FORMULARIO CONTROL 3 IN79O

Semestre primavera 2008

Algunas definiciones:

 $r = \frac{\lambda}{\mu}$; $\rho = \frac{r}{c} = \frac{\lambda}{c\mu}$ (en el caso M/M/1, $r = \rho$). Se define también $k = \frac{c^c}{c!}$ por comodidad para los casos con c servidores.

Sistema M/M/1 1.

Tasas $\lambda_n = \lambda$ para $n \ge 0$ y $\mu_n = \mu$ para $n \ge 0$.

$$P_n = (1 - \rho)\rho^n$$

Medidas de efectividad: $L = \frac{\rho}{1-\rho}$ $L_q = \frac{\rho^2}{1-\rho}$ $L_q' = \frac{1}{1-\rho}$ $W = \frac{1}{\mu-\lambda}$ $W_q = \frac{\rho}{\mu-\lambda}$

Distribución del tiempo de espera en la fila: $F_q(t) = 1 - \rho e^{-\mu(1-\rho)t}$.

2. Fórmula de Little

$$L = \lambda_e \cdot W, \quad L_q = \lambda_e \cdot W_q$$

donde λ_e es una tasa efectiva. La tasa efectiva en un proceso de nacimiento y muerte está dada por $\sum_{n=0}^{\infty} \lambda_n P_n$ donde λ_n es la tasa de nacimiento del estado n.

Sistema M/M/c 3.

$$\lambda_n = \lambda \,\forall n \quad \mu_n = \left\{ \begin{array}{ll} n\mu & n \le c \\ \mu c & n > c \end{array} \right. \quad P_n = \left\{ \begin{array}{ll} \frac{r^n}{n!} P_0 & n \le c \\ k\rho^n P_0 & n > c \end{array} \right. \quad P_0 = \left(\sum_{n=0}^c \frac{r^n}{n!} + k \sum_{n > c} \rho^n\right)^{-1} \right.$$

$$L = r + \left(\frac{r^c \rho}{c!(1-\rho)^2}\right)$$

Caso particular $M/M/\infty$ 3.1.

$$P_n = \frac{r^n}{n!} P_0 = e^{-r} \frac{r^n}{n!}$$

4. Sistema M/M/c/K

Las tasas son:

$$\lambda_n = \left\{ \begin{array}{ll} \lambda & n < K \\ 0 & n \ge K \end{array} \right. \quad \text{y} \quad \mu_n = \left\{ \begin{array}{ll} n\mu & n \le c \\ \mu c & n > c \end{array} \right.$$

Probabilidades estacionarias:

$$P_n = \begin{cases} \frac{r^n}{n!} P_0 & n \le c \\ k \rho^n P_0 & c < n \le K \end{cases}$$

$$P_0 = \left(\sum_{n=0}^{c} \frac{r^n}{n!} + k \sum_{n=c+1}^{K} \rho^n\right)^{-1}$$

para aplicar Little se debe usar $\lambda_e = \sum_{n=0}^K \lambda_n P_n = \lambda (1 - P_K)$.

4.1. Caso particular M/M/c/c

En este caso:

$$P_n = \left(\frac{r^n}{n!}\right) \left(\sum_{n=0}^c \frac{r^n}{n!}\right)^{-1}$$

5. Población de origen finita

Las tasas son:

$$\lambda_n = \left\{ \begin{array}{ll} \lambda(M-n) & 0 \leq n < M \\ 0 & n \geq M \end{array} \right. \quad \text{y} \quad \mu_n = \left\{ \begin{array}{ll} n\mu & n \leq c \\ c\mu & n > c \end{array} \right.$$

Las probabilidades estacionarias quedan como:

$$P_n = \begin{cases} \binom{M}{n} r^n P_0 & n \le c \\ \binom{M}{n} k n! \rho^n P_0 & c < n \le M \end{cases}$$

6. Ecuaciones de Kolmogorov

Forward:

$$P'_{ij}(t) = \sum_{k \neq j} P_{ik}(t)q_{kj} - v_j P_{ij}(t)$$

Backward:

$$P'_{ij}(t) = \sum_{k \neq i} q_{ik} P_{kj}(t) - v_i P_{ij}(t)$$