Métodos de Descomposición para PL

Dpto. Ingeniería Industrial, Universidad de Chile

IN47B, Ingeniería de Operaciones

Contenidos

- Generación de Columnas
- Planos Cortantes

Algoritmo generico

- 1- Escriba el problema reducido (*RP*) (omitiendo vars.)
- 2- Resuelva (RP)
- 3- Resuelva sub-problema que encuentre vars. rentables
- 4- Si existe variable rentable, agregue a (RP)
 - si no, STOP solución de (RP) es optima
- 5- GOTO 2

Cadena de Supermercados

- Gran numero de variables en cada tienda:
 - espacio de repisas, inventarios, servicios (limpieza, mantención), programación de turnos
- variables que relacionan tiendas:
 - compra de productos, presupuesto, contrato laboral

Para dos tiendas

(P)
$$z = \min c_1^T x_1 + c_2^T x_2$$

s.t. $B_1 x_1 + B_2 x_2 = b$
 $A_1 x_1 = b_1$
 $A_2 x_2 = b_2$
 $x_1, x_2 \ge 0$

Descomposicion del problema

El método de generación de columnas funciona mejor cuando $m \ll m_1, m_2$.

Defina $S_i := \{x \mid A_i x = b_i, x \ge 0 \}, i = 1, 2$. El problema es equivalente a

(P)
$$z = \min_{\substack{c_1, c_2, c_3 \\ \text{s.t.}}} c_1^T x_1 + c_2^T x_2 \\ s.t. B_1 x_1 + B_2 x_2 = b \\ x_1 \in S_1 \\ x_2 \in S_2$$

Descomposicion del problema

Como S_i es polyhedral, todo $x \in S_i$ se puede escribir

$$x = \sum_{k \in J_i} \lambda_i^k x_i^k + \sum_{k \in R_i} \theta_i^k w_i^k \text{ donde } \sum_{k \in J_i} \lambda_i^k = 1, \ \lambda_i^k \ge 0, \ \theta_i^k \ge 0$$

- x_i^k son puntos extremos de S_i
- w_i^k son rayos extremos de S_i

Escribimos x asi en (P) para obtener el problema equivalente (M) con m+2 restricciones.

¿Cuantas variables tiene (M)?

Dantzig-Wolfe Decomposition

Contenidos

Generación de Columnas

Para resolver un problema manejable, consideramos subconjuntos de los puntos y rayos extremos $(\overline{J}_i \subset J_i)$ y $\overline{R}_i \subset R_i$.

Esto nos da el problema maestro reducido (RM):

$$\begin{split} z_{RM} &= \\ \min \sum_{k \in \overline{J}_1} \lambda_1^k c_1^T x_1^k + \sum_{k \in \overline{R}_1} \theta_1^k c_1^T w_1^k + \sum_{k \in \overline{J}_2} \lambda_2^k c_2^T x_2^k + \sum_{k \in \overline{R}_2} \theta_1^k c_2^T w_2^k \\ \text{s.t. } \sum_{k \in \overline{J}_1} \lambda_1^k B_1 x_1^k + \sum_{k \in \overline{R}_1} \theta_1^k B_1 w_1^k + \sum_{k \in \overline{J}_2} \lambda_2^k B_2 x_2^k + \sum_{k \in \overline{R}_2} \theta_1^k B_2 w_2^k &= b \\ \sum_{k \in \overline{J}_1} \lambda_1^k &= 1 \\ \sum_{k \in \overline{J}_2} \lambda_2^k &= 1 \\ \lambda_1^k, \theta_1^k \geq 0 & \lambda_2^k, \theta_2^k \geq 0 \end{split}$$

Generación de Columnas

Demuestre que $z_{RM} \ge z$

¿Como verificar que solución optima de (RM) resuelva (M)?

Ver costos reducidos de las variablems en (M): optimo si $c_j - c_B^T B^{-1} A_j \ge 0$, (donde $c_B^T B^{-1}$ son var. duales)

Sean (y, σ_1, σ_2) var. duales optimas de (RM). Para ver costos reducidos de los puntos extremos de S_i usamos

$$(P_1)$$
 (P_2) $u_1 = \min (c_1 - y^T B_1) x$ y $u_2 = \min (c_2 - y^T B_2) x$ s.t. $x \in S_2$

Generación de Columnas

Prop Si $u_i \ge \sigma_i$, i = 1, 2 entonces la solución z_{RM} es óptima para (M).

Además, para i = 1, 2, $si - \infty < u_i < \sigma_i$, la variable λ_i^J tiene costo reducido negativo ($c_i^T x_i^J - y^T B_i x_i^J < \sigma_i$). Si $u_i = -\infty$, la variable θ_i^J tiene costo reducido negativo. ($c_i^T w_i^J - y^T B_i w_i^J < 0$)

Dantzig-Wolfe Algorithm

- 1- Escriba el problema (*RM*)
- 2- Resuelva (*RM*), obtenga (y, σ_1, σ_2)
- 3- Resuelva (P_i) , obtenga u_i y sol optima x_i^j (o w_i^j)
- 4- IF $u_i \ge \sigma_i$ para todo i
- STOP: solución de (RM) es óptima para (M)
- ELSE IF $-\infty < u_i < \sigma_i$
- agregue x_i^j a \overline{J}_i
- ELSE IF $u_i = -\infty$
- agregue w_i^j a \overline{R}_i
- 5- GOTO 2

Temas pendientes

• Para encontrar la base inicial de (RM) use el sgte. problema Fase I: Dado puntos $x_i^1 \in S_i$ escriba

$$q = \min \quad e^{T} \alpha$$
s.t. $\lambda_{1}^{1} B_{1} x_{1}^{1} + \lambda_{2}^{1} B_{2} x_{2}^{1} + (-)\alpha = b$

$$\lambda_{1}^{1} = 1$$

$$\lambda_{2}^{1} = 1$$

$$\lambda_{1}^{1}, \lambda_{2}^{1}, \quad \alpha \geq 0$$

Use Dantzig-Wolfe para resolver la Fase I ($\lambda_i^1 = 1$, $\alpha = |b - \sum_i B_i x_i^1|$ es base inicial). Si sol. optima satisface:

- q=0 (*P*) es factible, se puede encontrar base inicial q>0 (*P*) no tiene solución factible
- ¿Y si paramos antes de encontrar el óptimo?

Temas pendientes

Prop $z_{RM} \ge z \ge z_{RM} + \sum_{i=1}^{2} u_i - \sum_{i=1}^{2} \sigma_i$ **proof:** Considere (*P*) y su dual:

y también (P_i) y sus duales:

$$(P_i) \quad u_i = \min \limits_{\text{s.t.}} \quad (c_i - B_i^T y)^T x \\ \text{s.t.} \quad A_i x = b_i \\ x > 0 \qquad \qquad \text{s.t.} \quad A_i^T h \leq c_i - B_i^T y$$

Dantzig-Wolfe Decomposition

$$z_{RM} \geq z \geq z_{RM} + \sum_{i=1}^{2} u_i - \sum_{i=1}^{2} \sigma_i$$

 $Z_{RM} \ge z$ es porque z considera mas variables

otra desigualdad

- Dualidad debil $\Rightarrow z \geq b^T s + \sum_{i=1}^2 b_i^T \pi_i \text{ si } (s, \pi_1, \pi_2)$ dual factible.
- (y, σ_1, σ_2) opt dual de $(RM) \Rightarrow Z_{RM} = b^T y + \sum_i \sigma_i$
- Sean h_i sol optima de $(D_i) \Rightarrow$
 - (y, h_1, h_2) sol factible de (D)
 - $u_i = b_i^T h_i$
- $z \ge b^T y + \sum_{i=1}^2 b_i^T h_i = Z_{RM} \sum_i \sigma_i + \sum_i u_i$

Ejemplo

Muchas resticciones

Considere el problema con n variables, donde n << m:

(P) mín
$$c^T x$$

s.t. $a_i^T x \leq b_i$ $i = 1 \dots m$

¿Como usaria un algoritmo de generación de columna para resolver este problema eficientemente? considere el dual!

Generando restricciones

Definimos un problema restringido usando solamente k < m restricciones

(RM) mín
$$c^T x$$

s.t. $a_i^T x \leq b_i$ $i = 1 ... k$.

- Si x* optimo para (RM) satisface restricciones
 i = 1 ... m entonces resuelve (P)
- Si no, debemos identificar una desigualdad violada

Aqui generación de columnas en el dual = planos cortantes en el primal Cotas superior e inferior?

Ejemplo: Programación Estocástica

Una Compañia de Electricidad

Como satisfacer demanda a costo minimo. x_i generacion térmica, h_i generación hidrica. Satisfacer la demanda en 2 periodos se escribe:

mín
$$3x_1 + 3x_2$$

 $x_1 + h_1 \ge 10$
 $x_2 + h_2 \ge 12$
 $h_1 \le 5$
 $h_2 \le V_2$
 $V_2 + h_1 = 5 + r$
 $x_i, h_i > 0$

Una Compañia de Electricidad

Suponemos

- demanda 2do periodo: 15 or 10 con prob. 1/2
- costo gen termal 2do periodo: 1 or 5 con prob. 1/2
- agua a emalse *r*: 0 o 10 con prob. 1/2

Pregunta: ¿Mejor estrategia para satisfacer demanda considerando incertidumbre?

scen.	prob.	2º dem	costo term.	lluvia	best strategy
1	0.125	15	5	0	guardar H20, x ₁ alto
2	0.125	10	3	10	usar H20, x_1 bajo
:	:				

Una Compañia de Electricidad

Solucion: Minimize el valor esperado: $\sum_{i=1}^{8} p_i z_i$.

- z_i es sol. optima para cada escenario.
- algunas variables se deciden antes de la incertidumbre (x₁ y h₁)
- otras se deciden despues de la incertidumbre (x₂ y h₂).

Esto genera un problema con recurso:

Formulaciones y notación

Descomposicion de Bender (generación de restricciones) funciona mejor en problemas con gran nro. de restricciones y la sgte estructura:

Formulaciones y notación

Resolvemos cada minimización separadamente:

$$\min_{x} c^{T}x + \sum_{i=1}^{k} \phi_{i}(x)$$
s.t.
$$Ax = b$$

$$x \ge 0$$

donde

$$\phi_i(x) = \min_{y_i} f^T y_i$$
s.t.
$$Dy_i = d_i - B_i x$$

$$y_i \ge 0 \qquad \text{para todo } i = 1, \dots, k.$$

Formulaciones y notación

La función $\phi_i(x)$ es lineal por partes y convexa $\phi_i(x)$ se construye agregando restricciones:

- Corte de optimalidad: Si $\gamma \ge \phi_i(x)$, $(d_i B_i x)^T z^k \le \gamma$ para todo z^k punto extremo de $D^T z \le f$
- Corte de factibilidad: Si x hace $\phi_i(x) = \infty$ (infactible, dual no acotado) esto se evita restringiendo $(d_i B_i x)^T w^k \le 0$ para todo w^k rayo extremo de $D^T z < f$

Formulaciones y notación

El problema maestro es:

$$\begin{aligned} & \min_{x} & c^{T}x + \sum_{i=1}^{k} \gamma_{i} \\ & \text{s.t.} & Ax = b \\ & x \geq 0 \\ & d_{i}^{T}z^{k} - x^{T}B_{i}^{T}z^{k} \leq \gamma_{i} \text{ para } z^{k} \text{ BFS de } D^{T}z \leq f \\ & d_{i}^{T}w^{k} - x^{T}B_{i}^{T}w^{k} \leq 0 \text{ para } w^{k} \text{ rayo extrm de } D^{T}z \leq f \end{aligned}$$

Ojo que D y f pueden variar por escenario tambien.

Algoritmo

- 1- Formule (RM) (i.e. encuentre una BFS para $D^Tz \leq f$)
- 2- Resuelva (*RM*) y obtenga sol optima (x^*, γ^*)
- 3- Resuelva subproblema $\phi_i(x^*)$ para todo i
- 4- IF todos subproblemas satisfacen $\phi_i(x^*) \leq \gamma_i^*$
- STOP: (x^*, γ^*) es óptima, satisface todos los cortes
- ELSE IF un *i* tiene $\infty > \phi_i(\mathbf{X}^*) > \gamma_i^*$
- agregue corte optimalidad $d_i^T z^k x^T B_i z^k \le \gamma_i$
- ELSE IF un *i* tiene $\phi_i(\mathbf{x}^*) = \infty$
- agregue corte de factibilidad $d_i^T w^k x^T B_i w^k \le 0$
- 5- GOTO 2