Log-linearization of Equilibrium Conditions

July 25, 2008

Log-linearization

Proposition 1 (Taylor expansion) A function $f(x)$ continuously differentiable can be approximated around $x=x_{0}$ as

$$
f(x) \approx f\left(x_{0}\right)+\frac{\partial f\left(x_{0}\right)}{\partial x}\left(x-x_{0}\right)+\frac{1}{2} \frac{\partial f^{2}\left(x_{0}\right)}{\partial x^{2}}\left(x-x_{0}\right)^{2}+\ldots
$$

Proof. See any math book.

- A variable X_{t} can be written as

$$
X_{t}=X_{0} \exp \left[\ln \left(\frac{X_{t}}{X_{0}}\right)\right]
$$

- Lets define $\widehat{x}_{t}=\ln \frac{X_{t}}{X_{0}}$ (log-deviation of X_{t} with respect to X_{0}), where $\widehat{x}_{0}=0$
- We can write variable X_{t} as

$$
X_{t}=X_{0} \exp \left(\widehat{x}_{t}\right)
$$

- A first order Taylor expansion of X_{t} around X_{0} is obtained as follows,

$$
X_{t}=X_{0} \exp \left(\widehat{x}_{t}\right) \approx X_{0}\left(1+\widehat{x}_{t}\right)
$$

when \widehat{x}_{t} is small

- Consider now the following polynomial:

$$
f\left(X_{t}\right)=Y_{t}=\left(a+b X_{t}^{c}\right)^{d}
$$

- This polynomial may be written as

$$
Y_{t}=\left(a+b X_{0}^{c} \exp \left(c \widehat{x}_{t}\right)\right)^{d}
$$

where X_{0} is a particular value for variable X_{t}. Taking a first order Taylor expansion to both sides of the polynomial we obtain

$$
\begin{aligned}
Y_{0}\left(1+\widehat{y}_{t}\right) & \approx f\left(X_{0}\right)+f^{\prime}\left(X_{0}\right)\left(X_{t}-X_{0}\right) \\
& \approx\left(a+b X_{0}^{c}\right)^{d}+d\left(a+b X_{t}^{c}\right)^{d-1}\left(c b X_{0}^{c-1}\right)\left(X_{t}-X_{0}\right) \\
& \approx\left(a+b X_{0}^{c}\right)^{d}\left(1+d c \frac{b X_{0}^{c}}{a+b X_{0}^{c}} \widehat{x}_{t}\right)
\end{aligned}
$$

- However, we know that $Y_{0}=\left(a+b X_{0}^{c}\right)^{d}$. Therefore we can simplify the previous expression to obtain:

$$
\widehat{y}_{t}=d c \frac{b X_{0}^{c}}{a+b X_{0}^{c}} \widehat{x}_{t}
$$

Example 2 (Budget constraint) Consider the budget constraint of a household

$$
\frac{B_{t}}{1+i_{t}}=B_{t-1}+Y_{t}-C_{t}
$$

The budget constraint may be written as

$$
\begin{array}{r}
\frac{B_{0}}{\left(1+i_{0}\right)}\left(1+\widehat{b}_{t}\right)\left(1-\widehat{i}_{t}\right) \approx B_{0}\left(1+\widehat{b}_{t-1}\right)+Y_{0}\left(1+\widehat{y}_{t}\right)-C_{0}\left(1+\widehat{c}_{t}\right) \\
\frac{B_{0}}{1+i_{0}}+\frac{B_{0}}{1+i_{0}} \widehat{b}_{t}-\frac{B_{0}}{1+i_{0}} \widehat{i}_{t}-\frac{B_{0}}{1+i_{0}} \widehat{b}_{t} \widehat{i}_{t}= \\
B_{0}+B_{0} \widehat{b}_{t-1}+Y_{0}+Y_{0} \widehat{y}_{t}-C_{0}-C_{0} \widehat{c}_{t}
\end{array}
$$

We know that in steady-state $\frac{B_{0}}{1+i_{0}}-B_{0}-Y_{0}+C_{0}=0$. Assuming that $\widehat{b}_{t} \widehat{i}_{t} \approx 0$ we have that:

$$
\widehat{b}_{t}=\left(1+i_{0}\right) \widehat{b}_{t-1}+\widehat{i}_{t}+\frac{\left(1+i_{0}\right) Y_{0}}{B_{0}} \widehat{y}_{t}-\frac{\left(1+i_{0}\right) C_{0}}{B_{0}} \widehat{c}_{t}
$$

Remark 3 Usually, variables and equations are approximated around their steadystate values. Thus, in the example B_{0} would correspond to the steady-state level of B_{t}.

Remark 4 Typically is assumed that the product $\widehat{x}_{t} \widehat{y}_{t}$ could be neglected as it is of second order

Remark 5 For the case of the interest rate, variable \widehat{i}_{t} is defined as: $\ln \frac{1+i_{t}}{1+i_{0}}$ Remark 6 For the case of the inflation rate, variable $\widehat{\pi}_{t}$ is defined as: $\ln \left(\frac{P_{t} / P_{t-1}}{1+\pi_{0}}\right)$

Example 7 (Euler equation) The log-linearization of the Euler relies on some particular assumptions. Consider the first order condition for consumption

$$
\begin{equation*}
E_{t}\left[\beta\left(\frac{C_{t+1}}{C_{t}}\right)^{-1} \frac{P_{t}}{P_{t+1}}\left(1+i_{t}\right)\right]=1 \tag{1}
\end{equation*}
$$

This condition may be written as

$$
\begin{equation*}
\beta E_{t} \exp \left[\ln C_{t}-\ln C_{t+1}+\ln \left(\frac{1+i_{t}}{1+\pi_{t+1}}\right)\right]=1 \tag{2}
\end{equation*}
$$

Assume that $\ln \left(\frac{1+i_{t}}{1+\pi_{t+1}}\right)$ and $\ln C_{t+1}$ are jointly normally distributed.
Remark 8 If x is normally distributed then $E[\exp (x)]=\exp (E[x]+\operatorname{Var}(x) / 2)$
Example 9 Take logs in the previous expression and rewrite it as

$$
\begin{aligned}
1= & \ln \beta+\ln \left\{E_{t} \exp \left[\ln C_{t}-\ln C_{t+1}+\ln \left(\frac{1+i_{t}}{1+\pi_{t+1}}\right)\right]\right\} \\
= & \ln \beta+\ln \left\{\operatorname { e x p } \left[E_{t} \ln C_{t}-E_{t} \ln C_{t+1}+E_{t} \ln \left(\frac{1+i_{t}}{1+\pi_{t+1}}\right)\right.\right. \\
& \left.\left.+\frac{1}{2} \operatorname{Var}\left(\ln \left(\frac{1+i_{t}}{1+\pi_{t+1}}\right)-\ln C_{t+1}\right)\right]\right\}
\end{aligned}
$$

Lets define $u_{t+1}=\frac{1}{2} \operatorname{Var}\left(\ln \left(\frac{1+i_{t}}{1+\pi_{t+1}}\right)-\ln C_{t+1}\right)$.
The linear expression for the Euler equation is given by,

$$
\widehat{c}_{t}=-\left(\widehat{i}_{t}-E_{t} \widehat{\pi}_{t+1}\right)+E_{t} \widehat{c}_{t+1}-u_{t+1}
$$

where $\widehat{c}_{t}=\ln \frac{C_{t}}{C}, \widehat{i}_{t}=\ln \frac{1+i_{t}}{1+i}, \widehat{\pi}_{t+1}=\ln \frac{1+\pi_{t+1}}{1+\pi}$. The term u_{t+1} is usually neglected as it is of second order.

Other way to obtain this approximation is:

$$
\begin{aligned}
1 & =E_{t}\left[\beta\left(\frac{C_{t+1}}{C_{t}}\right)^{-1} \frac{P_{t}}{P_{t+1}}\left(1+i_{t}\right)\right] \\
& =\beta E_{t}\left[\exp \left(\widehat{c}_{t}-\widehat{c}_{t+1}\right) \frac{1+i_{0}}{1+\pi_{0}} \exp \left(\widehat{i}_{t}-\widehat{\pi}_{t+1}\right)\right] \\
& =\beta\left(\frac{1+i_{0}}{1+\pi_{0}}\right) E_{t}\left[\exp \left(\widehat{c}_{t}-\widehat{c}_{t+1}+\widehat{i}_{t}-\widehat{\pi}_{t+1}\right)\right] \\
& =E_{t}\left[\exp \left(\widehat{c}_{t}-\widehat{c}_{t+1}+\widehat{i}_{t}-\widehat{\pi}_{t+1}\right)\right] \\
& \approx E_{t}\left[1+\widehat{c}_{t}-\widehat{c}_{t+1}+\widehat{i}_{t}-\widehat{\pi}_{t+1}\right]
\end{aligned}
$$

Example 10 (NKPC) The problem of a firm is to maximize profits

$$
\max _{P_{t}(z)} \sum_{i=0}^{\infty}(\phi \beta)^{i} E_{t}\left\{\Lambda_{t, t+i} \frac{P_{t}(z)-M C_{t+i}(z)}{P_{t+i}} Y_{t+i}(z)\right\}
$$

subject to $Y_{t}(z)=\left(\frac{P_{t}(z)}{P_{t}}\right)^{-\epsilon} C_{t}$ where $M C_{t}(z)$ are nominal marginal cost for firm z. The optimal resetting price is

$$
\begin{equation*}
P_{t}^{n e w}=\frac{\epsilon}{\epsilon-1} \frac{\sum_{i=0}^{\infty}(\phi \beta)^{i} E_{t}\left\{\Lambda_{t, t+i} M C_{t+i} P_{t+i}^{\epsilon} \frac{C_{t+i}}{P_{t+i}}\right\}}{\sum_{i=0}^{\infty}(\phi \beta)^{i} E_{t}\left\{\Lambda_{t, t+i} P_{t+i}^{\epsilon} \frac{C_{t+i}}{P_{t+i}}\right\}} \tag{3}
\end{equation*}
$$

where subscript z was dropped due to the symmetric adjustment of all firms setting price in t.

Linearizing each component of the expression:

$$
\begin{array}{ll}
P_{t}^{n e w} & \approx P^{n e w}\left(1+\widehat{p}_{t}^{n e w}\right) \\
\Lambda_{t, t+i} M C_{t+i} P_{t+i}^{\epsilon} \frac{C_{t+i}}{P_{t+i}} & \approx \Lambda M C P^{\epsilon-1} C\binom{1+\widehat{\Lambda}_{t, t+i}+\widehat{M C}_{t+i}}{+(\epsilon-1) \widehat{p}_{t+i}+\widehat{c}_{t+i}} \\
\Lambda_{t, t+i} P_{t+i}^{\epsilon} \frac{C_{t+i}}{P_{t+i}} & \approx \Lambda P^{\epsilon-1} C\left(1+\widehat{\Lambda}_{t, t+i}+(\epsilon-1) \widehat{p}_{t+i}+\widehat{c}_{t+i}\right)
\end{array}
$$

Therefore:

$$
\begin{aligned}
& P_{t}^{n e w} \sum_{i=0}^{\infty}(\phi \beta)^{i} E_{t}\left\{\Lambda_{t, t+i} P_{t+i}^{\epsilon} \frac{C_{t+i}}{P_{t+i}}\right\} \\
& \approx P^{n e w} \Lambda P^{\epsilon-1} C\left(1+\widehat{p}_{t}^{n e w}\right) E_{t}\left(\sum_{i=0}^{\infty}(\beta \phi)^{i}\left(1+\widehat{\Lambda}_{t, t+i}+(\epsilon-1) \widehat{p}_{t+i}+\widehat{c}_{t+i}\right)\right) \\
& \approx P^{n e w} \Lambda P^{\epsilon-1} C\left(\frac{1}{1-\beta \phi}+\frac{\widehat{p}_{t}^{n e w}}{1-\beta \phi}+E_{t}\left[\sum_{i=0}^{\infty}(\beta \phi)^{i}\left(\widehat{\Lambda}_{t, t+i}+(\epsilon-1) \widehat{p}_{t+i}+\widehat{c}_{t+i}\right)\right]\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\epsilon}{\epsilon-1} \sum_{i=0}^{\infty}(\phi \beta)^{i} E_{t}\left\{\Lambda_{t, t+i} M C_{t+i} P_{t+i}^{\epsilon} \frac{C_{t+i}}{P_{t+i}}\right\} \\
& \approx \frac{\epsilon}{\epsilon-1} \Lambda M C P^{\epsilon-1} C E_{t}\left(\sum_{i=0}^{\infty}(\beta \phi)^{i}\left(1+\widehat{\Lambda}_{t, t+i}+\widehat{M C}_{t+i}(\epsilon-1) \widehat{p}_{t+i}+\widehat{c}_{t}\right)\right) \\
& \approx \frac{\epsilon}{\epsilon-1} \Lambda M C P^{\epsilon-1} C\left(\frac{1}{1-\beta \phi}+E_{t}\left[\sum_{i=0}^{\infty}(\beta \phi)^{i}\binom{\widehat{\Lambda}_{t, t+i}+\widehat{M C}_{t+i}}{+(\epsilon-1) \widehat{p}_{t+i}+\widehat{c}_{t+i}}\right]\right)
\end{aligned}
$$

Using the fact that the steady-state inflation rate is zero $\left(P^{n e w}=P\right)$ and $P=$ $M C(\epsilon-1) / \epsilon$, we can obtain:

$$
\begin{aligned}
\widehat{p}_{t}^{n e w} & =(1-\phi \beta) \sum_{i=0}^{\infty}(\phi \beta)^{i} E_{t}\left\{\widehat{M C}_{t+i}\right\} \\
& =(1-\phi \beta)\left(\widehat{m c}_{t}+\widehat{p}_{t}\right)+\phi \beta E_{t} \hat{p}_{t+1}^{n e w}
\end{aligned}
$$

where $\widehat{m c}_{t}=\widehat{M C}_{t}-\widehat{p}_{t}$ is the log deviation of real marginal cost with respect to its steady state value.

The aggregate price level is:

$$
P_{t}=\left[(1-\phi)\left(P_{t}^{n e w}\right)^{\epsilon-1}+\phi\left(P_{t-1}\right)^{\epsilon-1}\right]^{\frac{1}{\epsilon-1}}
$$

Log-linearizing this expression of the price level we get:

$$
\widehat{p}_{t}=(1-\phi) \widehat{p}_{t}^{\text {new }}+\phi \widehat{p}_{t-1}
$$

Combining with the previous expression we get

$$
\begin{aligned}
\widehat{p}_{t}-\widehat{p}_{t-1} & =(1-\phi) \widehat{p}_{t}^{\text {new }}+(\phi-1) \widehat{p}_{t-1} \\
& =(1-\phi)(1-\phi \beta)\left(\widehat{m c}_{t}+\widehat{p}_{t}\right)+(1-\phi) \phi \beta E_{t} \widehat{p}_{t+1}^{n e w}+(\phi-1) \widehat{p}_{t-1}
\end{aligned}
$$

Now, we can expressed expected optimal price as $E_{t} \hat{p}_{t+1}^{n e w}=\frac{1}{1-\phi} E_{t} \pi_{t+1}+\widehat{p}_{t}$. Then,

$$
\begin{aligned}
\pi_{t} & =(1-\phi)(1-\phi \beta)\left(\widehat{m c}_{t}+\widehat{p}_{t}\right)+\phi \beta E_{t} \pi_{t+1}+(1-\phi) \phi \beta \widehat{p}_{t}+(\phi-1) \widehat{p}_{t-1} \\
& =(1-\phi)(1-\phi \beta) \widehat{m c}_{t}+\phi \beta E_{t} \pi_{t+1}+(1-\phi) \pi_{t}
\end{aligned}
$$

Finally, we obtain an expression for the NKPC

$$
\pi_{t}=\frac{(1-\phi)(1-\phi \beta)}{\phi} \widehat{m c}_{t}+\beta E_{t} \pi_{t+1}
$$

