Microeconomía II Primavera, 2008

Auxiliar 1

Problema 1 Considere el siguiente juego en forma normal:

	I	С	D
A	2,0	1,1	4,2
M	3,4	1,2	2,3
В	1,3	0,2	3,0

- i. Qué estrategias sobreviven a una eliminación iterativa de las estrategias estrictamente dominadas.
- ii. Encuentre los equilibrios de Nash en estrategias puras.
- iii. Encuentre los equilibrios en estrategias mixtas.

Problema 2 Considere el siguiente juego en forma normal:

	I	С	D
A	0,4	4,0	5,3
M	4,0	0,4	5,3
В	3,5	3,5	6,6

Encuentre todos los equilibrios de Nash.

Problema 3 (Control 1, 2005) Determine si las siguientes afirmaciones son verdaderas o falsas. Si una aseveración es verdadera, demuéstrela; si es falsa, dé un contraejemplo.

- i. Sean σ_i y σ_i^* dos estrategias mixtas del jugador i. Suponga que para cualquier vector de estrategias puras $a_{-i} \in A_{-i}$ del resto de los jugadores, $u_i(\sigma_i^*, a_{-i}) > u_i(\sigma_i, a_{-i})$. Entonces para cada vector de estrategias mixtas $\sigma_{-i} \in \Delta(A_{-i})$ se cumple que $u_i(\sigma_i^*, \sigma_{-i}) > u_i(\sigma_i, \sigma_{-i})$
- ii. Sea $a_i^* \in A_i$ una estrategia pura del jugador i. Suponga que ninguna otra estrategia pura $a_i \in A_i$ domina estrictamente a a_i^* . Entonces, ninguna estrategia mixta $\sigma_i \in \Delta(A_i)$ domina estrictamente a a_i^*
- iii. Si una estrategia mixta σ_i^* domina estrictamente a la estrategia pura a_i , entonces cualquier estrategia mixta del jugador i que asigne una probabilidad positiva a la estrategia pura a_i es estrictamente dominada por σ_i^*

Problema 4 (Problema 2, Tarea 1, Primavera 2006) Considere el juego finito con I jugadores. Dada una estrategia $\sigma = (\sigma_i, i \in I)$ se define el siguiente conjunto:

$$BR_i(\sigma) = \{a_i \in A_i \mid u_i(a_i, \sigma_{-i}) \ge u_i(t_i, \sigma_{-i}), \forall t_i \in A_i\}$$

- i. Muestre que la estrategia $\sigma^* = (\sigma_i^*, i = 1, ..., n)$ es equilibrio en estrategias puras, ssi $\sigma_i^*(a_j) = 1 \Rightarrow a_j \in BR_i(\sigma^*)$.
- ii. Sea σ^* un perfil de estrategias, no necesariamente puras, del juego mencionado. Muestre que las siguientes proposiciones son equivalentes.
 - σ^* es un equilibrio de Nash.
 - $\forall i \in I, \forall a_i \in A_i, u_i(\sigma^*) \ge u_i(a_i, \sigma^*_{-i})$
 - $\forall i \in I, \forall a_i \in A_i, [\sigma^*(a_i) > 0] \Rightarrow [a_i \in BR_i(\sigma^*)]$
- iii. Muestre que si σ^* es un equilibrio de Nash y $a_i, t_i \in A_i$ son tales que $\sigma_i^*(a_i), \sigma_i^*(t_i) > 0$ entonces $u_i(a_i, \sigma_{-i}^*) = u_i(t_i, \sigma_{-i}^*)$