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Linearization 1

Log-linearization

Proposition 1 (Taylor expansion) A function f (x) continuously differentiable can

be approximated around x = x0 as

f (x) ≈ f (x0) +
∂f (x0)

∂x
(x− x0) +

1

2

∂f2 (x0)

∂x2
(x− x0)

2 + ...

Proof. See any math book.

• A variable Xt can be written as

Xt = X0 exp

[
ln

(
Xt

X0

)]
• Lets define x̂t = ln Xt

X0
(log-deviation of Xt with respect to X0), where x̂0 = 0

• We can write variable Xt as

Xt = X0 exp (x̂t)

• A first order Taylor expansion of Xt around X0 is obtained as follows,

Xt = X0 exp (x̂t) ≈ X0 (1 + x̂t)

when x̂t is small



Linearization 2

• Consider now the following polynomial:

f (Xt) = Yt = (a + bXc
t )d

• This polynomial may be written as

Yt = (a + bXc
0 exp (cx̂t))

d

where X0 is a particular value for variable Xt. Taking a first order Taylor expansion to

both sides of the polynomial we obtain

Y0 (1 + ŷt) ≈ f (X0) + f ′(X0)(Xt −X0)

≈ (a + bXc
0)d + d (a + bXc

t )d−1
(
cbXc−1

0

)
(Xt −X0)

≈ (a + bXc
0)d
(

1 + dc
bXc

0

a + bXc
0
x̂t

)

• However, we know that Y0 =
(
a + bXc

0

)d
. Therefore we can simplify the previous

expression to obtain:

ŷt = dc
bXc

0

a + bXc
0
x̂t
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Example 2 (Budget constraint) Consider the budget constraint of a household

Bt

1 + it
= Bt−1 + Yt − Ct

The budget constraint may be written as

B0

(1 + i0)

(
1 + b̂t

)(
1− ît

)
≈ B0

(
1 + b̂t−1

)
+ Y0 (1 + ŷt)− C0 (1 + ĉt)

B0

1 + i0
+

B0

1 + i0
b̂t −

B0

1 + i0
ît −

B0

1 + i0
b̂t̂it =

B0 + B0b̂t−1 + Y0 + Y0ŷt − C0 − C0ĉt

We know that in steady-state B0
1+i0

− B0 − Y0 + C0 = 0. Assuming that b̂t̂it ≈ 0 we

have that:

b̂t = (1 + i0) b̂t−1 + ît +
(1 + i0) Y0

B0
ŷt −

(1 + i0) C0

B0
ĉt

Remark 3 Usually, variables and equations are approximated around their steady-

state values. Thus, in the example B0 would correspond to the steady-state level of

Bt.
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Remark 4 Typically is assumed that the product x̂tŷt could be neglected as it is of

second order

Remark 5 For the case of the interest rate, variable ît is defined as: ln 1+it
1+i0

Remark 6 For the case of the inflation rate, variable π̂t is defined as: ln
(

Pt/Pt−1
1+π0

)
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Example 7 (Euler equation) The log-linearization of the Euler relies on some par-

ticular assumptions. Consider the first order condition for consumption

Et

[
β

(
Ct+1

Ct

)−1 Pt

Pt+1
(1 + it)

]
= 1 (1)

This condition may be written as

βEt exp

[
ln Ct − ln Ct+1 + ln

(
1 + it

1 + πt+1

)]
= 1 (2)

Assume that ln
(

1+it
1+πt+1

)
and ln Ct+1 are jointly normally distributed.

Remark 8 If x is normally distributed then E [exp(x)] = exp(E [x] + V ar(x)/2)

Example 9 Take logs in the previous expression and rewrite it as

1 = ln β + ln

{
Et exp

[
ln Ct − ln Ct+1 + ln

(
1 + it

1 + πt+1

)]}
= ln β + ln

{
exp

[
Et ln Ct − Et ln Ct+1 + Et ln

(
1 + it

1 + πt+1

)
+

1

2
V ar

(
ln

(
1 + it

1 + πt+1

)
− ln Ct+1

)]}
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Lets define ut+1 = 1
2V ar

(
ln
(

1+it
1+πt+1

)
− ln Ct+1

)
.

The linear expression for the Euler equation is given by,

ĉt = −
(̂
it − Etπ̂t+1

)
+ Etĉt+1 − ut+1

where ĉt = ln Ct

C , ît = ln 1+it
1+i , π̂t+1 = ln 1+πt+1

1+π . The term ut+1 is usually neglected as

it is of second order.

Other way to obtain this approximation is:

1 = Et

[
β
(

Ct+1
Ct

)−1 Pt

Pt+1
(1 + it)

]
= βEt

[
exp(ĉt − ĉt+1)

1+i0
1+π0

exp(̂it − π̂t+1)
]

= β
(

1+i0
1+π0

)
Et

[
exp(ĉt − ĉt+1 + ît − π̂t+1)

]
= Et

[
exp(ĉt − ĉt+1 + ît − π̂t+1)

]
≈ Et

[
1 + ĉt − ĉt+1 + ît − π̂t+1

]
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Example 10 (NKPC) The problem of a firm is to maximize profits

max
Pt(z)

∞∑
i=0

(φβ)i Et

{
Λt,t+i

Pt(z)−MCt+i(z)

Pt+i
Yt+i(z)

}

subject to Yt(z) =
(

Pt(z)
Pt

)−ε
Ct where MCt (z) are nominal marginal cost for firm z.

The optimal resetting price is

Pnew
t =

ε

ε− 1

∑∞
i=0(φβ)iEt

{
Λt,t+iMCt+iP

ε
t+i

Ct+i

Pt+i

}
∑∞

i=0(φβ)iEt

{
Λt,t+iP

ε
t+i

Ct+i

Pt+i

} (3)

where subscript z was dropped due to the symmetric adjustment of all firms setting

price in t.

Linearizing each component of the expression:

Pnew
t ≈ Pnew (1 + p̂new

t )

Λt,t+iMCt+iP
ε
t+i

Ct+i

Pt+i
≈ ΛMCP ε−1C

(
1 + Λ̂t,t+i + M̂Ct+i

+(ε− 1)p̂t+i + ĉt+i

)
Λt,t+iP

ε
t+i

Ct+i

Pt+i
≈ ΛP ε−1C

(
1 + Λ̂t,t+i + (ε− 1)p̂t+i + ĉt+i

)
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Therefore:

Pnew
t

∞∑
i=0

(φβ)iEt

{
Λt,t+iP

ε
t+i

Ct+i

Pt+i

}
≈ PnewΛP ε−1C (1 + p̂new

t ) Et

( ∞∑
i=0

(βφ)i
(
1 + Λ̂t,t+i + (ε− 1)p̂t+i + ĉt+i

))

≈ PnewΛP ε−1C

(
1

1− βφ
+

p̂new
t

1− βφ
+ Et

[ ∞∑
i=0

(βφ)i
(
Λ̂t,t+i + (ε− 1)p̂t+i + ĉt+i

)])
and

ε

ε− 1

∞∑
i=0

(φβ)iEt

{
Λt,t+iMCt+iP

ε
t+i

Ct+i

Pt+i

}
≈ ε

ε− 1
ΛMCP ε−1CEt

( ∞∑
i=0

(βφ)i
(
1 + Λ̂t,t+i + M̂Ct+i(ε− 1)p̂t+i + ĉt

))

≈ ε

ε− 1
ΛMCP ε−1C

(
1

1− βφ
+ Et

[ ∞∑
i=0

(βφ)i

(
Λ̂t,t+i + M̂Ct+i

+(ε− 1)p̂t+i + ĉt+i

)])
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Using the fact that the steady-state inflation rate is zero (Pnew = P ) and P =

MC(ε− 1)/ε, we can obtain:

p̂new
t = (1− φβ)

∞∑
i=0

(φβ)iEt

{
M̂Ct+i

}
= (1− φβ) (m̂ct + p̂t) + φβEtp̂

new
t+1

where m̂ct = M̂Ct − p̂t is the log deviation of real marginal cost with respect to its

steady state value.

The aggregate price level is:

Pt =
[
(1− φ) (Pnew

t )ε−1 + φ (Pt−1)
ε−1
] 1

ε−1

Log-linearizing this expression of the price level we get:

p̂t = (1− φ) p̂new
t + φp̂t−1

Combining with the previous expression we get

p̂t − p̂t−1 = (1− φ) p̂new
t + (φ− 1) p̂t−1

= (1− φ) (1− φβ) (m̂ct + p̂t) + (1− φ) φβEtp̂
new
t+1 + (φ− 1) p̂t−1
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Now, we can expressed expected optimal price as Etp̂
new
t+1 = 1

1−φEtπt+1 + p̂t. Then,

πt = (1− φ) (1− φβ) (m̂ct + p̂t) + φβEtπt+1 + (1− φ) φβp̂t + (φ− 1) p̂t−1

= (1− φ) (1− φβ) m̂ct + φβEtπt+1 + (1− φ) πt

Finally, we obtain an expression for the NKPC

πt =
(1− φ) (1− φβ)

φ
m̂ct + βEtπt+1


