p− p∗), z, follows a BM(µ , σ2)
when no control is exerted.
Exerting control (adjusting) is costly, entailing both a fixed and a
variable component:

B(∆z) =




K+ + k+∆z, ∆z > 0;

K− − k−∆z, ∆z < 0,

where K+, K−, k+ and k− ≥ 0.
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Ss policies in continuous time: General Case

The case of one-sided Ss policies corresponds to K+ > 0 and
k+ = 0; K− and k− are irrelevant in that case.

The case of (L, c,U) policies corresponds to k+ = k− = 0 and
K+ = K− > 0.

The utility/profit flow of having z is π(z), with π quasiconcave with
maximum at ẑ.

The agent faces the following problem:

max
zt

E [PV(π − Adjustment costs)] .
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Examples

All variables that follow are in logs.

Prices:
xt = Nominal price at t,
x∗t = Nominal price if there were no frictions,
zt ≡ xt − x∗t ,
x∗t  BM(µ , σ2),
zt when not adjusting BM(−µ , σ2).

Durable good:
xt = Durable stock at t, depreciates at rate δ,
x∗t = Optimal durable stock in the absence of frictions,
zt ≡ xt − x∗t ,
x∗t  BM(µ , σ2),
zt when not adjusting BM(−µ− δ , σ2).
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Examples

Investment:
xt = Capital stock in t, state variable, depreciates at rate δ,
x∗t = Desired capital stock at t,
zt ≡ xt − x∗t ,
x∗t  BM(µ , σ2),
zt when not adjusting BM(−µ− δ , σ2).
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Shape of the Optimal Policy
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Shape of the Optimal Policy

Panel (a) in the previous Figure presents the optimal policy when
we have both fixed and proportional adjustment costs

Panel (b) considers the case with no proportional adjustment costs.
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Some particular cases

1 U = D if k+ = k− = 0, that is, if we have a fixed adjustment cost.
The corresponding optimal policy is illustrated in Panel (b) of the
preceding figure.

2 If K− →∞ or k− →∞, the agent will never adjust downwards
and we have a one-sided Ss policy.
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Finding the Bands of the Optimal Policy

Assuming (it can be proved formally) that the optimal policy is of
the sort described above, how do we determine the optimal values
of u, d, U and D?

Let J(x) denote the value function evaluated at values of x where no
adjustment takes place, that is, d < x < u (we are excluding only
two feasible values of x: d and u).

Then, denoting by r the discount rate and using the alternative
discretization of a BM:

J(x)
∆t�1∼= π(x)∆t +

+
1
2

e−r∆t
{
J(x − µ∆t+ σ

√
∆t) + J(x − µ∆t− σ

√
∆t)
}
.
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Finding the Bands of the Optimal Policy

Taking a second order Taylor expansion (formally we are applying
Ito’s Lemma) and doing some algebra (we consider terms of O(∆t)
but ignore higher order terms):

J′′(x)− 2µ
σ2
J′(x)− 2r

σ2
J(x) +

2π(x)
σ2

= 0. (13)

The solution to this differential equation is of the form:

J(x) = A1eλ1x + A2eλ2x + J0(x)

where λ1 and λ2 are the roots of:

λ2 − 2µ
σ2
λ− 2rµ

σ
= 0

and J0(x) denotes the expected discounted flow payoff ignoring all
barriers and controls (see Dixit for a proof that J0(x) satisfies (13)).

Eduardo Engel (Yale Univ.) Macroeconomía y Costos de Ajuste CEA - U. de Chile. Agosto 2008 131 / 140



Finding the Bands of the Optimal Policy

To determine d, u, D, U, A1 and A2 we need six “independent”
equations

Value matching

The value of the program should not change when adjustment
takes place. This condition is equivalent to imposing that, when the
agent adjusts, she must be indifferent between adjusting and not
adjusting. Hence:

J(U)− J(u) = K− + k−(u− U),

and, analogously:

J(D)− J(d) = K+ + k+(D− d).
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Finding the Bands of the Optimal Policy

Smooth pasting

The rate at which the value function changes should be the same
before and after you adjust (smooth pasting) refers to the behavior
of the value function being “similar” at both pairs of trigger and
target points) .

This leads to conditions on the first derivatives of J(x), one of which
we derive formally in what follows:

J(U)− B(U− u) = max
x
{J(u+ x)− B(x)} ,

where x denotes the change in z that takes place when adjusting
from u to U (∆z < 0 in this case).

Eduardo Engel (Yale Univ.) Macroeconomía y Costos de Ajuste CEA - U. de Chile. Agosto 2008 133 / 140



Finding the Bands of the Optimal Policy

The FOC for this problem is:

J′(u+ x) = B′(x),

with the optimal x equal to U− u. It follows that:

J′(U) = −k−.

Dixit provides similar derivations for J′(u) = −k−,
J′(D) = J′(d) = k+, thereby providing four smooth pasting
conditions, which combined with two value matching conditions
can be used to fully specify the solution J(x). He also provides a
graphical interpretation of these conditions.
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8.5. Invariant and Ergodic Distribution

Aggregate and Idiosyncratic Shocks

We consider a large number (continuum) of agents that follow the
same Ss policies, but may face different shocks

Shocks faced by agents have a common and an agent-specific
component.

The former are referred to as aggregate shocks, the latter as
idiosyncratic shocks.

Idiosyncratic shocks are independent across agents, and
independent from the aggregate shock
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Aggregate and Idiosyncratic Shocks

If the frictionless variable follows a BM we assume that the
aggregate (common) shock follows a BM(µA , σ

2
A) and idiosyncratic

shocks are independent across agents (and independent from the
aggregate shocks) and follow a BM(0 , σ2

I ).

Similarly, in discrete time, if the frictionless variable follows a
random walk, then we assume that the aggregate shock follows a
random walk with drift µ and variance of innovations σ2

A, while
idiosyncratic shocks are independent across agents and
independent from the aggregate shock, and follow a random walk
with zero drift and variance of innovations σ2

I .

In both cases the relative importance of aggregate and idiosyncratic
shocks is captured by σA/σI.
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Invariant and Ergodic Density

An invariant density (or invariant distribution) is such that, if this
density describes the x-section of agents’ state variables at time t it
also describes it at t+ dt (if working in continuous time) or t+ 1 (if
working in discrete time).

Next we find the invariant density for the policies described above.

In the presence of aggregate shocks (i.e., if σA > 0), there does not
exist an invariant distribution. What is well defined in this case,
though, is an ergodic distribution, which can be interpreted as the
weighted average over all possible distributions you might observe,
with weights reflecting the likelihood of observing a given
distribution.
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Invariant and Ergodic Density

For example, working in discrete time, denote by Gt the operator
that transforms the density of deviations at time t− 1 into the
density of deviations at t. This operator depends on vAt , σI and the
parameters that characterize the Ss policy. Then we say there
exists an ergodic density if:

fE(x) = lim
T→∞

1
T
E

T∑

t=1

GtGt−1 · · ·G1f0

exists and does not depend on the initial density f0, where the
expectations operator averages over the aggregate shocks.
Next we derive the invariant density when there are no aggregate
shocks (σA = 0). It is easy to argue that this is also the ergodic
density, as long as we consider the variance of the corresponding
process to be σ2

T ≡ σ2
A + σ2

I .
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Informal Derivation

-

u

d

c = 0 ?
BM(µ , σ2)
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Informal Derivation

In what follows we assume U = D = c. Also, without loss of
generality we assume c = 0 (see panel b in the Figure on page 127).
An invariant density f (x) must satisfy (we are using the alternative
discretization of a BM here):

ft+∆t(z) =
1
2

[
ft(z + µ∆t− σ

√
∆t) + ft(z + µ∆t+ σ

√
∆t)
]
,

where the first term on the r.h.s. represents those agents who
were one unit above z and the second term those who were one
unit below z, in both cases at time t.
Taking a Taylor expansion (strictly: Ito’s Lemma) leads to:

αf ′(z) = f ′′(z) + O(∆t)

with α = −2µ/σ2.
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