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ABSTRACT 

A methodology is given for modeling the dynamics of discrete-event stochastic systems as opti-
mization problems. The intent is to provide a means to utilize the rich mathematical theory and 
algorithms of optimization in the study of this important class of systems. A procedure for map-
ping a simulation event relationship graph into a mixed-integer program is presented along with 
examples of queueing networks and manufacturing systems that illustrate the approach. Several 
potential applications are examined including automatic constraint generation for optimal re-
source scheduling, representations of max-plus algebra models for queueing system dynamics, 
response gradient estimation, and an unconventional technique for simulating queueing systems 
using virtual resources that are identified from the optimization models for these systems. 

1 INTRODUCTION 

The goal of this paper is to produce a methodology for modeling stochastic discrete-event dy-
namic systems as optimization problems. This allows the rich theory and algorithms of mathe-
matical programming to be applied to the modeling and analysis of such systems, which include 
many queueing networks as well as certain manufacturing, transportation, and communications 
systems. 

1.1 Background 

Schruben (2000) proposed modeling sample paths from event relationship graphs (ERGs) used to 
simulate discrete-event system dynamics as the solutions to mathematical programming models. 
Chan and Schruben (2003) derived mathematical formulations for queueing networks. In this pa-
per, we provide a procedure that generates these optimization models directly from the explicit 
event relationships in a simulation model and examine several examples and potential applica-
tions. The optimization representations model simulation sample paths as the solutions to mathe-
matical programs; they are still simulation models but their mathematical representations allow 
us to obtain more information from each run (realization) of the simulation experiment (see ap-
plications in Section 3). 

Analogous to using a system of differential equations for modeling continuous system dy-
namics, an ERG is a system of difference equations that, along with the initial and terminating 
boundary conditions, completely specifies the behavior of a discrete-event system. The dynamics 
of many of these simulations can be modeled as linear programs (LPs) and mixed-integer pro-
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grams (MIPs) using the procedure presented in this paper. The variables in these optimization 
programs are the event times. Causal relationships between simulation events are explicit in its 
ERG, which imposes timing and logical constraints on the event times. The objective of the 
mathematical program, as in the simulation, is simply to execute events as early as possible. The 
input for the simulation and corresponding optimization program are identical and includes inter-
event times (such as customer interarrival times and service times in a queue) as well as informa-
tion such as job routings and batch sizes. 

Perhaps the first reference on modeling queueing system dynamics as network optimization 
programs can be found in Maxwell and Wilson (1981). Baccelli et al. (1992), and Cohen, 
Gaubert and Quadrat (1999) also provide a linear theory for certain discrete-event systems (e.g., 
timed event graph Petri nets—very different from ERGs) using max-plus algebra and similar al-
gebraic tools, e.g., semirings or dioids (Gondran and Minoux 1984). Using the mapping provided 
in Schruben and Yucesan (1994), one can translate stochastic timed Petri nets into more general 
ERGs and thus model Petri Net dynamics as the solutions to optimization programs using the 
procedure given in this paper. 

The benefits to formulating and simulating discrete-event dynamic systems as optimization 
models include 1) a methodical approach to deriving dynamic equations for studying the proper-
ties of queueing systems, 2) a systematic method for constraint generation when formulating op-
timal resource scheduling models, 3) alternative simulation models that have no obvious repre-
sentation using current simulation world views, and 4) an alternative representation of 
infinitesimal perturbation gradient estimators using duality that may unify or enrich this set of 
simulation sensitivity analysis techniques. In addition, there are some interesting discrete optimi-
zation problems with special structure that arise when modeling discrete-event stochastic sys-
tems in this manner, e.g., an explicit duality between the classical lot-sizing problem and a G/G/1 
queue. 

The paper is organized as follows. The rest of Section 1 gives an overview on ERG models 
as well as the intuition behind representing ERGs as mathematical programs. The general meth-
odology is described in Section 2 while the technical details of the approach are provided in Ap-
pendix A. Motivating applications are illustrated in Section 3. Section 4 concludes the paper with 
some observations and suggestions for further research. 

1.2 Event Relationship Graph Models 

Event relationship graphs (ERGs) are a general, minimalist means of explicitly expressing all the 
relationships between events in a discrete-event dynamic system model (Schruben 1983, Pegden 
1986, Som and Sargent 1990, Wu and Chung 1991, Askin and Standridge 1993, Law and Kelton 
2000, Seila, Ceric and Tadikamalla 2003).  

The vertices of an ERG represent state changes that take place when a particular type of 
event occurs. The directed arcs of the graph represent the relationships between pairs of events. 
The state changes associated with each event vertex appear in braces. Labels on directed arcs—
representing all the dynamic and logical relationships between events—specify the conditions 
and time delays between the occurrences of events. Following the ERG notation in Askin and 
Standridge (1993), a generic arc in an ERG is shown in Figure 1.1 and defined as follows: after 
event A occurs, if condition iAB is then true, event B will immediately be scheduled to occur tAB 
time units into the future. 
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Figure 1.1  :  Basic Element of an Event Relationship Graph (ERG) 
A simple batch processing queueing system with R0 identical parallel servers that processes jobs 
in batch sizes of b will be used for illustration in this paper. One of several possible ERGs for 
this system is shown in Figure 1.2 where the state is described by two integers: R = the number 
of currently idle resources and Q = the number of jobs currently waiting in line for service. The 
input data for simulating the ERG are the (random) customer interarrival times, a, and the (ran-
dom) service times, s. 
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Figure 1.2  :  ERG for a Batch Processing Queue with Parallel Resources 
     State:  Q = number of waiting jobs, R = number of idle resources 
     Data:   b = batch size, s = (random) service times, a = (random) interarrival times 

 
The queue in Figure 1.2 is assumed to be initially empty with all the servers idle. Therefore, the 
initial value of the number of available resources, R, is the total number of parallel servers in the 
system, R0, and Q is initially set equal to zero. Initially scheduled events are indicated by a bro-
ken arrow as in Law and Kelton (2000). The only event initially scheduled here is the first job to 
arrive at time zero. The “&” is used here to denote the Boolean “AND” operator. 

We will give a formal treatment of the translation of an ERG into an optimization model in 
Section 2. To give a general idea of the method, we first present a simple example. The follow-
ing notation for queueing networks will be used throughout the paper. For i = 1,…,n, 
 
ai:  time interval between the ith external arrival and the i-1th external arrival 
ski:  time interval needed for the ith service at stage k 
Aki: the time of the ith external arrival event occurrence at stage k 
Ski:  the time of the ith service start event occurrence at stage k 
Fki:  the time of the ith service finish event occurrence at stage k  
 
For single server systems, the subscript k will be dropped. Setting R0 = 1 and b = 1 in Figure 1.2 
gives the ERG for a single-server, first-in-first-out queue (G/G/1). Intuitively translating this 
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ERG to an optimization program that generates the sample path for given interarrival times {ai} 
and service times {si} for n jobs gives the following LP. (The derivation of this program using 
the procedure in the next section is given in Example 2.1). 
GG1-LP1: 

     1
min ( )

.

n
i i ii

A S F
st

=
+ +å    

     1 1 , 1,..., 1i i iA A a i n+ += + = -    
     , 1,...,i i iF S s i n= + =    
     , 1,...,i iS A i n³ =    
     1 , 2,...,i iS F i n-³ =    
     1 0; , , free,i i iA A S F i= " .   

 
The objective function, as in a simulation, is simply to execute all the events as early as feasible. 
The optimal solution of this LP is identical to the state trajectories (sample paths) generated by 
simulating an ERG model of the system (see Theorem 2.1). 

For this simple system, there is one constraint for every arc in the ERG. The first constraint is 
the definition of the interarrival time: the i+1th job will arrive (at time Ai+1) in ai+1 time units after 
the ith job arrives at the system. The second constraint is the definition of the service time and 
states that the ith job (started at time Si) will finish its service si time units later (at time Fi). The 
third constraint ensures that the ith service cannot start before the ith job actually arrives. The last 
constraint enforces the constraint that the server cannot start work on the next job before it fin-
ishes the previous job. 

An ERG, when observed from a simulation point of view, is a graphical representation for 
the underlying event scheduling process. When an ERG is considered from a mathematical pro-
gramming perspective, unconditional arcs in the ERG impose equality constraints and condi-
tional arcs in the ERG impose greater than and equal to constraints on event occurrence times. 
From this point of view, an ERG is a set of constraints on event occurrence times. Each equality 
or inequality constraint impacts at most the two event types connected by the arc with a right-
hand side for an equality constraint being the time delay for the arc. Simulating an ERG, with a 
sequence of generated random variates as input data, involves executing all event instances as 
soon as feasible. This is equivalent to the objective of minimizing the times of all event instances 
subject to the constraints imposed by the arcs in the ERG. 

For modeling large-scale systems, such as huge networks of queues, the ERG represents a 
generic element in an array of ERGs. The events in the ERG are subscripted with the particular 
station in the queueing network to which it applies by using event parameters. For this we will 
expand the basic definition of an ERG to allow the values of a string of expressions computed af-
ter an event is executed to be passed to a string of state variables when an event is scheduled. 
The values of expressions are included in boxes on the arcs. 

Treating event parameters as subscripts, the graph becomes an element in an array of ERGs 
that model a network composed of a large number of similar systems. For example, Figure 1.3 is 
an ERG for m multiple-server queues in tandem. (The state changes are omitted in Figure 1.3 
since these merely increment and decrement state variables Q[k] and R[k] for station k like in 
Figure 1.2.) The only change to the graph in Figure 1.2 is an additional arc from the Finish(k) 
event for station k to the Arrival(k) event for the next station, k+1, and the arc attributes. 
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Figure 1.3  :  ERG for m Multiple-Server Queues in Tandem 
 
The ERG in Figure 1.3 can be easily extended to model more general queueing networks. For 
example, a generic jobshop can be modeled by adding a parameter, j, to the objects in the graph 
that indicates job type. The attribute, k+1, on arc from Finish(k,j) to Arrival(k,j) in the resulting 
ERG can be replaced by a general routing function. The ERG then becomes an element of a 2-
dimensional array (kth station by jth job type) of ERGs. Transportation resources and move times 
as well as resource failures and repairs can be modeled by altering the conditions and delays on 
the arcs in this ERG (see Schruben and Schruben 2000). We defer a discussion of finite buffer 
tandem queues under different blocking scenarios to Section 3.1. 

Event parameters, while convenient for simulating very large systems, do not increase the 
fundamental modeling power of ERGs. For many of our examples, we present the fully ex-
panded event graphs (like in Figure 3.2) without resorting to using parameters to make their rela-
tionships to the corresponding optimization models clearer. 

Specializations of ERGs include resource cycle graphs for simulating queueing networks 
(Hyden, Schruben and Roeder 2001). In a resource cycle ERG, the state variables are all integer 
arrays and the resource state changes associated with every event are expressed as one or more 
integer difference equations. Simulating these models involves increasing and decreasing the 
values of elements in the state arrays when specific events occur (e.g., the number of idle servers 
of a particular class would decrease whenever a start service event occurs for this class). Event 
relationship graph modeling of such systems has certain advantages in terms of simplicity and ef-
ficiency in simulation (Schruben and Schruben 2000). For example, a simulated resource cycle 
ERG for a semiconductor factory ran orders of magnitude faster than the most popular commer-
cial simulator (Schruben and Roeder 2003). Object oriented ERGs (called LEGOs for Listening 
Event Graph Objects) have been developed by Buss and Sanchez (2002). Savage, Schruben and 
Yucesan (2004) showed that any discrete-event dynamic system can likely be modeled as an 
ERG by proving they have Turing Machine modeling power. 

ERGs are used here to provide explicit examples; however, the approach is not dependent on 
this representation of a discrete-event model. ERGs define a discrete-event system model at a 
more fundamental level than most commercial simulation languages by expressing the relation-
ships between the different event functions in the simulation code. Process interaction and activ-
ity scanning simulations that are more typical of commercial simulation codes can be translated 
into their basic ERGs (Schruben and Yucesan 1994) and also modeled as optimization problems. 
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2 METHODOLOGY 

We will employ the definition of an ERG given in Yucesan and Schruben (1992). An Event Re-
lationship Graph (ERG) is defined as an ordered triple { }( ), ( ), GG V G E G= Y , where ( )V G  is 
the set of event vertices, ( )E G  is the set of directed arcs, and GY  is the incidence function that 
associates with each arc of G an ordered pair of vertices (they could be the same vertex) of G. 
For each directed arc ( )e E GÎ , let O(e) and D(e) be the originating and destination vertices, re-
spectively. Defining STATES as in Zeigler (1984) an Event Relationship Graph Model (ERGM) 
is defined as ( ), , ,T GF PS = , where 

 
{ }: STATES STATES | ( )vf v V GF = ® Î  (a set of state transitions functions), 

{ }{ }: STATES 0,1 | ( )e e E GP p= ® Î  (a set of Boolean arc conditions), and 
{ }: STATES | ( )eT t e E G+= ® Î¡  (a set of arc delay times). 

 
In this paper, we assume that all state variables are integers (fractional rational numbers can 

be converted into integers by multiplying by a power of ten), for otherwise the relationship in 
(2.1) will not be well-defined. The arc delay times, {teÎE(G)} (typically the realization of a 
state-dependent stochastic process), along with the initial states and termination conditions de-
fine a sample path for a stochastic process called a simulation run. We are going to model these 
simulation run sample paths as the solutions to optimization programs. 

We will express the procedure for translating ERGMs into optimization models in terms of 
elementary event graphs as defined in Yucesan and Schruben (1992). They showed that any 
ERGM can be expanded to yield an Elementary Event Relationship Graph Model (EERGM)—an 
EERGM is an ERGM in which every vertex contains only at most one state variable change and 
every arc condition consists of only two arithmetic expressions connected by relational operators 
such as “≥,” “≤,” “<,” “>,” “=,” and “≠.”  We modify this definition by only allowing the rela-
tional operator “≥” because other relational operators can be modeled by the “≥” operator and/or 
multiplication of “–1.”  For example, for a generic integer state variable R, the condition (R ≠ 1) 
is equivalent to conditions (–R ≥ 0) OR (R ≥ 2). Boolean AND and OR operations will result in 
conjunctive and disjunctive constraints in the optimization models. The definition of an EERGM 
only allows conditions with a single relational operator; therefore, ANDs and ORs will not ap-
pear in the arc conditions of an EERGM. We assume that a state variable can only be increased 
or decreased by at most 1 unit at one time (one occurrence of an event). For example, an event 
incrementing R by 2 units can be replaced by two events occurring in succession without delay 
or interruption, each of which increments R by 1 unit. We will assume positive arc delay times. 

Yucesan and Schruben (1992) also showed that any ERG can be expanded into graphs with 
only conditional zero-delay arcs (denoted by Ec) and unconditional delay arcs (denoted by Eu); 
therefore, one need only consider these two types of arcs when deriving constraints. A vertex 
name with subscript i denotes the instant of the ith occurrence of that event (vertex); e.g., Ai is the 
instant at which the ith A event occurs. Define the count of the number of occurrences of event A 
by time t as a right-continuous function, 

 
    CA(t) = max{i : Ai ≤ t}.         
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Since this event counting function is a jump function, we define times just before and right after 
the instant at which event A occurs for i times as iA-  = sup{t : CA(t) < i} and iA+  = inf{t : CA(t) ≥ 
i} (= min{t : CA(t) ≥ i}). Since time is continuous, i iiA A A- += = , but ( ) 1A iC A i- = -  and 

( )A iC A i+ = . If the ith occurrence of event A happens at or before time t, then event A will have 
occurred at least i times by time t. We have the usual relationships between event counting proc-
esses and times, 

 
    Ai ≤ t ⇔ CA(t) ≥ i           (2.1) 
and 
    Ai+1 > t ⇔ CA(t) ≤ i.             
 
Given an EERGM defined above, the methodology is described in the following procedure. 
 
ERG2MP (Event Relationship Graph To Mathematical Program): 

 
Step 1. For every unconditional timed arc ue EÎ , define a set of equality constraints D(e)i = 

O(e)j + tej, i, j = 1,...,n, where n is the maximum number of occurrences of event O(e) in 

the sample path, capturing the fact that O(e)j causes event D(e)i to occur unconditionally 

after a delay tej. 

Step 2. For every conditional zero-delay arc ce EÎ , define a set of inequality constraints 

reflecting the fact that condition on arc e is true at both times ( )jO e +  and ( )iI e -  for a 

unique pair of indices i and j (see Appendix A for details). 

Step 3. Combine all constraints along with an objective function of executing all events as soon 

as feasible into a mathematical program.                 ◊ 

 
If multiple instances of the same event can be scheduled, binary assignment variables can be 
added to determine the assignments of i and j and the equality will be changed to inequality, 
otherwise, set i = j. Appendix A gives details on which particular instance, j, of event O(e) will 
schedule which instance, i, of event D(e). This situation could happen, for example, when 
simulating a parallel-server queue where customers might leave a service station in a different 
order from that in which they arrived (called “overtaking” in the queueing literature). The 
procedure assumes a simulated sample path of n events. Stopping rules that result in a random n 
are not considered here. 
 

EXAMPLE 2.1. We provide the details for deriving GG1-LP1 given in Section 1. 

Step 1:  The two unconditional delay arcs: (Arrive, Arrive) and (Start, Finish) give, respectively, 
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(Arrive, Arrive)  1 1 , 1,..., 1i i iA A a i n+ += + = -     
(Start, Finish)   , 1,...,i i iF S s i n= + =     
 
Step 2:  The Start vertex is scheduled by two conditional arcs with same conditions, each of 
which contains two relational operators. If this ERGM were transformed into an EERGM, the 
two relational operators on each of these conditional arcs could be implemented by two one-
relational-operator conditional arcs connected by a dummy event vertex. However, for ease of 
exposition, we will work with the original ERGM directly; one can also work with the EERGM 
and obtain an LP similar to GG1-LP1 by eliminating some redundant constraints. 

At the time just before the occurrence of the ith Start event, the two conditions on these two 
conditional arcs must be true. Hence, 

 

(R ≥ 1):   
1

( ) ( ) ( ) 1 1
( ) 1

i F i S i

F i

i i i

R S C S C S
C S i
F S S

- - -

-

-
-

= - + ³
Û ³ -
Û £ =

     

 

(Q ≥ 1):   
( ) ( ) ( ) 1

( )
i A i S i

A i

i i i

Q S C S C S
C S i
A S S

- - -

-

-

= - ³
Û ³
Û £ =

     

 
Step 3:  The above four constraints along with an objective function of executing all events as 
soon as feasible (i.e., 

1

n
i i ii

A S F
=

+ +å ) constitutes GG1-LP1. Since delay times are assumed 
positive, we do not include the nonnegative constraints on the variables.          ◊ 
 
When there is no overtaking, an LP formulation can be obtained. The following theorem states 
that the optimal solution of a resulting LP (with an objective function of minimizing all event 
times) is identical to the system dynamics—the sample path obtained from a simulation of the 
original ERG. A proof is provided in Appendix B. 
 
THEOREM 2.1. Any feasible sample path for an ERG without overtaking is an optimal solution to 
the corresponding optimization model generated by Procedure ERG2MP. 
 
Simpler objective functions will work as well for GG1-LP1. For example, we do not need to in-
clude the job arrival times in the objective function because the times for these exogenous events 
are completely determined by the input data. Also, if we knew that the n jobs occurred in the 
same busy period, then the simple objective of minimizing the length of the busy period, Fn, 
could be used. Changing the objective to 

1

n k
ii

F
=å  may provide information for estimating dif-

ferent moments of some interesting decision variables, which is the subject of further study. 
Other performance measures can also be evaluated by using the solutions (event times) of the 

optimization representation since the state of a DES is piecewise constant. For example, if 
Ln(x1,…,xn; θ) is a sample performance measure evaluated over a sample path containing n 
events, f(Zi) is a bounded cost when the system is at state Zi immediately after the occurrence of 
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the ith event, and xi is event time of the ith event, then one has 1( ,..., ; )n nL x x q =  

[ ]
1

10
( )

n
i i ii

f x x
-

+=
-å Z  (see Glasserman 1991 for more details). 

For cases where overtaking is possible, binary variables are added to ensure correct assign-
ments of events. It might also be possible to add as many binary variables as needed so that the 
optimal solution under an objective function of minimizing all event times is identical to the sys-
tem dynamics. The following example is a formulation with binary variables generated by pro-
cedure ERG2MP. 

 

EXAMPLE 2.2. Consider the G/G/R ERGM given in Figure 1.2 with R0>1 parallel servers and a 
sample path of n completed batches of jobs, each of size b. We go through the details of each of 
the steps in procedure EGM2MP. 

Step 1:  The unconditional delay arc (Arrive, Arrive) gives 
 

(Arrive, Arrive)  1 1 , 1,..., 1i i iA A a i b n+ += + = × - .    
 
For the unconditional delay arc (Start, Finish), since overtaking can happen with multiple serv-
ers, we need to insure that there is one and only one equality constraint binding for every pair of 
Start and Finish events. That is, we need to assign a single Finish event to each Start event. We 
can use the usual assignment constraints to do this with binary variables determining the assign-
ments of which of several possible Finish events is scheduled by each Start event. Let binary 
variable ijd  = 1 if the ith Start event schedules the jth Finish event, and 0 otherwise. For a suitably 
large real number M (e.g., the upper bound of , ,i i jS s F i j+ - "  or simply bigger than the simu-
lation duration), we have 

 
(Start, Finish)   (1 )j i i ijF S s M d³ + - - , i = 1,…,n; j = max{i–R0+1, 1},...,n   
 
Since event times are ordered (i.e., Fj ≥ Fj–1), if the ith Start event schedules the j–1th Finish 
event, then the above constraint should also be enforced. Therefore, the formulation could be-
come tighter if these assignment constraints are replaced by  
 
  

0max{ 1,1}
(1 )

j
j i i ill i R

F S s M d
= - +

³ + - -å , i = 1,…,n; j = max{i–R0+1, 1},...,n 

 
Step 2:  In EERGMs we assumed for completeness that a state variable can only be increased or 
decreased by at most 1 at a time. Since our batch size is b, this means here that the Start event 
needs to be split into b events, each decreasing Q by 1. However, this added complication is not 
necessary when the b events always occur simultaneously as they do here. Just before the ith oc-
currence the Start event, the condition (R ≥ 1)&(Q ≥ b) on the two conditional arcs must be true. 
Hence, 
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(Q ≥ b):   
( ) ( ) ( )

( )
i A i S i

A i

b i i i

Q S C S b C S b
C S b i
A S S

- - -

-

-
×

= - × ³
Û ³ ×
Û £ =

     

 
This constraint, b i iA S× £ , although derived mechanically, has the intuitive interpretation that 
simply says that a server cannot start the ith service until after at least the ith full batch of b jobs 
has arrived. We also need 

 

(R ≥ 1):   
0

0

0

( ) ( ) ( ) 1
( )

i F i S i

F i

i R i i

R S C S C S R
C S i R
F S S

- - -

-

-
-

= - + ³
Û ³ -
Û £ =

     

 
Again, although derived mechanically, this constraint has the simple interpretation that, since 
there are only R0 resources, the number of Start events cannot exceed the number of Finish 
events by more than R0. 

 
Step 3:  The objective function is simply to execute all events as soon as feasible. To summarize, 
the following mixed-integer program generates the system trajectory for a batch-service G/G/R 
queue with n batches of jobs. 
 
GGRb-MIP: 

   1 1
min ( ) ( )

.

b n n
i i ii i

A S F
st

×

= =
+ +å å    

   1 1 , 1,..., 1i i iA A a i b n+ += + = × -    
   

 
0max{ 1,1} 0

1,..., ;
(1 ), max{ 1,1},...,

j
j i i ill i R

i n
F S s M j i R nd

= - +

=
³ + - - = - +å  

   , 1,...,i b iS A i n×³ =    
   

0 0, 1,...,i i RS F i R n-³ = +    

   
0max{ 1}

1, 1,...,
n

ijj i R
i nd

= - +
= =å  

   0min{ 1, }

1
1, 1,...,

j R n
iji

j nd
+ -

=
= =å  

   { }1 0; , , free, 0,1 , ,i i i ijA A S F i jd= Î " .             ◊ 

 
The big-M method is used for ease of exposition. Techniques for developing stronger MIP for-
mulations can be found in Nemhauser and Wolsey (1999). 

Of course, we could solve this optimization problem easily by simply running the simulation. 
This would give us the optimal values for all the binary variables. This in turn tells us which lin-
ear constraints are binding in a relaxation of the MIP into an LP whose solution is the system 
state trajectory corresponding to the input data. The mathematical tools of optimization can then 
be used to analyze the sample path. For example, fixing the values of the binary variables at their 
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optimal values found from running the simulation changes the MIP into an LP, which has a dual 
(more on this later). In this way, explicit sample-path dual models for more general discrete-
event dynamic systems can be derived, the subject of ongoing research. The queue length proc-
ess, Q(t) = CA(t) - CS(t), which is independent of the queueing discipline, can be computed from 
the resulting dual variables. Without batched service (b = 1), the sequence of customer waiting 
times, Wi = Si – Ai, are the excess variables—the reduced costs of the dual—for the third con-
straint (see Chan 2005 for more details). We emphasize again that our goal here is to derive an 
optimization representation for a simulation model for its mathematical properties. We are actu-
ally going to solve the resulting mathematical program.  

3 APPLICATIONS 

The fundamental motivation here for representing discrete-event systems as optimization models 
is to be able to use the rich mathematical and algorithmic theory of combinatorial optimization in 
the study of queues and other discrete-event dynamic systems. In this section, we illustrate some 
specific motivations for formulating discrete-event systems as optimization models by showing 
several potential applications. 

A straightforward, but probably not very good, reason for representing simulations as ana-
lytical optimization models is to be able to solve an LP as an alternative to executing a simula-
tion—without resorting to sequentially processing a future events list. However, it was interest-
ing to observe that the run times for solving moderate sized cases of the optimization model 
(GG1-LP1) for a G/G/1 queue were generally much faster than running the simulation. This is 
because the optimization software exploited the nearly diagonal form of the matrix of constraint 
coefficients. This should carry over to modeling networks of such queues. The mathematical 
programs might also be useful in modeling simple subsystems in hierarchical simulation models. 
We focus in this paper on other incentives. 
 

3.1 Tandem Queueing Networks 
In this section we model open queueing systems as LPs. The optimization models for these sys-
tems provide straightforward alternative proofs of reversibility properties under various blocking 
scenarios, which typically involve notation dense induction proofs on max-plus models or net-
work flow analysis. A condition under which a general blocking open tandem queue is reversible 
is presented. 

Consider a tandem queueing system with m consecutive stages, labeled k = 1,…,m. In each 
stage, there is a single server and a finite storage space for intermediate jobs. Job i = 1,…,n is 
processed at all stages in sequence with service times ski (see Figure 3.1). It is assumed that {(s1i, 
s2i,…,smi), i = 1,...,n} are i.i.d. random variables. 

Since buffer sizes between stages are finite, a control policy is needed in order to coordinate 
the service process between stages. Two common control policies considered in the literature are 
communication blocking and production blocking control policies (Buzacott and Shanthikumar 
1993). Other types of blocking include kanban blocking, variations of kanban blocking (Libero-
poulos and Dallery 2000), and general blocking (Cheng and Yao 1993). In the following, we 
shall briefly introduce communication, production, and general blockings; for detailed explana-
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tion and other blocking control policies, the reader is referred to Onvural (1990) and Chan 
(2005). 

Denote by TQmC(→/Gk/1/ak, k = 1,...,m) and TQmP(→/Gk/1/ak, k = 1,...,m) an m-stage 
communication-blocking tandem queue and an m-stage production-blocking tandem queue, re-
spectively, where the arrow "→" represents that the arrival process at stage k (2 ≤ k ≤ m) is the 
departure process at stage k-1 except that stage 1 has an external general arrival process, ak is the 
buffer size for jobs at stage k including the space of the server at stage k. The notation ak is con-
sistent with the tandem queueing literature. As a result, tai is used to denote the time interval be-
tween the ith external arrival and the i-1th external arrival. In a communication-blocking tandem 
queue, a server at stage k can start processing a job if the following conditions are satisfied: (C1) 
a job is available for processing, (C2) a server is available, and (C3) there is at least one empty 
space at the next stage. Upon the arrival of a job at stage k, if a server at stage k is available but 
the next stage is full, then the server is blocked. Therefore communication blocking is also called 
“blocked-before-service.”  In a production-blocking tandem queue, a server at stage k can start 
processing a job if the following conditions are satisfied: (P1) a job is available for processing, 
(P2) a server is available, and (P3) the server is not holding a finished job. When a server at stage 
k finishes processing a job, if there is no empty space at the next stage, then the finished job will 
stay with the server, blocking it from processing the next job. Therefore production blocking is 
also called “blocked-after-service.” 

Denote by TQmG(→/Gk/1/(ak, bk, ck), k = 1,...,m) an m-stage tandem queue under general 
blocking, where ak, bk, and ck are, respectively, the maximum number of jobs allowed in queue 
and in service (i.e., raw jobs), the maximum number of finished jobs allowed at the stage, and the 
maximum number of jobs allowed at the stage (in queue, in service, and finished). The relation-
ship between ak, bk, and ck, is  ck ≤ ak + bk. The limit, ck is used to control all jobs in a stage, in-
cluding raw jobs and finished jobs. In Figure 3.1.b, ck = 2; this means that it does not matter in 
which buffer the jobs are, the maximum spaces in stage 2 is 2. Under general blocking, a server 
at stage k can start processing a job if (G1) a job is available for processing, (G2) a server is 
available, and (G3) there are strictly less than bk finished jobs blocked at stage k. 

Let Bk be the number of finished jobs blocked at stage k. Figure 3.2.a–c are the ERGs for a 3-
stage tandem queue under communication blocking, production blocking, and general blocking, 
respectively. To make the exposition more transparent, we have not used event parameters as in 
Figure 1.3 at the expense of much more complicated looking ERGs. For simplicity, we have 
dropped the time dependency from all parameters in these figures (e.g., instead of ak(t), we write 
ak). In the LP representations, these parameters are fixed to be the initial values (e.g., ak(0)). In 
Figure 3.2.c, since services are assumed to be uninterrupted, having bk = bk – 1 occurred at event 
Sk instead of at event Fk can prevent more than bk(0) jobs from being served concurrently. 

 

(a) Communication or Production Blocking

1 2 3
a2=3

1 2 3
a2=3

1 2 3
a2=2 b2=1

c2=2

1 2 3
a2=2 b2=1

c2=2

(b) General Blocking  
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Figure 3.1:  Tandem Queues under Different Blocking Control Policies 
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Figure 3.2  :  ERG of Open Tandem Queueing Networks 
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3.1.1 Deriving Linear Program Representations for TQ3C(.) 
We use procedure ERG2MP to derive the LP formulation for TQ3C(G/G1/1/∞, →/G2/1/a2, 
→/G3/1/a3) in the following. 
 
Step 1:  Directly from the unconditional timed arcs in Figure 3.2.a, we get 
 
(A1, A1)    1, 1 1i i aiA A t+ = +         (3.1) 
(S1, F1)    1 1 1i i iF S s= +         (3.2) 
(F1, A2)    1 2i iF A=           
(S2, F2)    2 2 2i i iF S s= +          
(F2, A3)    2 3i iF A=           
(S3, F3)    3 3 3i i iF S s= +          
 
All these equalities will be used in the next step to simplify the formulation. In particular, (3.1) 
will allow the use of arrival-time sequence {Ai, i = 1,…,n} as the input data to the formulation, 
instead of the interarrival-time sequence. 
 
Step 2:  Vertices S1, S2, and S3 are scheduled by more than one conditional arc with the same 
conditions. At the time just before the occurrence of the ith S1 event, the three conditions (Q1 ≥ 
1)&(R1 ≥ 1)&(a2 ≥ 1) on the three conditional arcs must be true, yielding the following con-
straints. 

 

(Q1 ≥ 1)   
1 1
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1 1 1 1

1

1 1 1
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A i

i i i
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- - -

-

-

= - ³
³

£ =
     

 
Using equation (3.2) gives the constraint, 
 
    1 1 1i i iF A s³ +            
 

(R1 ≥ 1)   
1 1
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1 1 1 1

1

1, 1 1 1
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F i

i i i
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Again, using equation (3.2) gives the constraint, 
 
    1 1, 1 1i i iF F s-- ³            
 

(a2 ≥ 1)   
2 1

2
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2 1 1 2

1 2

2, 1 1

( ) ( ) ( ) 1
( )

F i S i

F i

i a i i

a t C S C S a
C S i a
F S S

- -

-

-
-

= - + ³
³ -
£ =

 

 



CHAN AND SCHRUBEN 
Optimization Models of Discrete-Event System Dynamics 

 

 15 

Using equation (3.2) gives the constraint, 
 
    

21 2, 1i i a iF F s-- ³           
 
Similar for events S2 and S3, five more constraints for Q2, R2, a2, Q3, and R3 can be derived. 
 
Step 3:  Combining all these eight constraints along with an objective function of executing all 
events as soon as feasible into an LP, we have a mathematical programming representation for a 
3-stage communication-blocking open tandem queue. This LP will be called “TQ3C-LP(F),” 
where the letter “F” reflects that the decision variables are the finish times. The formulation with 
n jobs is given below (The dual variables for each set of constraints are in parenthesis). 
 
TQ3C-LP(F): 

   

( )

2

3

1 2 3
1

1 1 1 1

1 1, 1 1 1

1 2, 1 2 1

2 1 2 2

2 2, 1 2 2

2 3, 2 3 2

3

min

.
, 1,..., ( )
, 2,..., ( )
, 1,..., ( )
, 1,..., ( )
, 2,..., ( )
, 1,..., ( )

n

i i i
i

i i i i

i i i i

i i a i i

i i i i

i i i i

i i a i i

F F F

st
F A s i n U
F F s i n V
F F s i a n W
F F s i n U
F F s i n V
F F s i a n W
F

=

-

-

-

-

+ +

³ + =
- ³ =
- ³ = +
- ³ =
- ³ =
- ³ = +

å

2 3 3

3 3, 1 3 3

, 1,..., ( )
, 2,..., ( )

i i i i

i i i i

F s i n U
F F s i n V-

- ³ =
- ³ =

 

where Fki, k = 1,2,3, i = 1,...,n, are unrestricted in sign; and Uki, Vki, and Wki are the dual vari-
ables. 

 
For an m-stage tandem queue, the derivation is similar and the LP representation is 

 
TQmC-LP(F): 

   

1

1 1

1,

, 1

1, 1

min
.

, 1,..., , 1,..., ( )
, 1,..., , 2,..., ( )
, 1,..., 1, 1,..., ( )

k

m n
kik i

ki k i ki ki

ki k i ki ki

ki k i a ki k ki

F
st
F F s k m i n U
F F s k m i n V
F F s k m i a n W

+

= =

-

-

+ - +

- ³ = =
- ³ = =
- ³ = - = +

å å
  

where F0i = A1i, i = 1,...,n; Fki, k = 1,...,m, i = 1,...,n, are unrestricted in sign; and Uki, Vki, and Wki 
are the dual variables. Using ERG2MP, we can also derive LP representations for production-
blocking (called TQmP-LP(F)) and general-blocking (called TQmG-LP(F)) tandem queues, 
which are given below. 
 
TQmP-LP(F): 
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( )1

1 1

1,

, 1

, 1

1

min

.
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j
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ki ki kjij i a
j

ll k

F

st
F F s k m i n U
F F s k m i n V
F F s k m j k m W
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= =

-

-

- +
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- ³ = - = +å

= +

åå

å

  

where F0i = A1i, i = 1,...,n; Fki, k = 1,...,m, i = 1,...,n, are unrestricted in sign; and Uki, Vki, and Wkji 
are the dual variables. 

 
TQmG-LP(F): 

   

( )1

1

1 1

1,

, 1

,
1

1
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where F0i = A1i, i = 1,...,n; Fki, k = 1,...,m, i = 1,...,n, are unrestricted in sign; and Uki, Vki, and Wkji 
are the dual variables. 

REMARK 3.1. Relationships between stochastic processes are often used to establish properties of 
queueing systems (see for example, Cheng 1997). Deterministic analysis of these system dynam-
ics equations is used with coupling arguments for problems such as developing performance 
bounds and proving reversibility. For example, using intuitive arguments, a representation of the 
departure processes in blocked tandem queues is developed in Buzacott and Shanthikumar 
(1993). There it is shown that properties of the departure processes are shared by the system 
work in process and throughput. 

Using the variables we defined in Section 1.2, the max-plus equation 5.38 on page 184 of 
Buzacott and Shanthikumar (1993) for communications blocking is  

 
    { }11, , 1 1,max , ,

kki k i k i k i a kiF F F F s
+- - + -= + ,   

 
and 0 1i iF A=  = the arrival times of jobs to the first queue. The relationships between Fki and the 
three variable inside the max{·} function can be written as three inequalities, which are equiva-
lent to the three constraints in TQmC-LP(F) with an objective function of minimizing all vari-
ables. Therefore, TQmC-LP(F) is equivalent to these system dynamics equations. It can also be 
shown that TQmP-LP(F) is equivalent to equation 5.37 in Buzacott and Shanthikumar (1993) 
and TQmG-LP(F) is identical to the max-plus recursion given in Cheng 1995.          ◊ 

In addition to being developed mechanically, each of the LP representations presented here 
has easily interpreted constraints and a dual that will be discussed in subsequent sections. 



CHAN AND SCHRUBEN 
Optimization Models of Discrete-Event System Dynamics 

 

 17 

3.1.2 Comparison of Communication Blocking and Production Blocking 

The above max-plus system-dynamics equations are used in Buzacott and Shanthikumar (1993) 
with induction arguments to prove bounds on the performance of production-blocking and com-
munication-blocking systems. Such performance bounds can be seen immediately from their LP 
representations. For example, one can compare the number of constraints in the two LPs (without 
solving them) and immediately observes that the performance of communication blocking (as re-
flected in functions of job completion times) can be no better than that of production blocking 
since the production-blocking LP has less constraints, all else being equal. This appears in the 
first result listed below. Other results proven in Buzacott and Shanthikumar (1993) by induction 
are also given below.  

Before proceeding to the proofs, we introduce two departure-time formulations for tandem 
queues. In particular, using only the departure times as variables, we modify TQmC-LP(F) and 
TQmP-LP(F) into two formulations, called TQmC-LP(D) and TQmP-LP(D). Let C

kiD  [ C
kiF ] and 

P
kiD  [ P

kiF ] denote the departure times [finish times] of communication and production blocking 
tandem queues, respectively. The modification from TQmC-LP(F) to TQmC-LP(D) is immedi-
ate because C

kiF  = C
kiD , k = 1,...,m, i = 1,...,n, in a communication blocking tandem queue. This 

gives:  
 

TQmC-LP(D): 

   

1

1 1

1,

, 1

1, 1

min
.

, 1,..., , 1,...,
, 1,..., , 2,...,
, 1,..., 1, 1,...,

k

m n C
kik i

C C
ki k i ki
C C
ki k i ki
C C
ki k i a ki k

D
st
D D s k m i n
D D s k m i n
D D s k m i a n

+

= =

-

-

+ - +

- ³ = =
- ³ = =
- ³ = - = +

å å

  

where 0
C
iD  = A1i, i = 1,..,n; and C

kiD , k = 1,...,m; i = 1,...,n, are unrestricted in sign. TQmP-LP(D) 
is, however, not immediate. The formal way to get it is by applying ERG2MP to Figure 3.2.b 
(generalized to m stages) and simplifying the formulation using the fact that in a production 
blocking tandem queue P P

mi miD F=  and 1,
P
k i kiD A- = , k = 2,...,m, i = 1,...,n. We will skip the de-

tails and present it here using an informal argument. In Figure 3.2.b, observe that the ith job can-
not depart from stage k until the following three conditions are satisfied: (1) the ith job arrives at 
stage k (at time 1,

P
k iD - ) and finishes its service requirement at stage k, (2) the previous job (the i-

1th job) departs stage k (at time , 1
P
k iD - ) and the ith job finishes its service requirement at stage k, 

and (3) there is at least one empty buffer space at stage k+1, which happens when the i-ak+1
th job 

departs stage k+1 (at time 
11, k

P
k i aD

++ - ). The third condition does not include the requirement that 
the ith job must finish its service requirement because such requirement has already been cap-
tured in the first two conditions. These three conditions give us the following formulation for an 
m-stage production tandem queue: 

 
TQmP-LP(D): 
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1

1 1

1,

, 1

1, 1

min
.
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D
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+
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-

-
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å å

  

where 0
P
iD  = A1i, i = 1,..,n; P

kiD , k = 1,...,m, i = 1,...,n, are unrestricted in sign. 
 
With TQmC-LP(D) and TQmP-LP(D), the following results are relatively straightforward. 

 
1) C P

ki kiD D³ , k = 1,...,m, i = 1,...,n. 
Alternative Proof: 
This is true because the right-hand side of TQmP-LP(D) is non-negative and less than that of 
TQmC-LP(D).                         □ 
 
Adding one additional space to all buffers in the m-stage communication blocking tandem queue 
reverses the direction of above inequality, that is, making the communication blocking tandem 
queue no worse than the production blocking tandem queue. Observe that this one additional 
space when added to a 2-stage communication blocking tandem queue will make it equal to (i.e., 
as good as) a 2-stage production blocking tandem queue.  
 
2) The departure time P

kiD  under production blocking with buffer capacities {a1, a2,...,am} is not 
less than the departure time C

kiD  under communication blocking with buffer capacities {a1+1, 
a2+1,...,am+1}. 
Alternative Proof: 
Observe that this additional buffer space, while has no effect to the first two constraints in 
TQmC-LP(F), will cause the third constraint to be the same as the third constraint in TQmP-
LP(F) when j = k+1. Therefore, the feasible region of TQmC-LP(F) with buffer capacities {a1+1, 
a2+1,…,am+1} contains the feasible region of TQmC-LP(F) with buffer capacities {a1, 
a2,…,am}, yielding P C

ki kiF F³ . The result follows from the facts that P P
ki kiD F³  and C C

ki kiD F= . 
                            □ 
 
By defining the throughput as the largest departure rate, i.e., lim / C

i kii D®¥  and lim / P
i kii D®¥ , 

k = 1,...,m (usually only the last state is of interest, but in equilibrium all stages have the same 
departure rate), the following result is a direct application of the above two results (for a more 
detailed definition of throughput, see Buzacott and Shanthikumar 1993). 
 
3) The throughput of a communication blocking tandem queue with buffer capacity {a1, 
a2,...,am} is not greater than that of a production blocking tandem queue with buffer capacity {a1, 
a2,...,am}, which is, in turn, not greater than that of a communication blocking tandem queue with 
{a1+1, a2+1,...,am+1}. 
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3.1.3 Reversibility Property for Tandem Queues 

The reverse queue of a tandem queue is achieved by reversing the order of all stages. A tandem 
queue is said to be reversible if it has the same asymptotic throughput as its reverse queue. Moti-
vations for studying the reversibility property are summarized in Buzacott and Shanthikumar 
(1993) and Chan (2005). Reversibility is considered to be an important property in design and 
performance analysis of tandem queues because properties of the original system can be inferred 
from the reverse system. 

The reversibility property has been established and proven for communication blocking, pro-
duction blocking (Yamazaki and Sakasegawa 1975, Dattatreya 1978, Muth 1979) and general 
blocking under certain conditions (Cheng 1995). Pinedo (2002) proved the reversibility property 
for deterministic scheduling problems. Most of these proofs start with the so-called “activity 
network,” a directed acyclic graph (DAG) with arcs representing the time required to process 
jobs in the system, and show that the longest path in the network of original is equal to that of the 
reverse system. These activity networks are obtained intuitively either from max-plus recursions 
or from the precedence relations among activities of the system.  

We will show in the following that these activity networks can be constructed more system-
atically from the dual of the LP representations of tandem queues under various blocking scenar-
ios. We then prove the reversibility property by simply rotating the networks. For systems that 
are not reversible in general (e.g., general blocking tandem queues), the LP representations will 
also help in finding conditions for reversibility. For example, we will give a new condition under 
which a general blocking tandem queue is reversible by using the LP network representation. 

Observe that the LP representations can also be used to derive similar properties for closed 
tandem queueing networks under the conditions of stationary and ergodic service times (see 
Chan 2005). These conditions are required for closed tandem queues because they ensure that the 
asymptotic throughput defined in the previous section is independent of the initial state of the 
system (see Dallery, Zhen and Towsley 1994). 

We assume that all service times are positive (a dummy server with zero processing time is 
equivalent to an empty buffer). Moreover, in throughput analysis one can assume infinite number 
of jobs waiting in front of the first stage (for otherwise, a dummy server with service times equal 
the interarrival times can be added in front of stage 1). The following theorem is well-known, but 
we give an alternative LP-based proof that will be extended to general blocking. 

THEOREM 3.1. An m-stage tandem queue is reversible under communication blocking or produc-
tion blocking. 
PROOF. We prove the communication case, the production case is similar. First, we observe that 
the dual of TQmC-LP(F) is the network flow problem of finding the longest paths from the first 
node to all other nodes (the longest path from the first node to the last node is the makespan—the 
time to finish all jobs); e.g., the dual network for TQ3C(→/G1/1/∞, →/G2/1/3, →/G3/1/2) and n = 
5 is given in Figure 3.3.a, and the makespan is the longest path from node F11 to node F35. The 
length of each arc represents the service time of a job at that stage (the index of the node at 
which an arc terminates tells which job it is), e.g., the length of arc (F22, F23) is s23, the service 
time of the 3rd job at stage 2. Variables Uki, Vki, and Wki are the flows on the arcs. 

The reverse queue is also a tandem queue (called TQ3C-R(·)) and its reverse dual network is 
shown in Figure 3.3.b. By rotating Figure 3.3.b 180 degrees and reversing the directions of the 



CHAN AND SCHRUBEN 
Optimization Models of Discrete-Event System Dynamics 

 

 20 

arcs, one can see that these two networks are identical. Therefore, the makespans (longest paths) 
are the same. Since the service times are i.i.d., this reversal does not change the throughput. 
Therefore, the queue is reversible.                   □ 

V12 V13 V14 V15

V22 V23 V24 V25

V32 V33 V34 V35

V12 V13 V14 V15

V22 V23 V24 V25

V32 V33 V34 V35

W124 W125

W233 W234 W235

W124 W125

W233 W234 W235

s21 F22 F23 F25F24

F31 F32 F33 F35F34

F11 F12 F13 F15F14

s21 F22 F23 F25F24

F31 F32 F33 F35F34

F11 F12 F13 F15F14

F25 F24 F23 F21F22

F15 F14 F13 F11F12

F35 F34 F33 F31F32

F25 F24 F23 F21F22

F15 F14 F13 F11F12

F35 F34 F33 F31F32
V12 V13 V14 V15

V22 V23 V24 V25

V32 V33 V34 V35

V12 V13 V14 V15

V22 V23 V24 V25

V32 V33 V34 V35

W234 W235

W123 W124 W125

W234 W235

W123 W124 W125

b. Reverse Queuea. Original Queue  

Figure 3.3:  Dual network of TQ3C and TQ3C-R(→/G1/1/∞, →/G2/1/3, →/G3/1/2) and n = 5 
 
The next theorem provides a new condition under which a general blocking tandem queue is re-
versible. This condition includes Cheng (1995)’s condition as a special case. 

 
THEOREM 3.2. A general blocking tandem queue is reversible if its control parameters satisfy ak 
– bk = Z, k = 1,...,m, where Z is an arbitrary integer. 
 
PROOF. From the LP representation, one can see that the condition ak – bk = Z, k = 1,...,m ensures 
that the LP for reverse queue has the same graph structure as that of the original queue. The rest 
of the proof is identical to that of Theorem 3.1.                □ 

3.2 Formulating Scheduling Problems 

The scheduling literature is vast. The reader is referred to the scheduling book by Pinedo (2002), 
which gives an introduction to this topic and provides formulations to many scheduling prob-
lems. Here, we shall focus on generating constraints for optimal formulations of optimization 
models for scheduling problems directly from ERGs. 

Traditionally, constraints for optimal scheduling problems are found in an ad-hoc manner us-
ing intuitive arguments. For complex systems, there may be a risk of missing constraints, which 
may eventually lead to an infeasible schedule. Here, we show that resource scheduling con-
straints can be obtained methodically from an ERG of the system using the ERG2MP procedure. 
The mathematical programming model for the system dynamics includes all the feasibility con-
straints that must be enforced in an associated optimization problem for resource scheduling. 
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For the parallel resource ERG, if the objective function is changed to minimize the last finish 
time and binary variables are added assigning the ith job processing time to the jth Start event then 
we have a formulation of the parallel resource scheduling problem with minimum makespan as 
our objective. 

Translating the ERG for a G/G/s queue into what now becomes a mixed-integer scheduling 
program gives a formulation of the classical parallel-resource non-preemptive job scheduling 
problem, which is in the class of NP-hard problems. Nevertheless, solving this MIP for small 
numbers of jobs gives us insights into possible efficient heuristics. To add generality, the order in 
which jobs arrive can also become a policy decision (e.g., to derive an order-release rule). 

Attaching different job indices to the sequence of job arrival events and to the sequence of 
service start events allows these to be scheduled optimally. We define two binary variables used 
to assign the ith processing time to the jth Start event and the ith interarrival time to the jth Arrival 
event. Let 

 
  θij = 1 if job j is the ith arrival, 0 otherwise, and  
  ηij = 1 if job j is the ith service, 0 otherwise.   
 
The optimization model for the parallel-resource ERG simulation model that allows for optimal 
job scheduling of n jobs to R servers, batch size 1, to minimize makespan then becomes  

 
Makespan-MIP: 

    min
.

nF
st

  

    , 1,..,i nF F i n£ =  
    1 , 1,..., 1, 1,..,i i j ijA A a i n j nq+ ³ + = - =  
    , 1,..., , 1,..,i i j ijF S s i n j nh³ + = =  
    , 1,...,i iS A i n³ =  
    , 1,...,i R iS F i n R+ ³ = -  
    1 , 1,...,iji

j nq = =å  

    1 , 1,...,ijj
i nq = =å  

    1 , 1,...,iji
j nh = =å  

    1 , 1,...,ijj
i nh = =å  

    { }1 0; , , free; , 0,1 , ,i i i ij ijA A S F i jh q³ Î "  

 
The first constraint defines the makespan. The second to the fifth constraints are from the arcs 
(Arrive, Arrive), (Start, Finish), (Arrive, Start), and (Finish, Start) in Figure 1.2, respectively. 
The last four constraints are the assignment constraints for scheduling. This formulation can be 
made tighter by changing the second and the third constraints to  

 
    1 , 1,..., 1i i j ijj

A A a i nq+ ³ + = -å  
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    , 1,..., .i i j ijj
F S s i nh³ + =å  

 
Note that formulating the optimal scheduling model for batched service from its ERG simulation 
model is done by adding binary job assignment variables in a similar manner to the more general 
model with batch size b given earlier as GGRb-MIP.  

Methodically formulating optimal resource scheduling programs directly from their discrete-
event simulations can be a tool for confirming or for correcting intuitive ad-hoc scheduling con-
straint generation. Of course, we can argue only that we have derived the optimal scheduling 
program for the ERG, which itself might have been created intuitively. But one can easily simu-
late an ERG and logical errors and omissions have an opportunity for exposure. 

3.3 Using Virtual Resources for Efficient Simulation and Scheduling 

We next consider a somewhat more complicated scheduling problem. We show that studying the 
simulation model can produce a more efficient optimization model, and that studying the special 
structure of the optimization model can lead to a more efficient simulation. The two modeling 
methodologies indeed complement one another, much like looking at the same system with two 
different eyes. 

The system that we consider is a tool commonly found in semiconductor manufacturing 
called a cluster tool (Figure 3.4). In the recent years, the use of cluster tools in semiconductor 
manufacturing has increased rapidly, causing the performance of cluster tools to become more 
and more important (see Chan and Schruben 2004, Dawande et al. 2002, Ding and Yi 2004, 
Perkinson et al. 1994, and Rostami and Hamidzadeh 2002). The cluster tool scheduling problem 
with residency constraints is similar to hoist scheduling problems (Shapiro and Nuttle 1988). A 
survey on recent development on scheduling cluster tools can be found in Dawande et al. (2005). 
If LP formulations for cluster tool dynamics are available, performance analysis, such as sensi-
tivity analysis to varying processing times, robot speeds, or number of chambers as well as opti-
mally scheduling robot moves could become easier.  

Many ERG simulations of cluster tools have been developed: two of the more elegant ERGs 
for a generic cluster tool, both modeled with only three events, are in Nehme and Pierce (1994) 
and Ding and Yi (2004). In the following, we formulate the ERG given in Ding and Yi (2004) as 
an LP and simplify it to obtain a faster simulation model for cluster tools. 

We first consider a 2-chamber cluster tool with a single-blade robot and generalize the result 
to a p-chamber cluster tool later. For clarity of exposition, the expanded (without using event pa-
rameters) ERG of the three-event ERG given in Ding and Yi (2004) for a 2-chamber single-robot 
cluster tool is shown in Figure 3.5. There R(t) is the number of available robots at time t; Pk(t) is 
the number of available processing slots at chamber k; Wk(t) is the number of finished wafers 
waiting at chamber k; mki is the moving time from chamber k-1 to k; and ski is the processing time 
for the ith wafer at chamber k, k = 1,2 (subscript k = 3 is the single load lock capable of loading 
and removing wafers to and from the cluster tool.). We do not consider the moving time between 
chambers when the robot is empty. If the time to load/unload a wafer to/from a chamber is im-
portant, it can be added into mki. In this 2-chamber example, since there is only one robot and no 
intermediate buffers, all state variables (while initialized at 1) can only be 0 or 1 (busy or idle).  
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Load Locks: Single or Double

Single Chamber

Batch Chamber

Index Module

Robot(s): 
   Chamber(s),
   Arm(s), 
   Hand(s).

 

Figure 3.4:  A Typical Cluster Tool 
 
The events are M, S, and F for Move, Start and Finish, indexed for the different processing 

chambers with 3 again for the load lock. Let M1i, S1i, F1i, M2i, S2i, F2i, M3i, and F3i denote the 
times of the ith occurrence of the corresponding events. In Figure 3.5, there are more than two 
events that increment or decrement R(t); this is case (e) in Figure A.2 of Appendix A. Applying 
the constraint generation procedure outlined in Section 2 and examining the resulting constraints, 
we find that most of these constraints are redundant. The only non-redundant constraints are con-
straints governing events S1 and M3. (Approaches for finding redundant constraints in a general 
math program can be found in Gal 1979.) This special characteristic of this LP suggests a new 
ERG simulation model (Figure 3.6) without the state variable R(t). Observe also that the arc (F3, 
M1) is no longer necessary in the new simulation ERG. The translation from a math program to 
an ERG, however, is carried out in an ad-hoc manner. Methodical approaches for such transla-
tions is a future research topic. 

The following proposition shows the validity of the new ERG, i.e., no “phantom” robots 
(Schruben and Schruben 2004). 
 

PROPOSITION 3.1. The feasibility condition of R(t) (R(t) ≥ 0) is implied in Figure 3.6. 

PROOF. From Figure 3.5, the feasibility condition of R(t) is 
 

  
1 1 2 2 3 3

( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) 0S M S M F MR t C t C t C t C t C t C t= + - + - + - ³ . 
 
To prove that this condition is implied in Figure 3.6, we show that the following conditions are 
satisfied: (1) ( )

kSC t – ( )
kMC t {0, 1}Î - , k = 1,2, and 

3
( )FC t –

3
( )MC t {0, 1}Î - ; and (2) at any 

time, at most one of the three terms in (1) can be –1 and the other two terms are 0. 
First consider 

1
( )SC t –

1
( )MC t  and condition (1). Arc (M1, S1) implies 

1 1 1 1i i i iS M m M= + ³ . Also, event S1 cannot schedule an M1 event unless it schedules some 
other events first, e.g., S1 -> F1 -> M2 -> S2 -> M1. This gives 1 1, 1i iM S -³ . Minimizing all event 
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times and using (2.1), these two inequalities are equivalent to 
1
( )SC t –

1
( )MC t {0, 1}Î - . For 

condition (2), during the time period when 
1
( )SC t –

1
( )MC t  = –1, W1 must be zero because event 

F1 has not happened yet; this ensures that event M2 cannot occur during this time and hence 
2
( )SC t –

2
( )MC t  = 0. Also, P3 must less than or equal to 1 because event S1 has not happened yet; 

this ensures that event M3 cannot occur during this time period and hence 
3
( )FC t –

3
( )MC t  = 0. 

The proof is completed by extending a similar argument to the other two terms.       □ 
 

The introduction of variable P3(t) makes explicit the notion of a “virtual resource”—defined as 
an object that captures redundancies in a simulation model by simulating only necessary opera-
tions on resources. In this example, P3(t) is the number of wafers in the two chambers. As seen 
from the optimization formulation, simulating this virtual resource provides enough information 
for determining the status of the robot; therefore, R can be eliminated from the ERG. Figure 3.6 
can easily be generalized to model p-chamber cluster tools. For the kth chamber, the three event 
nodes (Mk, Sk, and Fk) are added with similar state chances and conditions. The only difference is 
that the conditions on arcs (S1, Mp+1) and (Fp, Mp+1) are changed to (Wp≥1)&(Pp+1≥p). 

The LP for a p-chamber cluster tool is given below. The last two constraints (with dual vari-
ables BC1k and BC2k) are constraints for the initial states and terminating states of the tool (‘BC’ 
is mnemonic for Boundary Conditions). These conditions do not exist in the 2-chamber cluster 
tools. The throughput of the tool can be computed by calculating the reciprocal of the difference 
between two consecutive finish events at a chamber when the tool reaches a steady state, for ex-
ample, (Fki – Fk,i-1)-1. 

 
CLp-LP: 

 

1

1 1

1, 1 1, 1

, 1, , ,

1, 1, 1 1, 1, 1 1

1, 1,

min
. .
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+
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Figure 3.7 shows some of the benefits gained from using the new LP and the new simulation 
model together: (1) starting with the original simulation model (whose run time is depicted by 
the dashed line in Figure 3.7.a); (2) we formulated this simulation model as an LP (whose run 
time is given by the dashed line in Figure 3.7.b); (3) we then reduced the size of this LP by 
eliminating redundant constraints and achieved a new LP (whose run time is given by the solid 
line in Figure 3.7.b); (4) we then came full circle and used the new LP to construct a new simula-
tion model in Figure 3.6 (whose run time is depicted by the solid line in Figure 3.7.a). The exe-
cution efficiency of both the LP model and the ERG simulation were dramatically improved by 
exploiting their individual special structures. Figure 3.7 does not include the time spent in devel-
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oping the new LP and the new simulation model. However, once they are developed, we could, if 
necessary, run the new simulation model for many times. Thus, the saving is in a magnitude of 
the number of runs times the difference between the speeds of the new and old models. 

M1 S1 F1 M2

m1 s1 S2 F2 M3 F3

s2
m2 m3

{P1=P1-1,
R=R-1}

{R=R+1} {W1=W1+1} {W1=W1-1,
R=R-1,
P2=P2-1}

{R=R+1,
P1=P1+1}

{W2=W2+1} {W2=W2-1,
R=R-1}

{R=R+1,
P2=P2+1}
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1( 1)P ³ 2( 1) &( 1)R W³ ³

2( 1) &( 1)R W³ ³1 2( 1) &( 1)& ( 1)R W P³ ³ ³

1 2( 1) &( 1)& ( 1)R W P³ ³ ³

 

Figure 3.5:  Original ERG Simulation Model for a 2-chamber Cluster Tool (Ding and Yi 2004) 
 

{P1=P1-1} {P3=P3+1} {W1=W1+1} {W1=W1-1,
P2=P2-1}

{P1=P1+1} {W2=W2+1} {W2=W2-1,
P3=P3-1}

{P2=P2+1}

M1 S1 F1 M2

m1 s1 S2 F2 M3 F3

s2
m2 m3

2 3( 1) &( 2)W P³ ³1 2( 1) & ( 1)W P³ ³

1 2( 1) &( 1)W P³ ³
2 3( 1) & ( 2)W P³ ³

{P1=P1-1} {P3=P3+1} {W1=W1+1} {W1=W1-1,
P2=P2-1}

{P1=P1+1} {W2=W2+1} {W2=W2-1,
P3=P3-1}

{P2=P2+1}

M1 S1 F1 M2

m1 s1 S2 F2 M3 F3

s2
m2 m3

2 3( 1) &( 2)W P³ ³1 2( 1) & ( 1)W P³ ³

1 2( 1) &( 1)W P³ ³
2 3( 1) & ( 2)W P³ ³

 

Figure 3.6:  New ERG Simulation Model (without State Variable R) 
 

(a) Run Times of the Simulation Models (b) Run Times of the LP Models 
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Figure 3.7:  Original Simulation Model à Original LP à New LP à New Simulation Model 

REMARK 3.2. Through the derivation from the original model to the new one, we also showed 
that the so-called “push” schedule is optimal for cluster tools under sequential processing—in a 
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sequential schedule, since jobs must be processed in sequence, the optimal schedule is to push 
jobs into the system as early as possible (see e.g., Perkinson et al. 1994, Dawande et al. 2002).   ◊ 

REMARK 3.3. For complex systems, it could be very difficult to identify all redundant con-
straints. However, many optimization software now have presolver routines that can sometimes 
identify redundant constraints; therefore, better (not necessary optimal) simulation models may 
still be achievable. This could dramatically reduce the CPU times for optimization algorithms in-
volving thousands of calls to the simulation model—in the cluster tools literature, most algo-
rithms use simulation to evaluate the throughput of the tool at each iteration of a scheduling heu-
ristics (see e.g., Rostami and Hamidzadeh 2002).                ◊ 

3.4 Equivalent Linear Programs and Event Reduction in Their Corresponding 
Simulations 

Different ERGs can be created to model the same discrete-event system. However, some of these 
ERGs could be equivalent in the sense that all their sample paths are identical given the same in-
put. Some of these have distinct mathematical programming representations. These mathematical 
programs also may have distinct but equivalent formulations that correspond to different simula-
tion models of a system. 

For example, the mathematical program, GGR-LP1 for a single server queue (i.e., GG1-LP1) 
was generated directly from the ERG in Figure 1.2 for simulating this system. Other ERGs can 
be used to simulate this system and each of them will lead us to a different mathematical pro-
gram. In the simulation literature it is common to model a G/G/1 queue using only two events, a 
customer Arrival event and a Finish service event (see, for example, page 57 of Law and Kelton 
2000). In fact, the Start event is not necessary, since it is always scheduled with zero delay so its 
associated state changes could be conditionally incorporated in the state changes for the Arrival 
and Finish events, making these events more complex, but reducing the number of events by one 
(see page 58 of Law and Kelton 2000). Heuristics and algorithms for eliminating redundant 
events in an ERG have been proposed (Schruben 1983 and Som and Sargent 1990, Seila, Ceric 
and Tadikamalla 2003). 

We also discovered that the Finish event is not necessary in the simulation model by refor-
mulating its LP representation. This is somewhat surprising since we could not find any simula-
tion of a G/G/1 queue in the literature that contains only a single Start event—although there are 
simulations of M/G/1 queues with only a Finish event (Schruben and Schruben 2000) and G/G/R 
queues with only a single Finish event (Chan 2005). 

In GG1-LP1, the first constraint is only for the Arrival event times, which are input data for 
the simulation model and therefore can be removed from the formulation. The second constraint, 
being an equality, can also be eliminated from the formulation by incorporating it into the last 
two constraints, that is, substituting Fi – si for Si, i = 1,...,n. Dropping the constant terms, i.e., 

( )
1

n
i ii

a s
=

+å , from the objective function yields an LP for the G/G/1 queue that has only Fin-
ish event times as its variables, 
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GG1-LP1(F): 
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A more interesting LP for a G/G/1 queue is obtained by replacing Fi with Si + si, i = 1,...,n, in 

the last constraint in GG1-LP1, resulting in a formulation for a G/G/1 queue with only Start 
events as variables, 
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This is another example where developing ERG models from their equivalent optimization for-
mulations can sometimes give different, and potentially more efficient, simulations. 

3.5 Queueing System Duality 

GG1-LP1(S) can be modified to a new formulation with an objective function of minimizing the 
average job waiting time ( ( )1

1

n
n i ii

W S A
=

= -å ) by replacing Si with Wi + Ai, i = 1,...,n, in the 
formulation and dropping the constant term of sum of the Ai’s from the objective function and 
dividing it by n. This new formulation and its dual are 
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Here Ui, and Vi, are the corresponding dual variables for each constraint. GG1-LP(W) is equiva-
lent to the well-known Lindley recursion (Lindley 1952), Wi = max{Wi-1 + si-1 – ai, 0}. In fact, 
many of the max-plus representations of stochastic system sample paths have direct LP represen-
tations and hence, duals. 
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This dual looks at the dynamics of a G/G/1 queue from the server’s viewpoint (reminiscent 
of Palm Calculus, Baccelli and Bremaud 2003). The LP GG1-LP-Dual(W), when expressed as a 
minimization, is equivalent to the classical uncapacitated lot-sizing problem with only inventory 
holding costs: The G/G/1 FIFO queue is the sample path dual of an uncapacitated lot-sizing 
problem and vice versa. This gives us a new way of thinking about queueing system dynamics. 

The constraints in GG1-LP1-Dual(W) are similar to the inventory balance equation, where Ui 
is the production quantity at period i and Vi is the inventory level carried from period i – 1 to pe-
riod i. Each customer requires a single unit of “customer service” (or simply, a service unit) 
which is produced by the server and can also be stored in inventory. Each customer’s departure 
represents a potential production period of the server. Upon the departure of a customer, the 
server can either produce a new service unit for the next customer in line or use a service unit in 
inventory. At the beginning of each busy period, the server needs to decide how many service 
units (the U’s) to produce. After the first customer is served, the rest of the service units (the V’s) 
will be stored in inventory and can be used throughout the rest of the current busy period. The 
penalty of producing too many service units during a busy period is the service holding cost (i.e., 
the time waiting for an arrival ai+1 – si). In the current model, since the costs from node A0 to 
node Wi, i = 1,...,n, are zero, there is no setup cost or penalty cost for producing too few service 
units during a busy period; therefore, the server will produce just enough to satisfy all the cus-
tomers in a busy period. 

3.6 Response Gradient Estimation 

Infinitesimal perturbation analysis (IPA) is a technique for estimating the gradient of a system 
performance measure by observing the sample path from a single simulation run. There are at 
least two ways of computing the sample path derivatives. The first one computes the sample path 
derivatives by using an algorithm integrated into a simulation (Ho et al. 1979, Ho and Cao 1991, 
Glasserman 1991, Fu and Hu 1997, Suri and Zazanis 1988, Freimer and Schruben 2001). The 
second approach makes use of linear programming duality. For example, Homem-de-Mello et al. 
(1999) gives a network formulation for unlimited buffer tandem queues and calculates sample-
path derivatives from the dual variables. Kim (2006) considers the newsvendor problem and de-
rives an IPA estimator from the dual variables. Our method extends this second approach. Spe-
cifically, we use the dual variables of a mathematical programming representation for an ERG to 
compute the sample path derivatives for the underlying simulation. 

We will focus our discussion on formulations without integer variables. Consider an LP gen-
erated by ERG2MP. The dual variables (shadow prices) represent how sensitive the objective 
function (event times) is to changes in the right-hand-side random variables (input data) and 
therefore, provide information necessary for computing gradient estimators using the chain-rule 
as done in IPA gradient estimation. In fact, perturbations are propagated through all the binding 
constraints (constraints with zero excess) and the value of each dual variable represents the mar-
ginal effect of the corresponding right-hand-side random variable to the objective function. 
Therefore, all the binding constraints constitute an event-tree (the solution of the dual LP) similar 
to the one defined in Suri (1987). Moreover, the LP solution obtained from running the simula-
tion might provides more information for a single simulation run because other perturbed sample 
paths can be reached from the current sample path by some additional computation (pivots), 
which might be easier than running a new simulation. From the computational point of view, the 
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LP representations would be a potentially effective tool for other types of sensitivity analysis (in 
particularly, finite difference gradient analysis) when IPA fails, for example, using the dual-
simplex method to get new sample paths. Performance of such sensitivity analysis is under in-
vestigation. 

Let us now examine the consistency property of IPA gradient estimators computed using the 
dual variables. For ease of exposition, we shall consider the average waiting time of a GI/G/1 
queue. Derivatives of other performance measures in which IPA works can also be computed us-
ing the dual variables (see discussion under Theorem 2.1). Let d(θ) = (d1(θ), d2(θ),…,dm(θ)) be 
the right-hand-side vector which is a function of parameter θ, and u = (u1, u2,…,um) be a vector 
of dual variables, where m is the number of constraints, usually greater than n—the number of 
variables. Dividing the objective function by n (this will not alter the optimal basis) and taking 
the limit n ®¥  gives a consistent estimator of the average waiting time, i.e., 

*
1

1
( ) lim

n

n
ii

W W
n

q
®¥ =

= å  a.s., where Wi
*’s are the optimal primal solutions, or equivalently 

working with the dual, *1 1
( ) lim ( ) lim ( )

n n
W z

n n
q q q

®¥ ®¥
= = d u  a.s., where u* is the optimal dual vec-

tor. For a small perturbation ∆θ provided that the order of events remains unchanged—an usual 
assumption of IPA—the current dual variables remain optimal and therefore, the objective func-
tion is perturbed by an amount of *zD = Ddu , where ∆d is the amount of perturbation of the 
right-hand side due to the change in θ. The change to the average waiting time is then 
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Divided by ∆θ and letting ∆θ → 0 yields the derivative of the average waiting time. Now, us-

ing the same assumptions typically made in IPA, i.e., the random variables di(θ)’s are uniformly 
differentiable—a condition such that the random variables are smooth enough or well-behavior 
so that IPA works (see Cao 1985 or Ho and Cao 1991 for more details), we have 

 

    
0

0

*

*
1

*
1

( ) 1 ( )
lim lim . .

1 ( )
lim lim

1
lim ( )

n

n

n

m i
ii

m
i ii

dW
a s

d n
d

u
n

d u
n

q

q

q q
q q

q
q

q

® ®¥

® ®¥

®¥

=

=

=

=

¢=

å
å

V

V

V
V

V
V

d
u

 

 
where ( )id q¢  is the derivative of ( )id q  w.r.t. θ (assume exists) and the last equation uses the uni-
form differentiability condition. Observe that as n goes to infinity, so does m. Therefore, the dual 
variables provide a consistent estimator for the derivative of the average waiting time under the 
usual IPA assumptions. If θ is a location or scale parameter of the arrival or service distributions, 
then the chain rule can be used in the usual IPA manner to compute the gradient estimates. 

Gradient estimators for tandem queueing networks can also be calculated directly from the 
shadow prices of TQmC-LP(F), TQmF-LP(F), or TQmG-LP(F). It can also be shown (Chan 
2005) that the service time shadow process (values for the Uki, Vki , and Wki’s) are the number of 
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customers in a busy period or a local busy period (for definition of local busy period, see Fu and 
Hu 1997). 

4 CONCLUSION 

This paper is intended to further develop the idea of expressing the dynamics of a discrete-event 
stochastic system as the solutions to optimization programs, first proposed by Schruben in 
(2000), as a general framework. ERGs are a convenient, completely general, way of defining the 
dynamics of a discrete-event system and are used here. Other approaches to modeling discrete-
event dynamics, most notably the use of max-plus algebra, Petri Nets, process flows, and gener-
alized semi-Markov processes can also be translated into ERGs and hence into optimization pro-
grams. The goal of this paper is to demonstrate a close relationship between discrete-event simu-
lations to optimization programs, permitting the application of the rich mathematical theory and 
algorithms of optimization to the study of discrete-event stochastic systems. It is also hoped that 
further research into these relationships might provide insights to develop new algorithms for 
solving some hard deterministic optimization problems using properties of their equivalent ERG 
simulation models. 
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APPENDIX A 

Available online in the Operations Research web site. 

APPENDIX B 

In short, an LP generated by ERG2MP has a dual of network-type formulations. An objective 
function of minimizing all event times in the primal is equivalent to an objective function of 
finding an earliest feasible processing path (longest path) from the first node (the first event of a 
simulation) to all nodes (all events in a simulation) in the dual. This will result in a tree where 
nodes are events and branches are relationships among events. A more formal argument is given 
below. 

We first note that the constraints generated for unconditional timed arcs and conditional un-
timed arcs are of the types xi – xj = di and xi – xj ≥ 0, respectively. Both constraints are of network 
type; therefore, each row of the constraint matrix has one +1 and one –1 entries and zeroes in all 
the other entries. In addition, the generated constraints are valid and complete because the facts 
that the causal relationships among the events in an ERG are governed completely by the arcs 
and their conditions; and that the constraints are derived by using the equivalency relation in 
(2.1). 
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Let { }1
min : ,

n n
ii

x
=

> Îå Ax d x R  be a generated LP, where Rn is the set of real n-

dimensional vectors, x = (x1, x2,…,xn) is the event-times variables, A is the m×n constraint matrix 
containing one +1 and one –1 in each row and all the other entries are zeroes, and m

+Îd R  is an 
m-vector of nonnegative-real right-hand sides, where m is the number of constraints. The opera-
tor “> ” here means that some constraints are equality and some are inequality. All LP examples 
given in this paper are of this type. 
 
PROOF of Theorem 2.1: 
The proof is by induction on the number of events, k, in the sample path. We first show that the 
LP can be solved variable by variable. That is, to solve an LP with k+1 event-time variables, one 
can first solve the LP with k event-time variables and then use the results to solve the LP with 
k+1 event-time variables. We use superscript “[k]” to associate notation with an LP that has k 
event-time variables. It suffices to show that the optimal solution x*[k] for LP[k] is still in the op-
timal solution for LP[k+1], i.e., x*[k+1] = (x1

*[k+1],… ,xk
*[k+1], xk+1

*[k+1]) = (x1
*[k],… ,xk

*[k], xk+1
*[k+1]), 

and xk+1
*[k+1] is determined by x*[k]. Since this should be true for all k, our goal is to show x*[k+1] = 

(x1
*[k+1],…, xk+1

*[k+1]) = (x1
*[1], x2

*[2],…,xk
*[k], xk+1

*[k+1]). 
By induction, when k = 1, there is only one event and the constraints would be x1 = d1, x1 ≥ 

d1, or both; therefore, minimizing x1 gives optimal solution x*[1] = (x1
*[1]) = (d1). The second 

event can also be an initial event similar to the first event (i.e., x2 = d2 or x2 ≥ d2) or it can be 
scheduled by the first event (i.e., x2 – x1 = d2 or x2 – x1 ≥ d2). In either case, by minimizing x1 + x2 
the optimal solution x*[1] for LP[1] is still optimal for x1 in LP[2], yielding x*[2] = (x1

*[2], x2
*[2]) = 

(x1
*[1], x2

*[2]), which equals either (d1, d2) or (d1, d1+d2). Therefore, x1
*[2] and x2

*[2] are the earliest 
time for the first and second events to occur, respectively. Using a similar argument, one can 
show that x*[3] = (x1

*[3], x2
*[3], x3

*[3]) = (x1
*[1], x2

*[2], x3
*[3]) and x3

*[3] is the earliest feasible time for 
the third event to occur. 

Next, assume that x*[k] = (x1
*[1],…,xk

*[k]) is the optimal solution for LP[k], i.e., the earliest time 
for the 1st, 2nd,…,kth events. Now, consider LP[k+1]. Since xk+1 must be scheduled by some previ-
ous event, which is realized by constraints xk+1 – xj ≥ dk+1, ( 1)j k" Î G + , where ( 1)kG +  is the 
set of all possible scheduling events for the k+1th event, any feasible solution for xk+1 must satisfy  
   xk+1'[k+1] ≥ xj

*[k] + dk+1, ( 1)j k" Î G + .         (A.2) 
 
Let xk+1

*[k+1] = 
( 1)

max
j kÎG +

{xj
*[k]} + dk+1 be the earliest time for the k+1th event to occur. We first 

observe that (x1
*[k],…, xk

*[k], xk+1
*[k+1]) is feasible for LP[k+1] because (x1

*[k],…, xk
*[k]) is feasible for 

LP[k] and LP[k+1] includes only constraints from LP[k] and constraints A.2 (constraints A.2 only 
enforce the earliest time for the k+1th event). Second, (x1

*[k],…, xk
*[k], xk+1

*[k+1]) is also optimal for 
LP[k+1]. This is true because for any feasible solution x'[k+1] = (x1'[k+1],…, xk'[k+1]) for LP[k+1], we 
have an objective function 
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where the first inequality is because *[ ]

1

k k
ii

x
=å  is the optimal solution for LP[k] (by assumption) 

and (x1'[k+1],…,xk'[k+1]) is also a feasible solution for LP[k] (since all constraints in LP[k] are in-
cluded in LP[k+1]); and the second inequality follows from A.2. Multiple optimal solutions could 
happen, which is the case in an event scheduling simulation. 

The proof is then complete by noting that the event scheduling function for a discrete-event 
simulation of an ERG executes events one by one in the same manner as the LP is solved vari-
able by variable above (see, for example, Law and Kelton, 2000).            □ 
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