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Memorial Sloan-Kettering Cancer Center (MSKCC), the world’s oldest private cancer center, seeks next-
generation cancer treatment advances to enhance its ability to treat patients effectively by improving care and
reducing costs. Using operations research approaches, our team has devised sophisticated optimization model-
ing and computational techniques for real-time (intraoperative) treatment of prostate cancer using brachytherapy
(the placement of radioactive “seeds” inside a tumor). The resulting system offers significantly safer and more
reliable treatment outcomes. In addition, it eliminates the need for preoperative simulation and postimplant
dosimetric analysis, resulting in savings of hundreds of millions of dollars per year in the United States alone.
Posttreatment quality of life is improved through drastic reduction (up to 45–60 percent) of complications. The
reason for this is twofold: (a) treatment plans thus devised deliver less radiation to adjacent healthy struc-
tures, and (b) the ability to perform midimplant replanning eliminates the unavoidable discrepancies between
planned and actual seed placement in the target. This has a profound impact on the cost of managing treatment-
associated morbidity. The procedure uses approximately 20–30 percent fewer seeds and 15 percent fewer needles
(used to place seeds inside the prostate gland). As a result, the operating-room time is shortened, and the
entire procedure is less invasive. The system has the potential to establish standards and guidelines for cancer
treatment quality control and quality assurance of the implantable plan.
Wide distribution of our system should allow consistent treatment planning across different clinics and sig-

nificantly reduce variability in treatment plan quality. The next phase of this effort will expand the applicability
of our system to other forms of brachytherapy, such as treatment of breast, cervix, esophagus, biliary tract,
pancreas, head and neck, and eye.
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Prostate cancer has surpassed lung cancer as the
most common form of cancer diagnosed in men

and remains the second cancer killer of men in the
United States. Of the estimated 220,000 new cases
in 2007, 12 percent of the patients are expected to
die from this malignancy. Worldwide, there are over
550,000 new cases per year, with the mortality rate
exceeding 37 percent.
The treatment of prostate cancer, the outcome of

which in terms of cause-specific survival remains

uncertain, is often accompanied by untoward side
effects. In outline, our work has two goals: (a) to
reduce cancer-related mortality (by assuring full dosi-
metric coverage of the diseased site), and (b) to lessen
treatment-associated morbidity (by careful dosimetric
avoidance of normal, sensitive structures). As such, it
is a showcase for “OR in the OR”—i.e., for the use
of operations research (OR) to advance procedures per-
formed in the operating room. Working with physicians
at Memorial Sloan-Kettering Cancer Center (MSKCC),
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we devised sophisticated optimization modeling and
computational techniques for real-time intraoperative
3D treatment planning in brachytherapy (the place-
ment of radioactive “seeds” inside a tumor). The
resulting system can produce an optimized treatment
plan in minutes (a sine qua non of the operating-
room environment) rather than hours as with pre-
vious trial-and-error methods. In addition, the plans
thus devised call for fewer seeds and needles, thus
shortening the procedure time. Because fewer needles
are inserted into the body during implantation, it is
less invasive and patients are likely to recover faster.
The resulting treatment plans provide good tumor

coverage (i.e., a tumoricidal dose of radiation is deliv-
ered to the malignancy), while maintaining minimal
radiation exposure to critical healthy structures (ure-
thra, rectum, and bladder). Thus, fewer patients are
expected to require medications and interventions for
management of side effects; and those who do expe-
rience such sequalae, generally require much shorter
periods of intervention. This has a profound impact
on both health-care costs and quality of life of the
treated patients.
In 2005, about 30 percent of prostate cancer patients

received brachytherapy treatment. It is expected that
the proportion of patients choosing brachytherapy
will increase because it generally causes less severe
side effects compared to alternative treatments such
as external beam radiation therapy (high-energy
gamma rays) or surgery, which involves removal of
the prostate. Both brachytherapy and surgery have
similar recurrence rates; however, brachytherapy pre-
serves the prostate gland and appears to be better in
maintaining its functionality for sexual potency. This
is of special concern to younger early-stage prostate
cancer patients who still look forward to fathering
children. Brachytherapy is most effective for patients
with early-stage disease who, as a result of the trend
in the United States for vigorous early screening, rep-
resent an increasing fraction among those diagnosed
with prostate cancer.
There are two additional benefits of the OR-based

intraoperative 3D computerized planning system
described here. First, implants become less dependent
on operator skill. Second, the potential exists to estab-
lish standards and guidelines for quality control and
quality assurance.

The system can serve as a tool for training clinicians
and residents on the procedure of implanting seeds.
For example, because it allows on-the-fly dynamic
dose reoptimization, errors in placing a few initial
seeds can be corrected by accordingly reoptimizing
the plan for the remaining seeds.
A system such as ours can serve as a basis for

standardizing brachytherapy treatment planning in
prostate cancer. It can also set a foundation on which
to base automated computerized treatment plan-
ning for other brachytherapy procedures, e.g., breast,
cervix, esophageal, brain, and sarcoma.
Last but not least, from an operations research per-

spective, the collaboration it engendered and the chal-
lenges it presented have led to advances in integer
programming in both theoretical and computational
areas.
In this paper, we describe the background of the

treatment planning, the injection of sophisticated
OR modeling and computational techniques into the
planning procedure, the clear clinical significance and
improvement, and the national distribution of the sys-
tem. We also describe the broad impact of our work in
terms of financial savings; quality-of-care and quality-
of-life improvements; accessibility, training, quality
assurance, and quality control across national clinics;
and scientific advances.

Challenges—The Need to Advance
Treatment Planning Design
In the United States, it is estimated that over 1.4 mil-
lion new cancer cases are diagnosed each year
(American Cancer Society 2006), and over half of the
patients receive radiation treatment at some point
during the course of their disease. The basic goals
in radiation treatment are to deliver a lethal dose of
radiation to malignant cells while limiting the dose
to nearby healthy organs and tissues. Designing treat-
ment plans to accomplish these goals is extremely
demanding because it involves many physical and
patient-related factors, including sensitivity of dif-
ferent tissue types to radiation, the direction and
strength of the radiation sources, patient anatomy,
and patient positioning during treatment.
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Prostate Permanent Implants
Prostate cancer is the most common malignancy (in
men) in the United States; it accounts for some 27,000
deaths each year. Routine treatment modalities for
organ-confined disease are surgery and radiation ther-
apy. While surgery can be very effective at eradicat-
ing disease confined to the prostate, it can also have
severe side effects including loss of sexual potency
and urinary incontinence. Radiation therapy can be
delivered with external beams (teletherapy) of high-
energy gamma rays, or by brachytherapy (perma-
nent implantation of radioactive seeds or high dose
rate treatment). Permanent implantation (hereafter
referred to as brachytherapy) is becoming increas-
ingly popular for two reasons. First, this mode of
treatment can be compressed into a single-day sur-
gical procedure. In contrast, teletherapy treatment
involves repeated visits over a seven to nine week
period. Second, brachytherapy allows the radiation
dose to be better confined to the tumor, resulting in
less damage to surrounding normal structures (e.g.,
rectum and bladder). Unlike teletherapy, permanent
implants are not affected by setup and organ-motion
errors.
Permanent-implant brachytherapy is particularly

common in treating early-stage prostate cancer.
In this modality, radioactive sources (Iodine-125 or
Palladium-103) are permanently implanted in the
prostate in a pattern designed to maximize the dose
to the tumor while avoiding overexposure of the
surrounding normal tissues. Available data (Blasko
et al. 1996; Wallner et al. 1996, 1997; Zaider 2003)
show similar five-year biochemical (based on PSA
elevation) recurrence rates after brachytherapy and
after surgery. However, when carefully implemented
brachytherapy results in fewer side effects (involv-
ing loss of sexual potency and incontinence), and is
more convenient for the patient (the entire proce-
dure takes less than one day). Heretofore, the major
limitation of radioactive-seed implants has been the
difficulty of accurately placing 60–150 seeds within
the prostate in a specified geometric pattern. How-
ever, with advances in implantation techniques, fairly
accurate placement of seeds is now possible. Seed
implantation is typically performed with the aid of a
transrectal ultrasound (TRUS) transducer attached to

a template consisting of a plastic slab with a rectangu-
lar grid of holes in it. The transducer is inserted into
the rectum and the template rests against the patient’s
perineum. A series of transverse images are taken
through the prostate, and the ultrasound unit dis-
plays the template grid superimposed on the anatomy
of the prostate. Needles inserted in the template at
appropriate grid positions enable seed placement in
the target at planned locations. Figure 1 shows the
needle template and TRUS placed inside the rectum.
Despite such advances, deciding where to place the
seeds remains a difficult problem. A treatment plan
must be designed so that it achieves an appropriate
radiation dose distribution to the target volume, while
keeping the dose to surrounding normal tissues at a
minimum.
Traditionally, to design a treatment plan, the patient

undergoes a simulation ultrasound (US) or comput-
erized tomography (CT) scan several days (or weeks)
prior to implantation. During the scan, series of axial
images with the grid superimposed are taken and
saved. Prostate contours are drawn on each cut and
the physicist-planner attempts—based on intuition
and previous experience—to find a pattern of nee-
dle positions and seed coordinates along each nee-
dle that will yield an acceptable dose distribution.
The resulting plan is graphically examined, with the
intent to match the prescription axial isodose lines
to the prostate contours and to limit the dose to the

Figure 1: A needle template is used in a prostate permanent implant.
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urethra and rectum. Typically, this requires a number
of iterations and may take several hours to complete.
This process is lengthy essentially because seed posi-
tions must be optimized in three dimensions, but can
only be visualized (for any practical purposes) as a
series of two-dimensional images. Each seed affects
the dose not only in its own axial plane, but in adja-
cent planes as well, and thus every modification in the
pattern of seeds must be examined globally. Such an
approach (which is known as the preplan approach)
has various limitations:
(1) The process requires manual inspection at each

iteration; thus it is not only lengthy—taking several
hours to complete—but only a small fraction of pos-
sible configurations can actually be examined.
(2) Images taken at a simulation session are often

different from images obtained at the time of implan-
tation. Thus, a plan (however optimal) designed on
the basis of simulation images will not conform to the
target boundaries determined in the operating room.
Figures 2(a) and 2(b) illustrate the magnitude of this
discrepancy; they show a preplan dose contour super-

(a)  (b)

Figure 2: (a) This figure, which illustrates a preplan, shows adjacent axial ultrasound images with pretreatment
isodose contours superimposed. Note the conformity of anatomy (prostate: white contour) and dosimetry (dashed
lines = 50 percent; dashed-and-dotted lines = 100 percent; dotted lines = 150 percent; 100 percent = 144 Gy).
The isodose lines are the results of an I125 plan. (Conformity is a measure of how well the prescription dose
isodose curve conforms to the boundary of the planning target volume (PTV). The PTV includes the visible tumor
volume plus a small margin to include potentially diseased cells that are not part of the visible tumor volume.)
(b) This figure shows the adjacent axial operating-room–acquired images with pretreatment isodose contours.
Note the lack of conformity of dosimetry and anatomy of the preplan isodose versus the prostate images acquired
during the implantation session. The contours have the same meaning as in Figure 2(a).
Source. MSKCC.

imposed onto the actual prostate during the implan-
tation in the operating room.
(3) Anatomical structures not visible on the ultra-

sound image (e.g., the pubic symphysis) may block
the needles. This can be discovered only in the oper-
ating room and the treatment plan must then be
modified by relocating the needles. Reoptimizing the
plan manually is clearly not possible and ad hoc
changes are the only option available. A similar prob-
lem occurs when the needle encounters the urethra or
the bladder neck.
(4) Frequently, the prostate volume measured at

simulation is different from the volume observed in
the operating room, thus making the preplan invalid.
In such a situation, one needs to add or remove
seeds—again in an ad hoc fashion.
Discrepancies between the simulation-session data

and the actual situation on the day of implantation
can increase the likelihood of undesirable urinary
and rectal-related side effects and poor local tumor
control. Late severe toxicity (grade 3–4) (e.g., rectal
fistulae and urethral strictures) have been reported,
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while moderate (grade 2) urethral complications (e.g.,
urinary frequency and urgency necessitating medica-
tions for symptomatic relief) remain the most impor-
tant limitations in prostate implants. Using current
ad hoc and heuristic approaches, it is often physi-
cally impossible to reduce the radiation dose to the
urethra without compromising the dose distribution
to the prostate (Kleinberg et al. 1994, Zelefsky and
Whitmore 1997). Kleinberg et al. (1994) have shown
that urinary frequency and urgency will likely persist
for up to 12 months after implantation and gradually
resolve with time. Many practitioners have reported
that this phenomenon continues for at least one to
two years after implantation.
At MSKCC, we (Zelefsky et al. 2003) and others

have shown that lower urethral doses were associated
with fewer urinary symptoms after the brachytherapy
procedure. Figure 3 shows recent data that highlight
the important observation that the attainment of a
limited urethral dose range (dose delivered to 20 per-
cent of the urethra, DU20 < 200 Gy) is associated with
a decreased incidence of grade 2 or higher complica-
tions, and our data suggest that achieving lower doses
would reduce the risk of such complications.
Urinary side effects can have a significant impact

on a patient’s overall quality of life. While tempo-
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Figure 3: This graph shows the probability of grade 2 or higher urethral
toxicity at 12 months after treatment, Prob tox(12 months), as a function of
DU20 (i.e., 20 percent of the urethral volume is treated to a dose of at least
DU20). The disparity between planned and implemented doses is such that
on average, Prob tox(12 months)= 0�36.

rary urinary side effects may be inevitable for patients
treated with prostatic implantation, it is plausible that
with real-time intraoperative optimization techniques
and on-the-fly dynamic dose-correction protocols (see
below), these side effects will be further reduced with-
out compromising local tumor control.

Solutions
Prior to our OR work, medical physicists had de-
veloped computer-aided iterative approaches and
heuristic methods, such as simulated annealing and
genetic algorithms, to aid in brachytherapy treat-
ment planning in the operating room (Anderson 1993,
Silvern et al. 1997, Silvern 1998, Sloboda 1992, Yu
and Schnell 1996). While these methods can return
feasible solutions, there are limitations on the type
of clinical restrictions one can incorporate. In addi-
tion, because of their heuristic nature, the quality
of resulting plans cannot be measured (i.e., how
far they are from optimality). Unlike this previ-
ous work, our work utilizes advanced OR modeling
and computational techniques, attacking this clinical
problem from its root, and allowing medical physi-
cists and clinicians to incorporate desirable clinical
properties within the treatment models we develop
(Gallagher and Lee 1997; Lee et al. 1999a, b; Zaider
et al. 2000; Lee and Zaider 2001a, b, 2003a, b, 2004,
2006). Two primary goals drive our work: the abil-
ity to incorporate clinically significant constraints of
any type, and the achievement of optimal solutions
in OR-constrained time (i.e., rapid enough—within
minutes—to enable usage in the operating room).
The latter allows for intraoperative planning by clin-
icians, overcoming preplanning problems and allow-
ing real-time alteration of plans because of unforeseen
implantation problems. Ultimately, the resulting opti-
mization system should be an important tool for bio-
logical (functional) optimization (Zaider et al. 2000;
Lee and Zaider 2004, 2006).

Our Approach: Integer Programming Treatment
Planning Model
Fundamentally, the treatment planning optimization
problem for brachytherapy is a combinatorial prob-
lem. Our treatment model uses 0/1 variables to record
placement or nonplacement of seeds in a prespecified
three-dimensional grid of potential locations. In the
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case of prostate cancer, the locations correspond to the
projection of the holes in the template onto the region
representing the prostate in each of the ultrasound
images. If a seed is placed in a specific location, then
it contributes a certain amount of radiation dosage to
each point in the images. To facilitate modeling of the
dose distribution, we select, from each image, a uni-
formly spaced sampling of points at which to mea-
sure radiation dosage. The density of the spacing is
chosen at a level that is conducive to both modeling
the problem accurately, and to ensuring that prob-
lem instances are computationally tractable. We have
used spacing ranging from 2 mm to 10 mm, and have
found 5 mm to be a reasonably good choice for the
problems we have considered. The sample points in
the images are referred to as voxels (volume elements).
Once the grid of potential seed locations is spec-

ified, we can model the total dose level at each
voxel. For each voxel in each anatomical structure,
we associate one binary variable and one continuous
variable to capture whether or not the desired dose
level is achieved, and the deviation of received dose
from desired dose. These variables allow us to cap-
ture dose-volume relationships in the resulting treat-
ment plans (e.g., x percent of structure K received no
more than dose D) (Kutcher and Burman 1989, Lyman
1985). Constraints in the model include dosimetric
constraints for the tumor and critical structures. Typi-
cally, the clinician will specify the “prescription dose”
desired for the tumor volume; then lower and upper
bounds for dose to all structures are stated in terms of
percentages of prescription dose. For example, dose
to the urethra should be less than 120 percent of pre-
scription dose.
Typically, it is not possible to satisfy desired dose

constraints at all points simultaneously. In part, this
is due to the proximity of diseased tissue to healthy
tissue. In addition, because of the inverse square dis-
tance factor in dose attenuation, the dose-level con-
tribution of a seed to a point that is, for example,
less than 0.3 units away, is typically larger than the
target upper bound for the point. (Hence, the prepro-
cessing techniques commonly mentioned in the inte-
ger programming literature cannot be applied directly
to these dose constraints because this will result in
assigning zero to all seed positions.)

However, it is possible—and clinically desirable—
to incorporate dose-volume coverage constraints for
the tumor within the model. For example, the clini-
cians often consider that it is acceptable if 95 percent
of the tumor receives the prescription dose. While
there is no mechanism to incorporate it within ad hoc
and existing heuristic approaches to treatment plan-
ning, this guideline is commonly used in the clinical
setting, and we can model it readily within our inte-
ger programming formulation.
In our work, we focus on two models. The first

involves finding the maximum feasible subsystem in
our MIP formulation. We do this by utilizing the 0/1
variables assigned to the voxels to compute the max-
imum number of tumor points that satisfy the spec-
ified bounds. An alternative model involves using
continuous variables to capture the deviations of
the dose level at a given tumor point from its tar-
get bounds and minimizing a weighted sum of the
deviations.
To aid in reducing urinary and rectal toxicity, our

approach involves the imposition of strict dosimetric-
volume bounds on the urethra and rectum in both
MIP models. In addition to the basic dosimetric
constraints, and dose-volume constraints to ensure
sufficient coverage to the tumor volume, we also
incorporate other physical constraints desired by
the clinicians into our MIP models. One could—if
desired—constrain the total number of seeds and/or
needles used, and employ multiple seed types having
different radioactive strengths. We describe the inte-
ger programming formulation in the appendix.

Computational Advances
The treatment models present a very unique chal-
lenge to the OR community. Due to the inverse
square distance factor in the attenuation of radiation,
and the confinement of the radiation within a very
small area, the dose matrix of the treatment model
is completely dense, with coefficient magnitudes rang-
ing from the order of tens to tens of thousands. Fur-
thermore, none of the problem instances is tractable
by existing commercial MIP solvers. While there have
been tremendous advances on solution techniques
for MIP (an NP-complete class of problems) in the
past 50 years, much of the work has been motivated
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and guided by large-scale instances involving sparse
constraint matrices, which are common in most indus-
trial applications. Dense MIP instances, as Cornéjols
and Dwande (1999) describe, present a unique new
challenge to the OR community, even when they
involve only several hundreds of 0/1 variables with
20 constraints. Easton et al. (2003) subsequently pro-
vided solution strategies to solve dense market share
instances to optimality via novel hypergraphic cutting
planes and an aggregate branching scheme.
Table 1 illustrates the running time statistics for a

patient case with 4,398 rows and 4,568 variables, run-
ning on the commercial MIP solver CPLEX V9.
In all patient cases that we tested, using various

advanced strategies within CPLEX, we observed the
computational bottleneck in which no feasible solu-
tions were obtained and there was only marginal
improvement in the LP objective value over an
extended time. (This was also confirmed by one of
the software founders.) This proved that, although
OR provides a very flexible modeling environment
to facilitate brachytherapy treatment planning, using
the OR models in clinical practice would not be pos-
sible without a major computational breakthrough
for solving these intractable MIP instances. There-
fore, we developed novel computational techniques.
These include: a matrix reduction and approximation
scheme, a penalty-based adaptive primal heuristic,
a specialized branching strategy, and cutting planes
derived via hypergraphic structures (Lee and Zaider
2003a, Easton et al. 2003, Lee and Maheshwary 2008).

Branch-and-bound
CPU secs. nodes
elapsed Best IP obj. Best LP obj. searched

Model 1
15.35 — 6�915�5853 100
131.71 — 6�133�4341 1�000
1,407.58 — 6�132�9121 1�000
2,800.72 — 6�132�4741 2�620
7,672.30 — 6�131�6915 20�000
20,778.27 — 6�131�2541 110�000
71,988.54 — 6�130�8357 130�541
149,468.27 — 6�130�5719 1�000�000
202,766.38 — 6�130�4391 1�326�000

CPLEX added 274 cuts at the root node

Table 1: The table data show solution statistics for Pt 1 running on CPLEX
V9.0 on a Sun V20z, dual opteron 250 (2.4 GHz) with 4 GB RAM.

We briefly describe the computational strategies in
the appendix. Easton et al. (2003) show the theoretical
detail of the hypergraph. We incorporated these tech-
niques within a branch-and-cut environment, yield-
ing a powerful MIP solver that successfully solved
the brachytherapy treatment planning instances to
proven optimality. Perhaps more importantly, the sys-
tem returns feasible plans (with good urethra dose
limits) within seconds that are within 95 percent of opti-
mality, and have superior clinical properties.

Clinical Outcome
By incorporating cutting-edge optimization tech-
niques, the OR modeling paradigm offers the best
accuracy in dose delivery while simultaneously low-
ering radiation to normal tissues. High-quality plans
can be returned within seconds, thus opening up
the opportunity for real-time intraoperative 3D planning
(Lee et al. 1999a, b; Lee and Zaider 2001b, 2003a, b).
This eliminates the need for a simulation session in
which patients come in days or weeks in advance
to have the US/CT images taken. It also elimi-
nates the time-consuming task of generating operator-
dependent treatment plans via iterative approaches
prior to the actual implantation session. In addition,
by designing treatment plans on the day of implan-
tation, it overcomes the preplanning discrepancies
mentioned earlier related to poor reproducibility of
patient positioning (i.e., images taken for preplanning
are often substantially different from images obtained
at the time of implantation). It also overcomes tar-
get volume changes between the day of simulation
and the day of implantation. Further, it allows for on-
the-fly intraoperative dynamic dose reoptimization (IDDO)
(Lee and Zaider 2001b, 2003b; Zelefsky et al. 2003),
enabling clinicians to handle unforeseeable difficulties
(e.g., when the needle encounters the urethra or the
bladder neck) during implantation. The reoptimiza-
tion capability serves as a quality-control method to
ensure that the final implanted configuration meets
the requirements of the desired dose distribution.
We developed an optimization tool that can incor-

porate any known constraints of clinical signifi-
cance, and solve the problem in real time for use
in the operating room. In comparison to traditional
computer-aided approaches, and other ad hoc heuris-
tic methods such as genetic algorithms, the system
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we developed consistently returns plans with pre-
scribed dose delivered to 98 percent of the prostate;
it improves conformity ranges from 10–20 percent
(thus reducing toxicity to normal tissue exterior to the
prostate, such as the bladder and rectum); it reduces
urethra dose by 23–28 percent; it reduces rectum dose
by 15 percent; it uses approximately 20–30 percent
fewer seeds and 15 percent fewer needles and results
in an underdose of within 3 percent of the prescribed
dose (Lee et al. 1999a, b; Lee and Zaider 2001a, 2003a;
Zelefsky et al. 2003).
MSKCC set a leading example in implementing

real-time intraoperative 3D treatment planning for
prostate permanent implants (Zelefsky et al. 2003).
Subsequently, new research frontiers were opened as
a result of having a fast treatment planning engine
with constraint incorporation capability (Zaider et al.
2000; Lee and Zaider 2001a, b, 2003b, 2004, 2006).

Reduction in Grade 2 Urinary Toxicity
Grade 2 urinary symptoms represent the most com-
mon toxicity after prostate brachytherapy. These side
effects, which often necessitate alpha-blocker med-
ications to control urinary frequency, urgency, and
dysuria, as well as the occasional need for urologic
evaluation for urinary retention and self-intermittent
catheterization, impact substantially the quality of life
of the treated patient. Many reports have corrobo-
rated the increased propensity for acute urethral tox-
icities after prostate brachytherapy, and these effects
have been shown in clinical studies to have a detri-
mental impact on the quality of life (more than rectal
side effects, which are generally minimal, or sexual
dysfunction) when compared to surgery and exter-
nal beam radiotherapy (Wei et al. 2002). For a pro-
cedure that is performed frequently in this country,
occasionally by practitioners with limited experience,
research advances pioneered at our institutions to
achieve a consistent application of a limited urethral
dose, decrease the operator dependency and reduce
the influence of the learning curve associated with
prostate brachytherapy, have important consequences
both for clinical practitioners and for treated patients.
Tables 2 and 3 and Figures 4, 5, and 6 illustrate the

toxicity reduction to the urethra and rectum; Table 2
compares the average urethral dose and the incidence
of acute grade 2 urethral toxicity for two alternative

Percent of incidence
of toxicity

Planning Average urethra dose
technique Durethra/DPrescription dose <6 months 6–12 months

Preplanning 182% 85% 58%
(n= 247)

Intraoperative 3D 143% 46% 23%
(n= 182)

p-value 0.01 0.01

Table 2: The table data show the incidence of acute grade 2 urinary toxic-
ity during the first 6 months and from 6 to 12 months after the procedure,
as well as the average urethral dose (expressed as a percentage of the
prescription dose) for the two types of treatments (Lee and Zaider 2003b).

treatment approaches (Lee and Zaider 2003b). Using
intraoperative 3D planning in the operating room, grade 2
urinary toxicity was reduced drastically by 45 percent in
the first six months, and by 60 percent in months 6 to 12.
This results in a very significant reduction in side effects
for brachytherapy implants. Thus, fewer treated patients
require medication to manage side effects.
In Table 3 and Figure 4, Zelefsky et al. (2003)

contrast the long-term effect of urethra toxicity and
grade 2 symptoms of 247 preplan patients (treated
between 1988 and 1996) versus 248 intraoperative 3D
patients treated at MSKCC since 1998. Table 3 shows
statistics on the dose-distribution comparison. Reduc-
tion of urethra dose is drastic.
Figure 5 provides additional evidence of the suc-

cess of the intraoperative 3D planning; it shows a uni-
form urethral dose reduction to patients who have

Preplan Real-time
transperineal intraoperative
implantation 3D conformal

Outcome (n= 134∗) (n= 245∗) P

Target V100 (%) 89 94 <0�0001
Rectal maximal dose 183 99 <0�0001

(% of prescribed dose)
Urethra maximal dose 532 167 <0�0001

(% of prescribed dose)

Table 3: The data show a multivariate analysis of outcome variables
adjusted for implant volume and total activity. Target V100 data are pre-
sented as percentage of prostate covered by the prescription dose; values
shown represent median values. ∗The postimplant urethra dose was mea-
sured in 134 of 247 patients; similarly, it was measured in 245 of 248
patients.
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Figure 4: This figure contrasts the postimplant urethral dose, measured
four hours after implantation, of a preplan and an intraoperative 3D plan.
The vertical axis indicates the percentage of prescription dose (Zelefsky
et al. 2003).

received prostate seed implants since their introduc-
tion in 1998.
It is also critical to compare the duration of side-

effect management for patients in the two groups who
experienced similar grade 2 urinary toxicity. Figure 6
plots the time of resolution of urinary symptoms. The
results show a clear improvement using intraopera-
tive 3D planning, with the average time of resolution
being 9 months versus 32 months, respectively. This
translates to hundreds of millions of dollars in savings in
health-care costs for medication and symptom management,
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centage of the prescribed dose depicted over time. A significant decrease
of the urethral dose was observed in 1998 with the introduction of the
intraoperative 3D optimization technique. Excess urethral dose is directly
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Figure 6: This figure shows time of resolution of grade 2 urinary symp-
toms; it compares 116 preplan patients and 111 patients treated using
real-time intraoperative 3D plans.
Source. Dr. M. J. Zelefsky at MSKCC.

and more importantly, a better quality of life for treated
patients.

Dynamic Planning and Reoptimization
Using the system we developed, it is possible
to dynamically reoptimize plans during implanta-
tion to account for actual implanted seed positions
and needle-induced swelling to the prostate during
implantation (Figures 7 and 8). As alluded in our 2003
clinical study, while intraoperative planning elimi-
nates the preoperation simulation procedure, intra-
operative dynamic dose reoptimization, IDDO, serves
as a quality control on the resulting dose distribution and
eliminates the need for a postimplant CT scan �an impor-
tant cost-savings benefit�.
Figure 7 illustrates the magnitude of dose dis-

crepancy observed in postimplant analysis using a
random group of 17 patients treated at MSKCC via
intraoperative 3D planning. It highlights the percent-
age of urethral volume covered by 150 percent of the
prescription dose (planned versus assessed at postim-
plant evaluation) and also 200 percent of the pre-
scribed dose (postimplant evaluation; the planned
percentage volume was always zero). These data
demonstrate that with a needle-based optimization
approach, variations from the planned urethral dose
and the actual dose delivered are frequently observed,
and highlight the need to periodically readjust the
plan to account for the real-time position of seeds
already implanted to provide optimal postimplant
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Figure 7: This graph illustrates the variability in postimplant urethral dose
in a sample of 17 patients.

dosimetric measurement upon completion of seed
implantation.
Figure 8 illustrates the additional postimplant ure-

thral dose reduction when using real-time intraoper-
ative planning with and without IDDO. Unlike other
planning techniques, the MIP system allows for a very
tight dose restriction set on the urethra (≥100 percent
and ≤120 percent) (Lee and Zaider 2001b, 2003b).
Note also that although real-time intraoperative plan-
ning sets the urethra upper dose to be ≤120 per-
cent, upon implantation and seed displacement (as

0

20

40

60

80

100

120

140

160

Avg. urethral dose Max. urethral dose Min. urethral dose

Real-time planning

IDDO

Figure 8: This graph illustrates the benefit of IDDO in reducing the postim-
plant dose to the urethra.

needles are removed from the prostate), the actual
postimplant dose exceeds the planned dose bound of
120 percent. By periodic readjustment and reoptimiza-
tion of seed locations during implantation, one can
achieve the desired postimplant dose limits.

Beyond Real-Time Intraoperative
Planning and Dynamic Dose
Reoptimization
Subsequent to the computational breakthrough that
allowed real-time planning, the need to design plans
days in advance of implantation ended. Planning now
may occur in the operating room immediately prior
to implantation. This opens the door to new avenues
of research on treatment outcome.

Tracking Tumor Shrinkage and SeedDisplacement
(4D-Planning: Planningwith Temporal Information)
A plan that is based on the swollen prostate volume
at implant time may be conformal, but it will not
provide good dosimetry over time as edema resolu-
tion occurs. In particular, the dose received by the
urethra and rectum will exceed the planned limits.
While clinical studies have confirmed these discrep-
ancies (Moerland et al. 1997; Prestidge et al. 1998;
Waterman et al. 1998; Waterman and Dicker 1999;
Waterman et al. 1997; Yue et al. 1999a, b), no one had
previously considered planning based on more than
a single-day snapshot of the tumor volume and sur-
rounding anatomy. This is in part due to the daunting
combinatorial optimization problem that one is faced
with in designing plans—even plans that involve only
the traditional single-day snapshot.
With our computational breakthrough, we demon-

strated on real patient data that by designing treat-
ment plans based on a 30-day period, i.e., the time
it takes a needle-induced swollen prostate to shrink
back to its original size (Waterman et al. 1998)—
enforcing dose restrictions at regular intervals over
this time horizon (thus expanding the size of our
MIP instances by many fold)—there is a potential
additional dose reduction of 20 percent to urethra
and rectum, and improved tumor conformity over
21 percent (Lee and Zaider 2001a). These improve-
ments translate to lower normal tissue side effects
for prostate cancer patients. Figure 9 illustrates that
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Figure 9: This figure shows the percentage of urethra and rectal volume
exceeding the planned dose over a 30-day horizon after implantation when
using a single-day’s data (the day of implantation) for planning. Initially,
on Day 0, the excess dose is zero, indicating that the seeds were placed
appropriately according to plan. But due to tumor shrinkage and seed dis-
placement over time, significant portions of both structures exceed target
dose bounds at later times. In contrast, using 30-day information to design
a treatment plan, the resulting plan has all percentages equal to zero
because the plan constrains the dose distribution by considering shrink-
age and seed displacement (Lee and Zaider 2001a).

dose to the urethra and rectum can be controlled
well over an extended time period—without sacrific-
ing local tumor control—by imposing dose-volume
bounds for multiple periods. Using sophisticated OR
techniques, our system remains today the only system
that allows multiperiod planning capability and anal-
ysis. This capability is of paramount importance. Using a
preplan may underdose the tumor target and overdose the
urethra and other critical structures. Using single-period
OR-based planning may lead to overdose of the urethra as
treatment begins, and the prostate shrinks to its normal
size. Therefore, 30-day dose control is extremely important
�as many clinical researchers have suggested�, and again
we show the power of OR to be critical in designing such
plans.

Incorporating Biological Metabolite Information in
Treatment Planning
Currently, prostate cancer is being treated as a
homogeneous mass. With the advances in magnetic
resonance spectroscopy (MRS), there is a need to
incorporate the information it provides (e.g., the pres-
ence of aggressive cancer) within the planning pro-
cess. We illustrated through real patient cases that
by designing treatment plans that escalate dose in
selected subvolumes (identified via MRS), tumor con-
trol probability can be improved from 65 percent to

95 percent without increasing toxicity to the rectum,
urethra, or bladder wall (Zaider et al. 2000; New
York Times 2001; Lee and Zaider 2004, 2006). In addi-
tion to our OR model and computational engine, we
designed a voxel transformation algorithm (a non-
linear mixed-integer program) to map the MRS bio-
logical information onto the treatment images. This
allowed for biologically enhanced treatment, which
facilitated targeted delivery of escalated dose and the
potential to improve overall clinical outcome. Such
planning is possible because our OR model has great
flexibility in imposing dose constraints to achieve
desired bounds at selected locations. It provides the
capability to increase dose to tumor pockets, and limit
dose to critical normal structures such as the urethra
and rectum.

Transfer of Technology
The OR intraoperative 3D treatment planning system
has been licensed to a medical software company,
which has over 700 client clinics in the United States
for radiation treatment. In Figures 10(a) and 10(b),
we illustrate the treatment plans from the commercial
system. The system is used in real time in the operat-
ing room during implantation.
Our system has functionality beyond the treatment

of prostate cancer. Brachytherapy has been success-
fully used in treating cancers of the breast, eye, cervix,
biliary duct, head and neck, esophagus, pancreas, and
intravascular lesions. The commercial brachytherapy
planning system has been used for prostate, breast,
gynecological, and sarcoma implants.

Benefits

Cost Savings
Our system eliminates the cost of the pretreatment
simulation session, including imaging, preplan treat-
ment design by an expert planner, labor, and facility
usage. Cost savings are estimated to be $5,000 per
patient. This does not factor in further savings to the
patient, e.g., costs of time off from work for the sim-
ulation session and hospital waiting time.
In the United States, there will be an esti-

mated 218,890 new cases of prostate cancer in 2007.
The American Brachytherapy Society (2005) statistics
show that approximately 30 percent of patients are
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Figure 10a: This figure illustrates the commercial system. Note the excellent conformity of the OR plan. The
brown isodose curve, representing points that receive 100% of the prescription dose, conforms well to the red
curve, which delineates the boundary of the planning target volume.

treated using brachytherapy, 30 percent external beam
radiation, 25 percent surgery, and 15 percent with
other modalities. Thus, nationwide, when all clinics
adopt intraoperative real-time planning, the potential
annual cost savings would total 328 million dollars
per year (218�890× 0�3× 5�000).
Moreover, observing the clinical trend, it is ex-

pected that the proportion of patients who choose
brachytherapy will increase because its side effects
are generally less severe when compared to external
beam radiation therapy and surgery, and because of
its effectiveness for early-stage diagnosis (New York
Times 2006). Brachytherapy is most effective for early-

stage diagnosis; this is the trend in the United
States where annual physical examinations of male
patients include vigorous early screening. Compared
to surgery, brachytherapy has a similar five-year
recurrence rate (20 percent); however, it preserves the
organ and its functionality for sexual potency. The
latter is of special concern to younger early-stage
prostate cancer patients who still look forward to
fathering children.
Real-time intraoperative treatment planning will

provide significant savings in countries other than the
United States. In 2000, the incidence rate of prostate
cancer was roughly 550,000 worldwide; traditionally,
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Figure 10b: This figure shows the 3D seed locations inside the prostate, as determined via the OR-based treat-
ment planning system. The blue structure is the rectum, and the purple indicates the urethra.

brachytherapy is used more widely in other parts of
the world because of its treatment convenience (a half-
day procedure) and relatively low side effects.
Intraoperative planning with dynamic dose correc-

tion provides superior postimplant dose analysis and
has eliminated the traditional postoperation CT scan.
This contributes to additional savings of roughly 131 mil-
lion dollars per year for brachytherapy treatment of prostate
cancer alone.
Our OR planning system results in a reduction

of 20–30 percent of seeds compared with traditional
preplanning methods. Each seed costs approximately

$20–$50, and each implantation involves 60–200 seeds.
Assuming that an average of 100 seeds are implanted
per patient via preplanning, with a cost of $30 per
seed, then a 20 percent reduction in seed usage by
applying our system would lead to a per-patient sav-
ings of $600, and an annual cost savings of $39 mil-
lion nationwide (218�890×0�3×600). There is no addi-
tional labor cost because a clinical physicist must be in
the operating room for any implantation procedure. In
addition, it makes use of equipment that is standard
in every operating room; therefore, there is virtually
no additional cost associated with this procedure.
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Quality of Care and Quality of Life for Patients
Our process improves patient quality of care and
quality of life significantly as we describe below.
(1) In comparison to traditional computer-aided

approaches and other ad hoc heuristic algorithms, the
system we developed consistently returns plans with
the prescribed dose delivered to 98 percent of the
prostate, and it improves conformity ranges (a mea-
sure of how closely the prescription isodose curve
matches the target tumor contour) from 10–20 percent.
The latter improvement translates to a reduction in
toxicity and complications to normal tissue exterior to
the prostate, including fewer external ulcers, and less
bladder and rectum bleeding—side effects that may
require surgical corrections.
(2) Clinical evidence shows a significant reduction

in average urethra dose and duration of symptom
persistence (as we described earlier). Thus, our sys-
tem results in fewer patients requiring medications
and urologic intervention for symptom management;
those who do experience side effects generally require
shorter periods of intervention. This has a profound
impact on both health-care costs and quality of life of the
treated patient.
(3) The procedure uses approximately 20–30 per-

cent fewer seeds and 15 percent fewer needles. Thus,
the procedure time is shortened, and it is less inva-
sive because fewer needles are inserted into the body
during implantation. This results in faster recovery.
(4) The national distribution of our system and

the increasing number of centers performing prostate
implants in the United States indicate that its poten-
tial clinical significance is far-reaching. Plans can be
created rapidly during implantation. The viability of
being able to reoptimize in real time based on the
actual location of the deposited seeds allows modi-
fication of plans when unforeseen difficulties occur
during an operation. These modifications can poten-
tially correct any areas of tumor under dosage prior
to completion of the brachytherapy procedure (or cor-
rection due to implantation error by an inexperienced
clinician). In addition, the operator will become more
cognizant of what the real-time dose to the urethra
and rectum is, and can make dynamic adjustments of
the intraoperative plan to ensure that the final dose
delivered to these structures remains as low as pos-
sible without any compromise of the target coverage.

This helps to ensure a uniform quality of care among
patients.
(5) The ability to perform (superior) planning intra-

operatively results in the elimination of the need for
the simulation session. This results in less inconve-
nience (including time off from work for the simula-
tion and hospital waiting time) for patients.

Accessibility, Training, Quality Control, and
Quality Assurance
As is well documented in clinical literature, there is
great variability in the experience of human plan-
ners who design brachytherapy treatment plans, both
within and among institutes, clinics, and hospitals.
This variability, combined with the highly complex
and labor-intensive nature of traditional computer-
aided planning methods, results in huge variability in
planning procedures, quality of plans, and ultimately
treatment outcomes.
Two significant benefits of the automated comput-

erized planning system that we have developed are
the potential removal of the operator-dependent qual-
ity of the resulting plans, and its prospect to estab-
lish standards and guidelines for cancer treatment
quality control and quality assurance. Availability of
the system nationwide will significantly reduce the
vast variability in planning quality because differ-
ent clinics will be able achieve the same high-quality
plans.
Another benefit relates to its use as a training tool.

Unavoidably, as part of the medical training in learn-
ing the techniques of seed implantation (not the treat-
ment planning but the actual physical implantation of
seeds into the patient’s body), mistakes can be made.
The advantage of the on-the-fly, multistage reopti-
mization is that it allows for dynamic dose correc-
tion and rapid reoptimization; the resulting partial
plan can be amended so as to achieve the desir-
able clinical properties. The reoptimization thus ben-
efits both the doctor/resident who is learning the
physical techniques as well as the patient who still
receives a good result because deficiencies in the ini-
tial placement can be corrected by later implanted
seeds. Psychologically, this allows trainees to focus on
mastering the techniques without fearing the result of
a bad experience.
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As we described above, there is virtually no addi-
tional cost associated with this procedure, mak-
ing it accessible (affordable) to the broad clinical
community.

Scientific Advances
The collaborative effort between clinical researchers
and OR scientists resulted in scientific advances on
two diverse fronts.

Medical Advances
A rapid operator-independent intraoperative treat-
ment planning system provides the groundwork for
advancing the technological frontier of brachytherapy.
It opens up opportunities to conduct complex clini-
cal investigations that may otherwise be impossible,
as evidenced in our study of the tumor shrinkage
and seed displacement analysis and 30-day extended
dose-control planning (Lee and Zaider 2001a), and on
biological MRS-guided dose escalation (Zaider et al.
2000; Lee and Zaider 2004, 2006). The OR modeling
paradigm provides great flexibility in modeling the
clinical problem realistically, and the rapid solution
engine objectively returns the best-possible plans.
The system will serve as a basis for facilitating

the standardization of brachytherapy treatment plan-
ning in prostate cancer. It also will serve as a foun-
dation on which to base automated computerized
treatment planning for general brachytherapy, a pro-
cess involved in the treatment of a variety of can-
cers (breast, cervix, esophageal, brain, and sarcoma)
throughout the body. Finally, the system can be used as
a tool to carry out research that requires the generation of
high-quality, unbiased plans in a timely manner.

OR Advances
This clinical problem opens up the opportunity for
advancing a new and different facet of the OR
frontier. Many of the computational integer pro-
gramming advances in the last 50 years have been
strongly motivated by challenges arising from indus-
trial applications. These applications result in large-
scale supersparse constraint matrices (≤1 percent)
where methodologies now exist that offer good solu-
tions. However, the treatment planning instances
have totally dense constraint matrices, and existing
solution techniques in commercial MIP solvers are

unable to solve them. As a result, we initiated a
theoretical investigation that led to the introduc-
tion of the concept of conflict hypergraphs and
their use in generating cutting planes to assist in
the MIP solution process. The resulting computa-
tional strategies not only improve solution times for
these cancer instances, but also help to solve some
intractable, small (10 constraints and 250 variables),
yet totally dense market-share instances (Cornuéjols
and Dwande 1999, Easton et al. 2003).
Thus, this collaboration advanced the frontiers of

knowledge in integer programming. First, conflict
hypergraphs provide a rich and complex construct for
theoretical investigation of the independent set poly-
tope, a structure embedded as a subsystem in many
MIPs. Second, from a computational standpoint, we
offer new directions related to separation strategies
for hypergraphic structures. In particular, new com-
putational strategies for hypercliques, hyperoddholes,
hyperwebs, hyperantiwebs, and parallel cutting-plane
algorithms are currently under development. These
will aid in the solution of other difficult dense MIP
instances—instances that are intractable using cur-
rently available strategies. Third, the study of the
dense MIP problem is important in its own right in
the field of integer programming and OR. Thus, our
study establishes a new research frontier to the field
of mixed-integer programming where new theory and
computational advances can be pursued.
This research and its subsequent clinical advances

have attracted much publicity for the OR community.
The work was featured in The New York Times and The
London Times, as well as hundreds of medical news
publications and newspapers worldwide. In October
2004, it was selected as a feature for the television
science news program, Discoveries & Breakthroughs
Inside Science, sponsored by the American Institute of
Physics and the American Mathematical Society. The
three-minute program, entitled “Curing Prostate Can-
cer,” was broadcast on various TV channels nation-
wide throughout 2005.

Appendix

Mixed-Integer Programming Models
Our treatment models were reported in Gallagher and
Lee (1997), Lee et al. (1999a, b), and Lee and Zaider
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(2003a). Let xj be a 0/1 indicator variable for record-
ing placement or nonplacement of a seed in grid posi-
tion j . Then, the total radiation dose at point P is
given by ∑

j

D��P −Xj��xj� (1)

where Xj is a vector corresponding to the coordinates
of grid point j�� · � denotes the Euclidean norm, and
D�r� denotes the dose contribution of a seed to a point
r units away. The target lower and upper bounds, LP

and UP , for the radiation dose at point P can be incor-
porated with constraint (1) to form dose constraints
for the MIP model:∑

j

D��P −Xj��xj ≥ LP�

∑
j

D��P −Xj��xj ≤UP �
(2)

For each voxel P in each anatomical structure, we
associate one binary variable and one continuous
variable to capture whether or not the desired dose
level is achieved and the deviation of received dose
from desired dose. Clinically, it is often desirable to
incorporate coverage constraints within the model.
For example, the clinician may consider that it is
acceptable if, for example, 95 percent of the planning
target volume (PTV) receives the prescription dose
(PrDose). (The PTV includes the visible tumor vol-
ume plus an additional margin to encompass poten-
tially diseased cells that are not part of the visible
tumor.) We can model such a coverage requirement
as follows:

∑
j

D��P −Xj��xj − rP = PrDose� (3)

rP ≤DOD
PTVvP� (4)

rP ≥DUD
PTV�vP − 1�� (5)

∑
P∈PTV

vP ≥ ��PTV�� (6)

Constraints (3), (4), and (5) must hold for all P in PTV,
where PTV is the set of uniformly spaced sample
points in the PTV. Here, rP is a real-valued vari-
able that measures the discrepancy between the pre-
scription dose and actual dose; vP is a 0/1 variable
that captures whether voxel P satisfies the prescrip-
tion dose bounds or not; � corresponds to the mini-
mum percentage of coverage required (e.g., �= 0�95);

DOD
PTV and DUD

PTV are the maximum overdose and max-
imum underdose levels tolerated for tumor cells; and
�PTV� represents the total number of voxels used to
represent the prostate planning volume. If rP > 0,
then voxel P receives a sufficient radiation dose to
cover the prescribed dose. In this case, vP = 1 and the
amount of radiation for voxel P above the prescribed
dose is controlled by the maximum allowable over-
dose constant, DOD

PTV. Similarly, when rP < 0, voxel P

is underdosed, and the amount of underdose is lim-
ited by DUD

PTV. In this case, vP = 0. Constraint (6) corre-
sponds to the coverage level the clinician desires.
It is typically not possible to satisfy the desired dose

constraints at all points simultaneously. This is due
in part to the proximity of diseased tissue to healthy
tissue. In addition, because of the inverse square dis-
tance factor in radiation attenuation, the dose level
contribution of a seed to a point less than 0.3 units
away is typically larger than the target upper bound
for the point. (Hence, the preprocessing techniques
commonly mentioned in the integer programming lit-
erature cannot be applied directly because this will
result in assigning zero to all seed positions.) In our
work, we focus on two MIP models and computa-
tional strategies that aid in solving the resulting MIP
instances.

Model 1
This model identifies a maximum feasible subsystem in
the proposed linear system. By introducing additional
0/1 variables, one can directly maximize the number
of points satisfying the specified bounds. In this case,
constraints (2) are replaced by

∑
j

D��P −Xj��xj +NP�1− vL
P �≥ LP�

∑
j

D��P −Xj��xj −MP�1− vU
P �≤UP�

(7)

where vL
P and vU

P are 0/1 variables, and MP and NP

are suitably chosen positive constants. If a solution
is found such that vL

P = 1, then the right-hand side
of the first inequality in (7) is zero; and hence, the
lower bound for the dose level at point P is not vio-
lated. Similarly, if vU

P = 1, the upper bound at point
P is not violated. To find a solution that satisfies
as many bound constraints as possible, it suffices to
maximize the sum of these additional 0/1 variables;
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i.e., maximize
∑

P �v
L
P + vU

P �. In practice, achieving the
target dose levels for certain points may be more
critical than achieving the target dose levels for cer-
tain other points. In this case, one could maximize a
weighted sum,

∑
P ��Pv

L
P +�Pv

U
P �, where the more crit-

ical points receive a relatively larger weight. Using a
weighted sum was important for the prostate cancer
cases. Because there were significantly fewer urethra
and rectum points compared to the number of points
representing the prostate, to increase the likelihood
that the former points achieved the target dose lev-
els, we placed a large weight on the associated 0/1
variables.
The role of the constants MP and NP in (7) is to

ensure that there will be feasible solutions to the
mathematical model. In theory, these constants should
be chosen suitably large so that if vL

P or vU
P is zero,

the associated constraint in (7) will not be violated
regardless of how we assign the 0/1 variables xj . In
practice, the choice is driven by computational con-
siderations of the optimization algorithm being used
and/or by decisions by the radiation oncologist. For a
branch-and-bound algorithm, it is advantageous com-
putationally to assign values that are as tight as pos-
sible. The medical expert can guide the selection of
the constants by either assigning absolute extremes
on acceptable radiation dose levels delivered to each
point (note that UP + MP is the absolute maximum
dose level that will be delivered to point P under the
constraints in (7), and LP − NP is the absolute mini-
mum), or by estimating the number of seeds needed
for a given plan. In the latter case, if the number of
seeds needed is estimated to be between k1 and k2
(k1 ≤ k2), for example, then the constant NP can be
taken to be LP minus the sum of the smallest k1 of the
values D��P −Xj��, and the constant MP can be taken
to be the sum of the largest k2 such values minus UP .
Selection in this fashion will ensure that no plan hav-
ing between k1 and k2 seeds will be eliminated from
consideration.

Model 2
An alternative model uses continuous variables to
capture the deviations of the dose level at a given
point from its target bounds and minimizing a

weighted sum of the deviations. In this case, we
replace constraints (2) by constraints of the form

∑
j

D��P −Xj��xj + yL
P ≥ LP�

∑
j

D��P −Xj��xj − yU
P ≤UP�

(8)

where yL
P and yU

P are nonnegative continuous vari-
ables. The objective for this model takes the form
minimize

∑
P ��Py

L
P +�Py

U
P �, where �P and �P are non-

negative weights selected according to the relative
importance of satisfying the associated bounds. For
example, weights associated with an upper bound on
the radiation dose for points in a neighboring healthy
organ may be given a relatively larger magnitude
than weights associated with an upper bound on the
dose level for points in the diseased organ.

Model Variations and Other Side Constraints
Both models allow the incorporation of alterna-
tive seed types. There are a variety of radioac-
tive sources that are used for brachytherapy—these
include palladium-103, iodine-125, which are com-
monly used for treating prostate cancer, and cesium-
137, iridium-192, and gold-198, each of which has its
own set of exposure rate constants. At this time, how-
ever, a single-seed type and radiation strength are
used in a given treatment plan. This fact is, in part,
due to the difficulty of designing treatment plans with
multiple strength and seed types as well as identi-
fying multiple-seed types in postdosimetry analysis.
The allowance of multiple strength and seed types
can easily be incorporated into the MIP framework—
one need only modify the total dose level expression
(1) as ∑

j

∑
i

Di��P −Xj��xij � (9)

Here, xij is the indicator variable for placement or
nonplacement of a seed of type i in grid location j ,
and Di�r� denotes the dose level contribution of a seed
of type i to a point r units away. In this case, a con-
straint restricting the number of seeds implanted at
grid point j is also needed:

∑
i xij ≤ 1.

To aid in reducing urinary and rectal toxicity, our
approach involves the imposition of strict dosimetric-
volume bounds on the urethra and rectum in both
MIP models. Besides the basic dosimetric constraints



Lee and Zaider: Operations Research Advances Cancer Therapeutics
22 Interfaces 38(1), pp. 5–25, © 2008 INFORMS

and dose-volume constraints to ensure sufficient cov-
erage to the tumor volume, we also incorporate
other physical constraints that the clinicians desire
into our MIP models. One could incorporate con-
straints to control the percentage of each tissue struc-
ture satisfying specified target bounds. Alternatively,
one could—if desired—constrain the total number of
seeds and/or needles used. Note also that one can
ensure that target dose bounds at specific points are
satisfied by fixing the associated “feasibility” vari-
ables (vL

P �v
U
P �yL

P � y
U
P ) to appropriate values.

Computational Strategies
We note that unlike most of the industrial applica-
tions in which the MIP instances contain sparsely
populated nonzero entries in the constraint matrices,
the resulting MIP instances for treatment optimiza-
tion have mostly dense matrices. Furthermore, the
magnitudes of the coefficients range from the order
of tens to tens of thousands. Below we highlight
some specialized strategies that have shown to be
effective in improving the tractability of the resulting
instances. The details of the computational analysis
were reported in Lee and Zaider (2003a).

Matrix Reduction and Approximation Scheme
Motivated by the dense constraint matrices and range
in the magnitudes in the nonzero entries, we investi-
gated a matrix reduction and perturbation approach.
The reduction scheme partitions the constraint matrix
into two submatrices, based on the magnitude of
the coefficients. We perturb the right-hand side to
compensate for the change in the matrix coefficients.
Specifically, we are interested in a dense MIP instance
of the following form:

Ax−Ny ≥ L�

Ax+Mz≤U�

x ∈Zn
+� y ∈�p

+� z ∈�q
+�

(S)

where A is an m×n nonnegative dense matrix, and N
andM arem×p andm×q nonnegative (sparse) matri-
ces, respectively. Let PS = conv �x�y� z� Ax−Ny ≥ L�
Ax+Mz≤U� x ∈Zn

+� y ∈�p
+� z ∈�q

+!� For the sake of
presentation, we assume that y and z are continuous
variables. However, the method we described below
also works when they are restricted to assume integer
values.

Definition. For a chosen " > 0, split the matrix A
as A=A1+A2, where

a1ij =



aij if aij ≥ "�

0 otherwise�
and a2ij =




aij if aij < "�

0 otherwise�

Let Ai denote the ith row of matrix A, and let x̄ and
x̂ solve the following linear programs, respectively:

max
 i$A2i �=0!

max
{
A2

i x$ x∈PS
}
and min

 i$A2i �=0!
min

{
A2

i x$ x∈PS
}
�

Consider the following two systems:
(1) The system

A1x−Ny ≥ L−A2x̄�

A1x+Mz≤U −A2x̂�

x ∈Zn
+� y ∈�p

+� z ∈�q
+�

is called a "-reduction for (S). It is easy to check that
if �x�y� z� is feasible for (S), then it is feasible for its
"-reduction. The converse does not hold. Clearly, if
xj ∈ %�j��j&� j = 1� � � � �n, we can approximate x̄j and
x̂j by �j and �j , respectively.
(2) Let ' ∈Zn

+. The system

A1x−Ny ≥ L−A2'�

A1x+Mz≤U −A2'�

x ∈Zn
+� y ∈�p

+� z ∈�q
+�

is called a "-reduction-'-approximation for (S) if A2x̂ ≤
A2'≤A2x̄.
We caution that applying these schemes to the MIP

instances is difficult. In particular, the selection of "
and ' is empirical and problem dependent because
the coefficients in each row of the dosimetric con-
straint matrix vary greatly. In some rows, the coef-
ficients are distributed in the range from tens to
hundreds, whereas in others there are various coeffi-
cients (fewer than 10 percent) that have magnitudes
in the hundreds of thousands and tens of thousands,
and the rest range from tens to thousands. Here, we
describe an implementation using the dosimetric con-
straints for Model 1:

n∑
j=1

D��P −Xj��xj +NP�1− vL
P �≥ LP�

n∑
j=1

D��P −Xj��xj −MP�1− vU
P �≤UP �
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To select ", one pass is made through the constraint
matrix to evaluate the distribution of the nonzeros in
each row. For row i, we calculate the average of the
largest 5 percent of the nonzero coefficients, avemax.
Initialize K = 0. The set K will be populated with
the set of indices selected in a nondecreasing manner,
starting from the smallest nonzero coefficient. We con-
tinue to place an index into K until ave D��P −Xj�� $
j ∈ K! is approximately equal to ( ∗ avemax, or until
the cardinality of the set K exceeds 50 percent of the
total number of nonzeros in the given row. We then
assign "i =max D��P −Xj��$ j ∈ K! and " =max "i!.
For a row with coefficients exceeding a magnitude
of 10,000, we set ( = 0�5 percent. For all other rows,
we increase this value gradually with the amount of
decrease in the magnitude of the coefficients.
Assuming there are m rows for each of the two

classes of dosimetric constraints, the complexity of
the search includes O��n + 1� log�n + 1�) operations
for sorting the nonzero coefficients for each row,
and O�m�n + 1� log�n + 1�) operations to set up the
"-reduction system.

Penalty-Based Adaptive Primal Heuristic Procedure
The heuristic procedure is an LP-based primal heuris-
tic in which at each iteration, some binary variables
are set to one and the corresponding linear program
is resolved. The procedure terminates when the linear
program returns an integer feasible solution or when
it is infeasible. In the former case, reduced-cost fixing
is performed at the root node, as well as locally on
each of the branch-and-bound nodes.
Again focusing on Model 1, let xLP be an opti-

mal solution of some linear program relaxation at a
branch-and-bound node. (For simplicity of notation,
the variables vL

P and vU
P are included as part of xLP.)

At the start of the heuristic procedure, penalties, pj ,
for all variables are set to zero. Let U =  j$ xLPj = 1!
and F =  j$ 0< xLPj < 1!. The procedure works by first
setting xj = 1 for all j ∈U . For each j ∈ F correspond-
ing to a grid point j with coordinates Xj , the penalty
on xj is updated according to the formula

pj =
∑

k$ xLPk =1
k a grid point

1
�Xk −Xj�

�

For all other j ∈ F (i.e., j corresponding to vL
P and vU

P ),
the penalties remain at value zero. Let xmax =

max xLPj $ j ∈ F ! and ' > 0. In nondecreasing order of
pjs, the variables in F are set to one if xLPj ≥ xmax −
'. Because penalties for fractional vL

P and vU
P vari-

ables are always set to zero, these variables are always
considered first for setting to one. For every binary
variable that is set to one, logical implication (prob-
ing) (Bixby and Lee 1993, 1998; Savelsbergh 1994) is
performed to avoid conflicts in variable fixing. The
value ' is chosen dynamically at each iteration so that
approximately 10 percent of the fractional variables
are set to one, a strategy that appears to work well
empirically for our MIP instances.

Penalty Branching Strategy
Branching variables are selected based on pseudo-
costs as well as penalties. Let ' > 0 be given, and let
K =  j$ ' < xLPj < 1− '!. One can control the size of K
by choosing ' so that �K� reaches a certain percentage
with respect to �F �. For each k ∈ K, the degradations
Uk and Dk in the objective value when branching with
xk set to one and zero, respectively, are calculated, and
the penalties pk are computed in the same manner as
we described in the previous section. The branching
variable is chosen as that value with the maximum
penalty-weighted degradation, which is computed as
max k∈K! Dk +Uk/�pk + 1�!. The values Uk and Dk can
be calculated exactly by solving the respective lin-
ear programs, or can be approximated by perform-
ing only a fixed number of simplex iterations. The
approximation strategy helps to control the required
computational effort. We report results based on per-
forming 50 simplex iterations using the steepest-edge
strategy.
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